提交 7ec623f7 编写于 作者: H Hui Zhang

Merge branch 'develop' into align

......@@ -18,8 +18,10 @@ import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
from paddle.io import DataLoader
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.training.cli import default_argument_parser
......@@ -78,26 +80,31 @@ def inference(config, args):
def start_server(config, args):
"""Start the ASR server"""
config.defrost()
config.data.manfiest = config.data.test_manifest
config.data.augmentation_config = ""
config.data.keep_transcription_text = True
config.data.manifest = config.data.test_manifest
dataset = ManifestDataset.from_config(config)
model = DeepSpeech2Model.from_pretrained(dataset, config,
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.collator.batch_size = 1
config.collator.num_workers = 0
collate_fn = SpeechCollator.from_config(config)
test_loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=0)
model = DeepSpeech2Model.from_pretrained(test_loader, config,
args.checkpoint_path)
model.eval()
# prepare ASR inference handler
def file_to_transcript(filename):
feature = dataset.process_utterance(filename, "")
audio = np.array([feature[0]]).astype('float32') #[1, D, T]
audio_len = feature[0].shape[1]
feature = test_loader.collate_fn.process_utterance(filename, "")
audio = np.array([feature[0]]).astype('float32') #[1, T, D]
audio_len = feature[0].shape[0]
audio_len = np.array([audio_len]).astype('int64') # [1]
result_transcript = model.decode(
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=dataset.vocab_list,
vocab_list=test_loader.collate_fn.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
......@@ -138,7 +145,7 @@ if __name__ == "__main__":
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('host_port', int, 8089, "Server's IP port.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
......
......@@ -16,8 +16,10 @@ import functools
import numpy as np
import paddle
from paddle.io import DataLoader
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.training.cli import default_argument_parser
......@@ -31,26 +33,35 @@ from deepspeech.utils.utility import print_arguments
def start_server(config, args):
"""Start the ASR server"""
config.defrost()
config.data.manfiest = config.data.test_manifest
config.data.augmentation_config = ""
config.data.keep_transcription_text = True
config.data.manifest = config.data.test_manifest
dataset = ManifestDataset.from_config(config)
model = DeepSpeech2Model.from_pretrained(dataset, config,
config.collator.augmentation_config = ""
config.collator.keep_transcription_text = True
config.collator.batch_size = 1
config.collator.num_workers = 0
collate_fn = SpeechCollator.from_config(config)
test_loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=0)
model = DeepSpeech2Model.from_pretrained(test_loader, config,
args.checkpoint_path)
model.eval()
# prepare ASR inference handler
def file_to_transcript(filename):
feature = dataset.process_utterance(filename, "")
audio = np.array([feature[0]]).astype('float32') #[1, D, T]
audio_len = feature[0].shape[1]
feature = test_loader.collate_fn.process_utterance(filename, "")
audio = np.array([feature[0]]).astype('float32') #[1, T, D]
# audio = audio.swapaxes(1,2)
print('---file_to_transcript feature----')
print(audio.shape)
audio_len = feature[0].shape[0]
print(audio_len)
audio_len = np.array([audio_len]).astype('int64') # [1]
result_transcript = model.decode(
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=dataset.vocab_list,
vocab_list=test_loader.collate_fn.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
......@@ -91,7 +102,7 @@ if __name__ == "__main__":
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('host_port', int, 8088, "Server's IP port.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
......
......@@ -47,7 +47,7 @@ def tune(config, args):
drop_last=False,
collate_fn=SpeechCollator(keep_transcription_text=True))
model = DeepSpeech2Model.from_pretrained(dev_dataset, config,
model = DeepSpeech2Model.from_pretrained(valid_loader, config,
args.checkpoint_path)
model.eval()
......
......@@ -318,7 +318,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def export(self):
infer_model = DeepSpeech2InferModel.from_pretrained(
self.test_loader.dataset, self.config, self.args.checkpoint_path)
self.test_loader, self.config, self.args.checkpoint_path)
infer_model.eval()
feat_dim = self.test_loader.collate_fn.feature_size
static_model = paddle.jit.to_static(
......
......@@ -574,15 +574,14 @@ class U2Tester(U2Trainer):
List[paddle.static.InputSpec]: input spec.
"""
from deepspeech.models.u2 import U2InferModel
infer_model = U2InferModel.from_pretrained(self.test_loader.dataset,
infer_model = U2InferModel.from_pretrained(self.test_loader,
self.config.model.clone(),
self.args.checkpoint_path)
feat_dim = self.test_loader.collate_fn.feature_size
input_spec = [
paddle.static.InputSpec(
shape=[None, feat_dim, None],
dtype='float32'), # audio, [B,D,T]
paddle.static.InputSpec(shape=[None],
paddle.static.InputSpec(shape=[1, None, feat_dim],
dtype='float32'), # audio, [B,T,D]
paddle.static.InputSpec(shape=[1],
dtype='int64'), # audio_length, [B]
]
return infer_model, input_spec
......
......@@ -242,6 +242,7 @@ class SpeechCollator():
# specgram augment
specgram = self._augmentation_pipeline.transform_feature(specgram)
specgram = specgram.transpose([1, 0])
return specgram, transcript_part
def __call__(self, batch):
......@@ -269,8 +270,8 @@ class SpeechCollator():
#utt
utts.append(utt)
# audio
audios.append(audio.T) # [T, D]
audio_lens.append(audio.shape[1])
audios.append(audio) # [T, D]
audio_lens.append(audio.shape[0])
# text
# for training, text is token ids
# else text is string, convert to unicode ord
......
......@@ -198,11 +198,11 @@ class DeepSpeech2Model(nn.Layer):
cutoff_top_n, num_processes)
@classmethod
def from_pretrained(cls, dataset, config, checkpoint_path):
def from_pretrained(cls, dataloader, config, checkpoint_path):
"""Build a DeepSpeech2Model model from a pretrained model.
Parameters
----------
dataset: paddle.io.Dataset
dataloader: paddle.io.DataLoader
config: yacs.config.CfgNode
model configs
......@@ -215,8 +215,8 @@ class DeepSpeech2Model(nn.Layer):
DeepSpeech2Model
The model built from pretrained result.
"""
model = cls(feat_size=dataset.feature_size,
dict_size=dataset.vocab_size,
model = cls(feat_size=dataloader.collate_fn.feature_size,
dict_size=dataloader.collate_fn.vocab_size,
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
rnn_size=config.model.rnn_layer_size,
......
......@@ -876,11 +876,11 @@ class U2Model(U2BaseModel):
return model
@classmethod
def from_pretrained(cls, dataset, config, checkpoint_path):
def from_pretrained(cls, dataloader, config, checkpoint_path):
"""Build a DeepSpeech2Model model from a pretrained model.
Args:
dataset (paddle.io.Dataset): not used.
dataloader (paddle.io.DataLoader): not used.
config (yacs.config.CfgNode): model configs
checkpoint_path (Path or str): the path of pretrained model checkpoint, without extension name
......@@ -888,8 +888,8 @@ class U2Model(U2BaseModel):
DeepSpeech2Model: The model built from pretrained result.
"""
config.defrost()
config.input_dim = dataset.feature_size
config.output_dim = dataset.vocab_size
config.input_dim = dataloader.collate_fn.feature_size
config.output_dim = dataloader.collate_fn.vocab_size
config.freeze()
model = cls.from_config(config)
......
......@@ -48,9 +48,9 @@ def warm_up_test(audio_process_handler,
rng = random.Random(random_seed)
samples = rng.sample(manifest, num_test_cases)
for idx, sample in enumerate(samples):
print("Warm-up Test Case %d: %s", idx, sample['audio_filepath'])
print("Warm-up Test Case %d: %s" % (idx, sample['feat']))
start_time = time.time()
transcript = audio_process_handler(sample['audio_filepath'])
transcript = audio_process_handler(sample['feat'])
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
......
......@@ -2,10 +2,10 @@
## Deepspeech2
| Model | release | Config | Test set | Loss | CER |
| --- | --- | --- | --- | --- | --- |
| DeepSpeech2 58.4M | 2.1.0 | conf/deepspeech2.yaml + spec aug + new datapipe | test | 6.396368026733398 | 0.068382 |
| DeepSpeech2 58.4M | 2.1.0 | conf/deepspeech2.yaml + spec aug | test | 7.483316898345947 | 0.077860 |
| DeepSpeech2 58.4M | 2.1.0 | conf/deepspeech2.yaml | test | 7.299022197723389 | 0.078671 |
| DeepSpeech2 58.4M | 2.0.0 | conf/deepspeech2.yaml | test | - | 0.078977 |
| DeepSpeech2 58.4M | 1.8.5 | - | test | - | 0.080447 |
| Model | Params | Release | Config | Test set | Loss | CER |
| --- | --- | --- | --- | --- | --- | --- |
| DeepSpeech2 | 58.4M | 2.2.0 | conf/deepspeech2.yaml + spec aug + new datapipe | test | 6.396368026733398 | 0.068382,0.073507 |
| DeepSpeech2 | 58.4M | 2.1.0 | conf/deepspeech2.yaml + spec aug | test | 7.483316898345947 | 0.077860 |
| DeepSpeech2 | 58.4M | 2.1.0 | conf/deepspeech2.yaml | test | 7.299022197723389 | 0.078671 |
| DeepSpeech2 | 58.4M | 2.0.0 | conf/deepspeech2.yaml | test | - | 0.078977 |
| DeepSpeech2 | 58.4M | 1.8.5 | - | test | - | 0.080447 |
......@@ -10,8 +10,8 @@ data:
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 64 # one gpu
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/vocab.txt
......@@ -33,7 +33,6 @@ collator:
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
batch_size: 64 # one gpu
model:
num_conv_layers: 2
......
......@@ -31,10 +31,10 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
......@@ -2,25 +2,26 @@
## Conformer
| Model | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- |
| conformer | conf/conformer.yaml | spec_aug + shift | test | attention | - | 0.059858 |
| conformer | conf/conformer.yaml | spec_aug + shift | test | ctc_greedy_search | - | 0.062311 |
| conformer | conf/conformer.yaml | spec_aug + shift | test | ctc_prefix_beam_search | - | 0.062196 |
| conformer | conf/conformer.yaml | spec_aug + shift | test | attention_rescoring | - | 0.054694 |
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| conformer | 47.07M | conf/conformer.yaml | spec_aug + shift | test | attention | - | 0.059858 |
| conformer | 47.07M | conf/conformer.yaml | spec_aug + shift | test | ctc_greedy_search | - | 0.062311 |
| conformer | 47.07M | conf/conformer.yaml | spec_aug + shift | test | ctc_prefix_beam_search | - | 0.062196 |
| conformer | 47.07M | conf/conformer.yaml | spec_aug + shift | test | attention_rescoring | - | 0.054694 |
## Chunk Conformer
| Model | Config | Augmentation| Test set | Decode method | Chunk | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| conformer | conf/chunk_conformer.yaml | spec_aug + shift | test | attention | 16 | - | 0.061939 |
| conformer | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_greedy_search | 16 | - | 0.070806 |
| conformer | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_prefix_beam_search | 16 | - | 0.070739 |
| conformer | conf/chunk_conformer.yaml | spec_aug + shift | test | attention_rescoring | 16 | - | 0.059400 |
| Model | Params | Config | Augmentation| Test set | Decode method | Chunk | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | attention | 16 | - | 0.061939 |
| conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_greedy_search | 16 | - | 0.070806 |
| conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | ctc_prefix_beam_search | 16 | - | 0.070739 |
| conformer | 47.06M | conf/chunk_conformer.yaml | spec_aug + shift | test | attention_rescoring | 16 | - | 0.059400 |
## Transformer
| Model | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | ---|
| transformer | conf/transformer.yaml | spec_aug + shift | test | attention | - | - |
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | ---|
| transformer | - | conf/transformer.yaml | spec_aug + shift | test | attention | - | - |
......@@ -60,7 +60,7 @@ def create_manifest(data_dir, manifest_path_prefix):
if line == '':
continue
audio_id, text = line.split(' ', 1)
# remove withespace
# remove withespace, charactor text
text = ''.join(text.split())
transcript_dict[audio_id] = text
......@@ -123,6 +123,8 @@ def main():
target_dir=args.target_dir,
manifest_path=args.manifest_prefix)
print("Data download and manifest prepare done!")
if __name__ == '__main__':
main()
*.tgz
manifest.*
data_thchs30
resource
test-noise
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Prepare THCHS-30 mandarin dataset
Download, unpack and create manifest files.
Manifest file is a json-format file with each line containing the
meta data (i.e. audio filepath, transcript and audio duration)
of each audio file in the data set.
"""
import argparse
import codecs
import json
import os
from multiprocessing.pool import Pool
from pathlib import Path
import soundfile
from utils.utility import download
from utils.utility import unpack
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
URL_ROOT = 'http://www.openslr.org/resources/18'
# URL_ROOT = 'https://openslr.magicdatatech.com/resources/18'
DATA_URL = URL_ROOT + '/data_thchs30.tgz'
TEST_NOISE_URL = URL_ROOT + '/test-noise.tgz'
RESOURCE_URL = URL_ROOT + '/resource.tgz'
MD5_DATA = '2d2252bde5c8429929e1841d4cb95e90'
MD5_TEST_NOISE = '7e8a985fb965b84141b68c68556c2030'
MD5_RESOURCE = 'c0b2a565b4970a0c4fe89fefbf2d97e1'
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--target_dir",
default=DATA_HOME + "/THCHS30",
type=str,
help="Directory to save the dataset. (default: %(default)s)")
parser.add_argument(
"--manifest_prefix",
default="manifest",
type=str,
help="Filepath prefix for output manifests. (default: %(default)s)")
args = parser.parse_args()
def read_trn(filepath):
"""read trn file.
word text in first line.
syllable text in second line.
phoneme text in third line.
Args:
filepath (str): trn path.
Returns:
list(str): (word, syllable, phone)
"""
texts = []
with open(filepath, 'r') as f:
lines = f.read().split('\n')
# last line is `empty`
lines = lines[:3]
assert len(lines) == 3, lines
# charactor text, remove withespace
texts.append(''.join(lines[0].split()))
texts.extend(lines[1:])
return texts
def resolve_symlink(filepath):
"""resolve symlink which content is norm file.
Args:
filepath (str): norm file symlink.
"""
sym_path = Path(filepath)
relative_link = sym_path.read_text().strip()
relative = Path(relative_link)
relpath = sym_path.parent / relative
return relpath.resolve()
def create_manifest(data_dir, manifest_path_prefix):
print("Creating manifest %s ..." % manifest_path_prefix)
json_lines = []
data_types = ['train', 'dev', 'test']
for dtype in data_types:
del json_lines[:]
audio_dir = os.path.join(data_dir, dtype)
for subfolder, _, filelist in sorted(os.walk(audio_dir)):
for fname in filelist:
file_path = os.path.join(subfolder, fname)
if file_path.endswith('.wav'):
audio_path = os.path.abspath(file_path)
text_path = resolve_symlink(audio_path + '.trn')
else:
continue
assert os.path.exists(audio_path) and os.path.exists(text_path)
audio_id = os.path.basename(audio_path)[:-4]
word_text, syllable_text, phone_text = read_trn(text_path)
audio_data, samplerate = soundfile.read(audio_path)
duration = float(len(audio_data) / samplerate)
json_lines.append(
json.dumps(
{
'utt': audio_id,
'feat': audio_path,
'feat_shape': (duration, ), # second
'text': word_text,
'syllable': syllable_text,
'phone': phone_text,
},
ensure_ascii=False))
manifest_path = manifest_path_prefix + '.' + dtype
with codecs.open(manifest_path, 'w', 'utf-8') as fout:
for line in json_lines:
fout.write(line + '\n')
def prepare_dataset(url, md5sum, target_dir, manifest_path, subset):
"""Download, unpack and create manifest file."""
datadir = os.path.join(target_dir, subset)
if not os.path.exists(datadir):
filepath = download(url, md5sum, target_dir)
unpack(filepath, target_dir)
else:
print("Skip downloading and unpacking. Data already exists in %s." %
target_dir)
if subset == 'data_thchs30':
create_manifest(datadir, manifest_path)
def main():
if args.target_dir.startswith('~'):
args.target_dir = os.path.expanduser(args.target_dir)
tasks = [
(DATA_URL, MD5_DATA, args.target_dir, args.manifest_prefix,
"data_thchs30"),
(TEST_NOISE_URL, MD5_TEST_NOISE, args.target_dir, args.manifest_prefix,
"test-noise"),
(RESOURCE_URL, MD5_RESOURCE, args.target_dir, args.manifest_prefix,
"resource"),
]
with Pool(7) as pool:
pool.starmap(prepare_dataset, tasks)
print("Data download and manifest prepare done!")
if __name__ == '__main__':
main()
......@@ -2,8 +2,8 @@
## Deepspeech2
| Model | release | Config | Test set | Loss | WER |
| --- | --- | --- | --- | --- | --- |
| DeepSpeech2 | 2.1.0 | conf/deepspeech2.yaml | 15.184467315673828 | test-clean | 0.072154 |
| DeepSpeech2 | 2.0.0 | conf/deepspeech2.yaml | - | test-clean | 0.073973 |
| DeepSpeech2 | 1.8.5 | - | test-clean | - | 0.074939 |
| Model | Params | release | Config | Test set | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- |
| DeepSpeech2 | 42.96M | 2.1.0 | conf/deepspeech2.yaml | 15.184467315673828 | test-clean | 0.072154 |
| DeepSpeech2 | 42.96M | 2.0.0 | conf/deepspeech2.yaml | - | test-clean | 0.073973 |
| DeepSpeech2 | 42.96M | 1.8.5 | - | test-clean | - | 0.074939 |
......@@ -3,16 +3,21 @@ data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev-clean
test_manifest: data/manifest.test-clean
mean_std_filepath: data/mean_std.json
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
batch_size: 20
min_input_len: 0.0
max_input_len: 27.0 # second
min_output_len: 0.0
max_output_len: .inf
min_output_input_ratio: 0.00
max_output_input_ratio: .inf
collator:
batch_size: 20
mean_std_filepath: data/mean_std.json
unit_type: char
vocab_filepath: data/vocab.txt
augmentation_config: conf/augmentation.json
random_seed: 0
spm_model_prefix:
specgram_type: linear
target_sample_rate: 16000
max_freq: None
......
......@@ -2,17 +2,17 @@
## Conformer
| Model | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- |
| conformer | conf/conformer.yaml | spec_aug + shift | test-all | attention | test-all 6.35 | 0.057117 |
| conformer | conf/conformer.yaml | spec_aug + shift | test-clean | attention | test-all 6.35 | 0.030162 |
| conformer | conf/conformer.yaml | spec_aug + shift | test-clean | ctc_greedy_search | test-all 6.35 | 0.037910 |
| conformer | conf/conformer.yaml | spec_aug + shift | test-clean | ctc_prefix_beam_search | test-all 6.35 | 0.037761 |
| conformer | conf/conformer.yaml | spec_aug + shift | test-clean | attention_rescoring | test-all 6.35 | 0.032115 |
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-all | attention | 6.35 | 0.057117 |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | attention | 6.35 | 0.030162 |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | ctc_greedy_search | 6.35 | 0.037910 |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | ctc_prefix_beam_search | 6.35 | 0.037761 |
| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | attention_rescoring | 6.35 | 0.032115 |
## Transformer
| Model | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- |
| transformer | conf/transformer.yaml | spec_aug + shift | test-all | attention | test-all 6.98 | 0.066500 |
| transformer | conf/transformer.yaml | spec_aug + shift | test-clean | attention | test-all 6.98 | 0.036 |
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-all | attention | 6.98 | 0.066500 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean | attention | 6.98 | 0.036 |
......@@ -3,18 +3,20 @@ data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 4
min_input_len: 0.5
max_input_len: 20.0
min_output_len: 0.0
max_output_len: 400.0
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 16
raw_wav: True # use raw_wav or kaldi feature
specgram_type: fbank #linear, mfcc, fbank
feat_dim: 80
......@@ -80,7 +82,7 @@ model:
training:
n_epoch: 120
accum_grad: 1
accum_grad: 8
global_grad_clip: 5.0
optim: adam
optim_conf:
......
......@@ -3,18 +3,20 @@ data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 64
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 64
raw_wav: True # use raw_wav or kaldi feature
specgram_type: fbank #linear, mfcc, fbank
feat_dim: 80
......@@ -103,6 +105,6 @@ decoding:
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False.
simulate_streaming: true # simulate streaming inference. Defaults to False.
......@@ -3,18 +3,20 @@ data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 16
min_input_len: 0.5 # seconds
max_input_len: 20.0 # seconds
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 16
raw_wav: True # use raw_wav or kaldi feature
specgram_type: fbank #linear, mfcc, fbank
feat_dim: 80
......
......@@ -3,18 +3,20 @@ data:
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 64
min_input_len: 0.5 # second
max_input_len: 20.0 # second
min_output_len: 0.0 # tokens
max_output_len: 400.0 # tokens
min_output_input_ratio: 0.05
max_output_input_ratio: 10.0
collator:
vocab_filepath: data/vocab.txt
unit_type: 'spm'
spm_model_prefix: 'data/bpe_unigram_5000'
mean_std_filepath: ""
augmentation_config: conf/augmentation.json
batch_size: 64
raw_wav: True # use raw_wav or kaldi feature
specgram_type: fbank #linear, mfcc, fbank
feat_dim: 80
......
cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
project(deepspeech VERSION 0.1)
set(CMAKE_VERBOSE_MAKEFILE on)
# set std-14
set(CMAKE_CXX_STANDARD 14)
# include file
include(FetchContent)
include(ExternalProject)
# fc_patch dir
set(FETCHCONTENT_QUIET off)
get_filename_component(fc_patch "fc_patch" REALPATH BASE_DIR "${CMAKE_SOURCE_DIR}")
set(FETCHCONTENT_BASE_DIR ${fc_patch})
###############################################################################
# Option Configurations
###############################################################################
# option configurations
option(TEST_DEBUG "option for debug" OFF)
###############################################################################
# Include third party
###############################################################################
# #example for include third party
# FetchContent_Declare()
# # FetchContent_MakeAvailable was not added until CMake 3.14
# FetchContent_MakeAvailable()
# include_directories()
# ABSEIL-CPP
include(FetchContent)
FetchContent_Declare(
absl
GIT_REPOSITORY "https://github.com/abseil/abseil-cpp.git"
GIT_TAG "20210324.1"
)
FetchContent_MakeAvailable(absl)
# libsndfile
include(FetchContent)
FetchContent_Declare(
libsndfile
GIT_REPOSITORY "https://github.com/libsndfile/libsndfile.git"
GIT_TAG "1.0.31"
)
FetchContent_MakeAvailable(libsndfile)
###############################################################################
# Add local library
###############################################################################
# system lib
find_package()
# if dir have CmakeLists.txt
add_subdirectory()
# if dir do not have CmakeLists.txt
add_library(lib_name STATIC file.cc)
target_link_libraries(lib_name item0 item1)
add_dependencies(lib_name depend-target)
###############################################################################
# Library installation
###############################################################################
install()
###############################################################################
# Build binary file
###############################################################################
add_executable()
target_link_libraries()
aux_source_directory(. DIR_LIB_SRCS)
add_library(decoder STATIC ${DIR_LIB_SRCS})
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册