diff --git a/demos/speaker_verification/README.md b/demos/speaker_verification/README.md index b79f3f7a1660bda40695147b1177f512055f2702..b6a1d9bcc26058c2789f82444b2aa9eced26e0d0 100644 --- a/demos/speaker_verification/README.md +++ b/demos/speaker_verification/README.md @@ -14,7 +14,7 @@ see [installation](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/doc You can choose one way from easy, meduim and hard to install paddlespeech. ### 2. Prepare Input File -The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model. +The input of this cli demo should be a WAV file(`.wav`), and the sample rate must be the same as the model. Here are sample files for this demo that can be downloaded: ```bash diff --git a/demos/speaker_verification/README_cn.md b/demos/speaker_verification/README_cn.md index db382f298df74c73ef5fcbd5a3fb64fb2fa1c44f..90bba38acf2d176092d224c5c1112418bbac353a 100644 --- a/demos/speaker_verification/README_cn.md +++ b/demos/speaker_verification/README_cn.md @@ -4,16 +4,16 @@ ## 介绍 声纹识别是一项用计算机程序自动提取说话人特征的技术。 -这个 demo 是一个从给定音频文件提取说话人特征,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。 +这个 demo 是从一个给定音频文件中提取说话人特征,它可以通过使用 `PaddleSpeech` 的单个命令或 python 中的几行代码来实现。 ## 使用方法 ### 1. 安装 请看[安装文档](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md)。 -你可以从 easy,medium,hard 三中方式中选择一种方式安装。 +你可以从easy medium,hard 三种方式中选择一种方式安装。 ### 2. 准备输入 -这个 demo 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。 +声纹cli demo 的输入应该是一个 WAV 文件(`.wav`),并且采样率必须与模型的采样率相同。 可以下载此 demo 的示例音频: ```bash diff --git a/demos/streaming_asr_server/websocket_client.py b/demos/streaming_asr_server/websocket_client.py index 523ef482d46c07a3e12f9d4c8370585b110f818e..3451b8d047429de7c3c8edf4053ac9dfed1df361 100644 --- a/demos/streaming_asr_server/websocket_client.py +++ b/demos/streaming_asr_server/websocket_client.py @@ -28,6 +28,7 @@ def main(args): handler = ASRWsAudioHandler( args.server_ip, args.port, + endpoint=args.endpoint, punc_server_ip=args.punc_server_ip, punc_server_port=args.punc_server_port) loop = asyncio.get_event_loop() @@ -69,7 +70,11 @@ if __name__ == "__main__": default=8091, dest="punc_server_port", help='Punctuation server port') - + parser.add_argument( + "--endpoint", + type=str, + default="/paddlespeech/asr/streaming", + help="ASR websocket endpoint") parser.add_argument( "--wavfile", action="store", diff --git a/paddlespeech/cli/vector/infer.py b/paddlespeech/cli/vector/infer.py index 37e1939190fd73175d96c95309bfd7f4a2eb01a8..3111badf4d53cb638582eb349f9f0e8702460ea3 100644 --- a/paddlespeech/cli/vector/infer.py +++ b/paddlespeech/cli/vector/infer.py @@ -272,7 +272,8 @@ class VectorExecutor(BaseExecutor): model_type: str='ecapatdnn_voxceleb12', sample_rate: int=16000, cfg_path: Optional[os.PathLike]=None, - ckpt_path: Optional[os.PathLike]=None): + ckpt_path: Optional[os.PathLike]=None, + task=None): """Init the neural network from the model path Args: @@ -284,8 +285,10 @@ class VectorExecutor(BaseExecutor): Defaults to None. ckpt_path (Optional[os.PathLike], optional): the pretrained model path, which is stored in the disk. Defaults to None. + task (str, optional): the model task type """ # stage 0: avoid to init the mode again + self.task = task if hasattr(self, "model"): logger.info("Model has been initialized") return @@ -434,6 +437,7 @@ class VectorExecutor(BaseExecutor): if self.sample_rate != 16000 and self.sample_rate != 8000: logger.error( "invalid sample rate, please input --sr 8000 or --sr 16000") + logger.error(f"The model sample rate: {self.sample_rate}, the external sample rate is: {sample_rate}") return False if isinstance(audio_file, (str, os.PathLike)): diff --git a/paddlespeech/server/README_cn.md b/paddlespeech/server/README_cn.md index e799bca86cdec71bb481a8bc6cfbaaa440e09c04..010d3d5189ab554ad94b5f0defa5d22e78bca5e5 100644 --- a/paddlespeech/server/README_cn.md +++ b/paddlespeech/server/README_cn.md @@ -63,3 +63,23 @@ paddlespeech_server start --config_file conf/tts_online_application.yaml ``` paddlespeech_client tts_online --server_ip 127.0.0.1 --port 8092 --input "您好,欢迎使用百度飞桨深度学习框架!" --output output.wav ``` + +## 声纹识别 + +### 启动声纹识别服务 + +``` +paddlespeech_server start --config_file conf/vector_application.yaml +``` + +### 获取说话人音频声纹 + +``` +paddlespeech_client vector --task spk --server_ip 127.0.0.1 --port 8090 --input 85236145389.wav +``` + +### 两个说话人音频声纹打分 + +``` +paddlespeech_client vector --task score --server_ip 127.0.0.1 --port 8090 --enroll 123456789.wav --test 85236145389.wav +``` \ No newline at end of file diff --git a/paddlespeech/server/bin/paddlespeech_client.py b/paddlespeech/server/bin/paddlespeech_client.py index 2f1ce3851b17a300d1a561966e52b2133713dd1d..cd1cd51ab8032fa1a9b1e4cc59844f9af323a76e 100644 --- a/paddlespeech/server/bin/paddlespeech_client.py +++ b/paddlespeech/server/bin/paddlespeech_client.py @@ -35,7 +35,7 @@ from paddlespeech.server.utils.util import wav2base64 __all__ = [ 'TTSClientExecutor', 'TTSOnlineClientExecutor', 'ASRClientExecutor', - 'ASROnlineClientExecutor', 'CLSClientExecutor' + 'ASROnlineClientExecutor', 'CLSClientExecutor', 'VectorClientExecutor' ] @@ -583,3 +583,108 @@ class TextClientExecutor(BaseExecutor): response_dict = res.json() punc_text = response_dict["result"]["punc_text"] return punc_text + + +@cli_client_register( + name='paddlespeech_client.vector', description='visit the vector service') +class VectorClientExecutor(BaseExecutor): + def __init__(self): + super(VectorClientExecutor, self).__init__() + self.parser = argparse.ArgumentParser( + prog='paddlespeech_client.vector', add_help=True) + self.parser.add_argument( + '--server_ip', type=str, default='127.0.0.1', help='server ip') + self.parser.add_argument( + '--port', type=int, default=8090, help='server port') + self.parser.add_argument( + '--input', + type=str, + default=None, + help='sentence to be process by text server.') + self.parser.add_argument( + '--task', + type=str, + default="spk", + choices=["spk", "score"], + help="The vector service task") + self.parser.add_argument( + "--enroll", type=str, default=None, help="The enroll audio") + self.parser.add_argument( + "--test", type=str, default=None, help="The test audio") + + def execute(self, argv: List[str]) -> bool: + """Execute the request from the argv. + + Args: + argv (List): the request arguments + + Returns: + str: the request flag + """ + args = self.parser.parse_args(argv) + input_ = args.input + server_ip = args.server_ip + port = args.port + task = args.task + + try: + time_start = time.time() + res = self( + input=input_, + server_ip=server_ip, + port=port, + enroll_audio=args.enroll, + test_audio=args.test, + task=task) + time_end = time.time() + logger.info(f"The vector: {res}") + logger.info("Response time %f s." % (time_end - time_start)) + return True + except Exception as e: + logger.error("Failed to extract vector.") + logger.error(e) + return False + + @stats_wrapper + def __call__(self, + input: str, + server_ip: str="127.0.0.1", + port: int=8090, + audio_format: str="wav", + sample_rate: int=16000, + enroll_audio: str=None, + test_audio: str=None, + task="spk"): + """ + Python API to call text executor. + + Args: + input (str): the request audio data + server_ip (str, optional): the server ip. Defaults to "127.0.0.1". + port (int, optional): the server port. Defaults to 8090. + audio_format (str, optional): audio format. Defaults to "wav". + sample_rate (str, optional): audio sample rate. Defaults to 16000. + enroll_audio (str, optional): enroll audio data. Defaults to None. + test_audio (str, optional): test audio data. Defaults to None. + task (str, optional): the task type, "spk" or "socre". Defaults to "spk" + Returns: + str: the audio embedding or score between enroll and test audio + """ + if task == "spk": + from paddlespeech.server.utils.audio_handler import VectorHttpHandler + logger.info("vector http client start") + logger.info(f"the input audio: {input}") + handler = VectorHttpHandler(server_ip=server_ip, port=port) + res = handler.run(input, audio_format, sample_rate) + return res + elif task == "score": + from paddlespeech.server.utils.audio_handler import VectorScoreHttpHandler + logger.info("vector score http client start") + logger.info( + f"enroll audio: {enroll_audio}, test audio: {test_audio}") + handler = VectorScoreHttpHandler(server_ip=server_ip, port=port) + res = handler.run(enroll_audio, test_audio, audio_format, + sample_rate) + logger.info(f"The vector score is: {res}") + else: + logger.error(f"Sorry, we have not support such task {task}") diff --git a/paddlespeech/server/conf/application.yaml b/paddlespeech/server/conf/application.yaml index c87530595cac9ea8863df88bfcae256994b59602..b6a9942ed7bfa4248004a2c27d9a32bbb3ac0386 100644 --- a/paddlespeech/server/conf/application.yaml +++ b/paddlespeech/server/conf/application.yaml @@ -11,7 +11,7 @@ port: 8090 # protocol = ['websocket', 'http'] (only one can be selected). # http only support offline engine type. protocol: 'http' -engine_list: ['asr_python', 'tts_python', 'cls_python', 'text_python'] +engine_list: ['asr_python', 'tts_python', 'cls_python', 'text_python', 'vector_python'] ################################################################################# @@ -166,4 +166,15 @@ text_python: cfg_path: # [optional] ckpt_path: # [optional] vocab_file: # [optional] + device: # set 'gpu:id' or 'cpu' + + +################################### Vector ###################################### +################### Vector task: spk; engine_type: python ####################### +vector_python: + task: spk + model_type: 'ecapatdnn_voxceleb12' + sample_rate: 16000 + cfg_path: # [optional] + ckpt_path: # [optional] device: # set 'gpu:id' or 'cpu' \ No newline at end of file diff --git a/paddlespeech/server/conf/vector_application.yaml b/paddlespeech/server/conf/vector_application.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c78659e351579fb629fde531d1ff9b5d726f4349 --- /dev/null +++ b/paddlespeech/server/conf/vector_application.yaml @@ -0,0 +1,32 @@ +# This is the parameter configuration file for PaddleSpeech Serving. + +################################################################################# +# SERVER SETTING # +################################################################################# +host: 0.0.0.0 +port: 8090 + +# The task format in the engin_list is: _ +# protocol = ['http'] (only one can be selected). +# http only support offline engine type. +protocol: 'http' +engine_list: ['vector_python'] + + +################################################################################# +# ENGINE CONFIG # +################################################################################# + +################################### Vector ###################################### +################### Vector task: spk; engine_type: python ####################### +vector_python: + task: spk + model_type: 'ecapatdnn_voxceleb12' + sample_rate: 16000 + cfg_path: # [optional] + ckpt_path: # [optional] + device: # set 'gpu:id' or 'cpu' + + + + diff --git a/paddlespeech/server/engine/asr/online/asr_engine.py b/paddlespeech/server/engine/asr/online/asr_engine.py index 990590b4694d400dde93de3996afa2b66aaacf74..2e61bb4ed587e39a2d19f59d96b985d3bc27ef17 100644 --- a/paddlespeech/server/engine/asr/online/asr_engine.py +++ b/paddlespeech/server/engine/asr/online/asr_engine.py @@ -13,6 +13,7 @@ # limitations under the License. import copy import os +import time from typing import Optional import numpy as np @@ -153,6 +154,12 @@ class PaddleASRConnectionHanddler: self.n_shift = self.preprocess_conf.process[0]['n_shift'] def extract_feat(self, samples): + + # we compute the elapsed time of first char occuring + # and we record the start time at the first pcm sample arraving + # if self.first_char_occur_elapsed is not None: + # self.first_char_occur_elapsed = time.time() + if "deepspeech2online" in self.model_type: # self.reamined_wav stores all the samples, # include the original remained_wav and this package samples @@ -290,6 +297,7 @@ class PaddleASRConnectionHanddler: self.chunk_num = 0 self.global_frame_offset = 0 self.result_transcripts = [''] + self.first_char_occur_elapsed = None def decode(self, is_finished=False): if "deepspeech2online" in self.model_type: diff --git a/paddlespeech/server/engine/engine_factory.py b/paddlespeech/server/engine/engine_factory.py index 30e48de771e70f289545c3d300c7bd56d31513cf..6cf95d756c269d5c8c7806ca9bb38b8927ebb72e 100644 --- a/paddlespeech/server/engine/engine_factory.py +++ b/paddlespeech/server/engine/engine_factory.py @@ -49,5 +49,8 @@ class EngineFactory(object): elif engine_name.lower() == 'text' and engine_type.lower() == 'python': from paddlespeech.server.engine.text.python.text_engine import TextEngine return TextEngine() + elif engine_name.lower() == 'vector' and engine_type.lower() == 'python': + from paddlespeech.server.engine.vector.python.vector_engine import VectorEngine + return VectorEngine() else: return None diff --git a/paddlespeech/server/engine/vector/__init__.py b/paddlespeech/server/engine/vector/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/paddlespeech/server/engine/vector/python/__init__.py b/paddlespeech/server/engine/vector/python/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/paddlespeech/server/engine/vector/python/vector_engine.py b/paddlespeech/server/engine/vector/python/vector_engine.py new file mode 100644 index 0000000000000000000000000000000000000000..2fd8dec60cfedb6ed55aacd768b2d8e09095e681 --- /dev/null +++ b/paddlespeech/server/engine/vector/python/vector_engine.py @@ -0,0 +1,200 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import io +from collections import OrderedDict + +import numpy as np +import paddle + +from paddleaudio.backends import load as load_audio +from paddleaudio.compliance.librosa import melspectrogram +from paddlespeech.cli.log import logger +from paddlespeech.cli.vector.infer import VectorExecutor +from paddlespeech.server.engine.base_engine import BaseEngine +from paddlespeech.vector.io.batch import feature_normalize + + +class PaddleVectorConnectionHandler: + def __init__(self, vector_engine): + """The PaddleSpeech Vector Server Connection Handler + This connection process every server request + Args: + vector_engine (VectorEngine): The Vector engine + """ + super().__init__() + logger.info( + "Create PaddleVectorConnectionHandler to process the vector request") + self.vector_engine = vector_engine + self.executor = self.vector_engine.executor + self.task = self.vector_engine.executor.task + self.model = self.vector_engine.executor.model + self.config = self.vector_engine.executor.config + + self._inputs = OrderedDict() + self._outputs = OrderedDict() + + @paddle.no_grad() + def run(self, audio_data, task="spk"): + """The connection process the http request audio + + Args: + audio_data (bytes): base64.b64decode + + Returns: + str: the punctuation text + """ + logger.info( + f"start to extract the do vector {self.task} from the http request") + if self.task == "spk" and task == "spk": + embedding = self.extract_audio_embedding(audio_data) + return embedding + else: + logger.error( + "The request task is not matched with server model task") + logger.error( + f"The server model task is: {self.task}, but the request task is: {task}" + ) + + return np.array([ + 0.0, + ]) + + @paddle.no_grad() + def get_enroll_test_score(self, enroll_audio, test_audio): + """Get the enroll and test audio score + + Args: + enroll_audio (str): the base64 format enroll audio + test_audio (str): the base64 format test audio + + Returns: + float: the score between enroll and test audio + """ + logger.info("start to extract the enroll audio embedding") + enroll_emb = self.extract_audio_embedding(enroll_audio) + + logger.info("start to extract the test audio embedding") + test_emb = self.extract_audio_embedding(test_audio) + + logger.info( + "start to get the score between the enroll and test embedding") + score = self.executor.get_embeddings_score(enroll_emb, test_emb) + + logger.info(f"get the enroll vs test score: {score}") + return score + + @paddle.no_grad() + def extract_audio_embedding(self, audio: str, sample_rate: int=16000): + """extract the audio embedding + + Args: + audio (str): the audio data + sample_rate (int, optional): the audio sample rate. Defaults to 16000. + """ + # we can not reuse the cache io.BytesIO(audio) data, + # because the soundfile will change the io.BytesIO(audio) to the end + # thus we should convert the base64 string to io.BytesIO when we need the audio data + if not self.executor._check(io.BytesIO(audio), sample_rate): + logger.info("check the audio sample rate occurs error") + return np.array([0.0]) + + waveform, sr = load_audio(io.BytesIO(audio)) + logger.info(f"load the audio sample points, shape is: {waveform.shape}") + + # stage 2: get the audio feat + # Note: Now we only support fbank feature + try: + feats = melspectrogram( + x=waveform, + sr=self.config.sr, + n_mels=self.config.n_mels, + window_size=self.config.window_size, + hop_length=self.config.hop_size) + logger.info(f"extract the audio feats, shape is: {feats.shape}") + except Exception as e: + logger.info(f"feats occurs exception {e}") + sys.exit(-1) + + feats = paddle.to_tensor(feats).unsqueeze(0) + # in inference period, the lengths is all one without padding + lengths = paddle.ones([1]) + + # stage 3: we do feature normalize, + # Now we assume that the feats must do normalize + feats = feature_normalize(feats, mean_norm=True, std_norm=False) + + # stage 4: store the feats and length in the _inputs, + # which will be used in other function + logger.info(f"feats shape: {feats.shape}") + logger.info("audio extract the feats success") + + logger.info("start to extract the audio embedding") + embedding = self.model.backbone(feats, lengths).squeeze().numpy() + logger.info(f"embedding size: {embedding.shape}") + + return embedding + + +class VectorServerExecutor(VectorExecutor): + def __init__(self): + """The wrapper for TextEcutor + """ + super().__init__() + pass + + +class VectorEngine(BaseEngine): + def __init__(self): + """The Vector Engine + """ + super(VectorEngine, self).__init__() + logger.info("Create the VectorEngine Instance") + + def init(self, config: dict): + """Init the Vector Engine + + Args: + config (dict): The server configuation + + Returns: + bool: The engine instance flag + """ + logger.info("Init the vector engine") + try: + self.config = config + if self.config.device: + self.device = self.config.device + else: + self.device = paddle.get_device() + + paddle.set_device(self.device) + logger.info(f"Vector Engine set the device: {self.device}") + except BaseException as e: + logger.error( + "Set device failed, please check if device is already used and the parameter 'device' in the yaml file" + ) + logger.error("Initialize Vector server engine Failed on device: %s." + % (self.device)) + return False + + self.executor = VectorServerExecutor() + + self.executor._init_from_path( + model_type=config.model_type, + cfg_path=config.cfg_path, + ckpt_path=config.ckpt_path, + task=config.task) + + logger.info("Init the Vector engine successfully") + return True diff --git a/paddlespeech/server/restful/api.py b/paddlespeech/server/restful/api.py index d5e422e33ee539f13d53cbd0a0dc1da3fcf11fab..f1e4ffc869556121654870dd0e638c60bc016ca1 100644 --- a/paddlespeech/server/restful/api.py +++ b/paddlespeech/server/restful/api.py @@ -21,7 +21,7 @@ from paddlespeech.server.restful.asr_api import router as asr_router from paddlespeech.server.restful.cls_api import router as cls_router from paddlespeech.server.restful.text_api import router as text_router from paddlespeech.server.restful.tts_api import router as tts_router - +from paddlespeech.server.restful.vector_api import router as vec_router _router = APIRouter() @@ -43,6 +43,8 @@ def setup_router(api_list: List): _router.include_router(cls_router) elif api_name == 'text': _router.include_router(text_router) + elif api_name.lower() == 'vector': + _router.include_router(vec_router) else: logger.error( f"PaddleSpeech has not support such service: {api_name}") diff --git a/paddlespeech/server/restful/request.py b/paddlespeech/server/restful/request.py index 504166270bc7d9232664420f297a1b3b663bda1c..b7a32481f2c4963b3c5c123fd9cefb954fcdebdc 100644 --- a/paddlespeech/server/restful/request.py +++ b/paddlespeech/server/restful/request.py @@ -15,7 +15,10 @@ from typing import Optional from pydantic import BaseModel -__all__ = ['ASRRequest', 'TTSRequest', 'CLSRequest'] +__all__ = [ + 'ASRRequest', 'TTSRequest', 'CLSRequest', 'VectorRequest', + 'VectorScoreRequest' +] #****************************************************************************************/ @@ -85,3 +88,40 @@ class CLSRequest(BaseModel): #****************************************************************************************/ class TextRequest(BaseModel): text: str + + +#****************************************************************************************/ +#************************************ Vecotr request ************************************/ +#****************************************************************************************/ +class VectorRequest(BaseModel): + """ + request body example + { + "audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...", + "task": "spk", + "audio_format": "wav", + "sample_rate": 16000, + } + """ + audio: str + task: str + audio_format: str + sample_rate: int + + +class VectorScoreRequest(BaseModel): + """ + request body example + { + "enroll_audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...", + "test_audio": "exSI6ICJlbiIsCgkgICAgInBvc2l0aW9uIjogImZhbHNlIgoJf...", + "task": "score", + "audio_format": "wav", + "sample_rate": 16000, + } + """ + enroll_audio: str + test_audio: str + task: str + audio_format: str + sample_rate: int diff --git a/paddlespeech/server/restful/response.py b/paddlespeech/server/restful/response.py index 5792959ea5101f430ba3b0ada4f59c0f540310e5..c91b38992198339f4c05c9c7f6f56e89d8a72239 100644 --- a/paddlespeech/server/restful/response.py +++ b/paddlespeech/server/restful/response.py @@ -15,7 +15,10 @@ from typing import List from pydantic import BaseModel -__all__ = ['ASRResponse', 'TTSResponse', 'CLSResponse'] +__all__ = [ + 'ASRResponse', 'TTSResponse', 'CLSResponse', 'TextResponse', + 'VectorResponse', 'VectorScoreResponse' +] class Message(BaseModel): @@ -129,6 +132,11 @@ class CLSResponse(BaseModel): result: CLSResult +#****************************************************************************************/ +#************************************ Text response **************************************/ +#****************************************************************************************/ + + class TextResult(BaseModel): punc_text: str @@ -153,6 +161,59 @@ class TextResponse(BaseModel): result: TextResult +#****************************************************************************************/ +#************************************ Vector response **************************************/ +#****************************************************************************************/ + + +class VectorResult(BaseModel): + vec: list + + +class VectorResponse(BaseModel): + """ + response example + { + "success": true, + "code": 0, + "message": { + "description": "success" + }, + "result": { + "vec": [1.0, 1.0] + } + } + """ + success: bool + code: int + message: Message + result: VectorResult + + +class VectorScoreResult(BaseModel): + score: float + + +class VectorScoreResponse(BaseModel): + """ + response example + { + "success": true, + "code": 0, + "message": { + "description": "success" + }, + "result": { + "score": 1.0 + } + } + """ + success: bool + code: int + message: Message + result: VectorScoreResult + + #****************************************************************************************/ #********************************** Error response **************************************/ #****************************************************************************************/ diff --git a/paddlespeech/server/restful/vector_api.py b/paddlespeech/server/restful/vector_api.py new file mode 100644 index 0000000000000000000000000000000000000000..6e04f48e766c52dc5206c029bf9c2731f90f0c35 --- /dev/null +++ b/paddlespeech/server/restful/vector_api.py @@ -0,0 +1,151 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import base64 +import traceback +from typing import Union + +import numpy as np +from fastapi import APIRouter + +from paddlespeech.cli.log import logger +from paddlespeech.server.engine.engine_pool import get_engine_pool +from paddlespeech.server.engine.vector.python.vector_engine import PaddleVectorConnectionHandler +from paddlespeech.server.restful.request import VectorRequest +from paddlespeech.server.restful.request import VectorScoreRequest +from paddlespeech.server.restful.response import ErrorResponse +from paddlespeech.server.restful.response import VectorResponse +from paddlespeech.server.restful.response import VectorScoreResponse +from paddlespeech.server.utils.errors import ErrorCode +from paddlespeech.server.utils.errors import failed_response +from paddlespeech.server.utils.exception import ServerBaseException +router = APIRouter() + + +@router.get('/paddlespeech/vector/help') +def help(): + """help + + Returns: + json: The /paddlespeech/vector api response content + """ + response = { + "success": "True", + "code": 200, + "message": { + "global": "success" + }, + "vector": [2.3, 3.5, 5.5, 6.2, 2.8, 1.2, 0.3, 3.6] + } + return response + + +@router.post( + "/paddlespeech/vector", response_model=Union[VectorResponse, ErrorResponse]) +def vector(request_body: VectorRequest): + """vector api + + Args: + request_body (VectorRequest): the vector request body + + Returns: + json: the vector response body + """ + try: + # 1. get the audio data + # the audio must be base64 format + audio_data = base64.b64decode(request_body.audio) + + # 2. get single engine from engine pool + # and we use the vector_engine to create an connection handler to process the request + engine_pool = get_engine_pool() + vector_engine = engine_pool['vector'] + connection_handler = PaddleVectorConnectionHandler(vector_engine) + + # 3. we use the connection handler to process the audio + audio_vec = connection_handler.run(audio_data, request_body.task) + + # 4. we need the result of the vector instance be numpy.ndarray + if not isinstance(audio_vec, np.ndarray): + logger.error( + f"the vector type is not numpy.array, that is: {type(audio_vec)}" + ) + error_reponse = ErrorResponse() + error_reponse.message.description = f"the vector type is not numpy.array, that is: {type(audio_vec)}" + return error_reponse + + response = { + "success": True, + "code": 200, + "message": { + "description": "success" + }, + "result": { + "vec": audio_vec.tolist() + } + } + + except ServerBaseException as e: + response = failed_response(e.error_code, e.msg) + except BaseException: + response = failed_response(ErrorCode.SERVER_UNKOWN_ERR) + traceback.print_exc() + + return response + + +@router.post( + "/paddlespeech/vector/score", + response_model=Union[VectorScoreResponse, ErrorResponse]) +def score(request_body: VectorScoreRequest): + """vector api + + Args: + request_body (VectorScoreRequest): the punctuation request body + + Returns: + json: the punctuation response body + """ + try: + # 1. get the audio data + # the audio must be base64 format + enroll_data = base64.b64decode(request_body.enroll_audio) + test_data = base64.b64decode(request_body.test_audio) + + # 2. get single engine from engine pool + # and we use the vector_engine to create an connection handler to process the request + engine_pool = get_engine_pool() + vector_engine = engine_pool['vector'] + connection_handler = PaddleVectorConnectionHandler(vector_engine) + + # 3. we use the connection handler to process the audio + score = connection_handler.get_enroll_test_score(enroll_data, test_data) + + response = { + "success": True, + "code": 200, + "message": { + "description": "success" + }, + "result": { + "score": score + } + } + + except ServerBaseException as e: + response = failed_response(e.error_code, e.msg) + except BaseException: + response = failed_response(ErrorCode.SERVER_UNKOWN_ERR) + traceback.print_exc() + + return response diff --git a/paddlespeech/server/utils/audio_handler.py b/paddlespeech/server/utils/audio_handler.py index b9f3b87fd940766acae7d0acb9a434936da7ad42..ac45a21dd2cce9cdf94c5949d655de2dda9b97e4 100644 --- a/paddlespeech/server/utils/audio_handler.py +++ b/paddlespeech/server/utils/audio_handler.py @@ -144,6 +144,7 @@ class ASRWsAudioHandler: return "" # 1. send websocket handshake protocal + start_time = time.time() async with websockets.connect(self.url) as ws: # 2. server has already received handshake protocal # client start to send the command @@ -189,8 +190,15 @@ class ASRWsAudioHandler: if self.punc_server: msg["result"] = self.punc_server.run(msg["result"]) - + + # 6. logging the final result and comptute the statstics + elapsed_time = time.time() - start_time + audio_info = soundfile.info(wavfile_path) logger.info("client final receive msg={}".format(msg)) + logger.info( + f"audio duration: {audio_info.duration}, elapsed time: {elapsed_time}, RTF={elapsed_time/audio_info.duration}" + ) + result = msg return result @@ -459,3 +467,96 @@ class TTSHttpHandler: self.stream.stop_stream() self.stream.close() self.p.terminate() + + +class VectorHttpHandler: + def __init__(self, server_ip=None, port=None): + """The Vector client http request + + Args: + server_ip (str, optional): the http vector server ip. Defaults to "127.0.0.1". + port (int, optional): the http vector server port. Defaults to 8090. + """ + super().__init__() + self.server_ip = server_ip + self.port = port + if server_ip is None or port is None: + self.url = None + else: + self.url = 'http://' + self.server_ip + ":" + str( + self.port) + '/paddlespeech/vector' + + def run(self, input, audio_format, sample_rate, task="spk"): + """Call the http asr to process the audio + + Args: + input (str): the audio file path + audio_format (str): the audio format + sample_rate (str): the audio sample rate + + Returns: + list: the audio vector + """ + if self.url is None: + logger.error("No vector server, please input valid ip and port") + return "" + + audio = wav2base64(input) + data = { + "audio": audio, + "task": task, + "audio_format": audio_format, + "sample_rate": sample_rate, + } + + logger.info(self.url) + res = requests.post(url=self.url, data=json.dumps(data)) + + return res.json() + + +class VectorScoreHttpHandler: + def __init__(self, server_ip=None, port=None): + """The Vector score client http request + + Args: + server_ip (str, optional): the http vector server ip. Defaults to "127.0.0.1". + port (int, optional): the http vector server port. Defaults to 8090. + """ + super().__init__() + self.server_ip = server_ip + self.port = port + if server_ip is None or port is None: + self.url = None + else: + self.url = 'http://' + self.server_ip + ":" + str( + self.port) + '/paddlespeech/vector/score' + + def run(self, enroll_audio, test_audio, audio_format, sample_rate): + """Call the http asr to process the audio + + Args: + input (str): the audio file path + audio_format (str): the audio format + sample_rate (str): the audio sample rate + + Returns: + list: the audio vector + """ + if self.url is None: + logger.error("No vector server, please input valid ip and port") + return "" + + enroll_audio = wav2base64(enroll_audio) + test_audio = wav2base64(test_audio) + data = { + "enroll_audio": enroll_audio, + "test_audio": test_audio, + "task": "score", + "audio_format": audio_format, + "sample_rate": sample_rate, + } + + res = requests.post(url=self.url, data=json.dumps(data)) + + return res.json()