Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
782f6be4
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 1 年 前同步成功
通知
207
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
782f6be4
编写于
8月 20, 2021
作者:
H
Hui Zhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
(D,T) to (T, D); time warp
上级
d9a38640
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
178 addition
and
137 deletion
+178
-137
deepspeech/frontend/augmentor/spec_augment.py
deepspeech/frontend/augmentor/spec_augment.py
+87
-22
deepspeech/frontend/featurizer/audio_featurizer.py
deepspeech/frontend/featurizer/audio_featurizer.py
+47
-37
deepspeech/frontend/normalizer.py
deepspeech/frontend/normalizer.py
+7
-7
deepspeech/io/collator.py
deepspeech/io/collator.py
+1
-2
deepspeech/io/collator_st.py
deepspeech/io/collator_st.py
+35
-69
requirements.txt
requirements.txt
+1
-0
未找到文件。
deepspeech/frontend/augmentor/spec_augment.py
浏览文件 @
782f6be4
...
...
@@ -12,7 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains the volume perturb augmentation model."""
import
random
import
numpy
as
np
from
PIL
import
Image
from
PIL.Image
import
BICUBIC
from
deepspeech.frontend.augmentor.base
import
AugmentorBase
from
deepspeech.utils.log
import
Log
...
...
@@ -42,7 +46,8 @@ class SpecAugmentor(AugmentorBase):
adaptive_number_ratio
=
0
,
adaptive_size_ratio
=
0
,
max_n_time_masks
=
20
,
replace_with_zero
=
True
):
replace_with_zero
=
True
,
warp_mode
=
'PIL'
):
"""SpecAugment class.
Args:
rng (random.Random): random generator object.
...
...
@@ -56,11 +61,15 @@ class SpecAugmentor(AugmentorBase):
adaptive_size_ratio (float): adaptive size ratio for time masking
max_n_time_masks (int): maximum number of time masking
replace_with_zero (bool): pad zero on mask if true else use mean
warp_mode (str): "PIL" (default, fast, not differentiable)
or "sparse_image_warp" (slow, differentiable)
"""
super
().
__init__
()
self
.
_rng
=
rng
self
.
inplace
=
True
self
.
replace_with_zero
=
replace_with_zero
self
.
mode
=
warp_mode
self
.
W
=
W
self
.
F
=
F
self
.
T
=
T
...
...
@@ -126,24 +135,80 @@ class SpecAugmentor(AugmentorBase):
def
__repr__
(
self
):
return
f
"specaug: F-
{
F
}
, T-
{
T
}
, F-n-
{
n_freq_masks
}
, T-n-
{
n_time_masks
}
"
def
time_warp
(
xs
,
W
=
40
):
return
xs
def
time_warp
(
self
,
x
,
mode
=
'PIL'
):
"""time warp for spec augment
move random center frame by the random width ~ uniform(-window, window)
Args:
x (np.ndarray): spectrogram (time, freq)
mode (str): PIL or sparse_image_warp
Raises:
NotImplementedError: [description]
NotImplementedError: [description]
Returns:
np.ndarray: time warped spectrogram (time, freq)
"""
window
=
max_time_warp
=
self
.
W
if
mode
==
"PIL"
:
t
=
x
.
shape
[
0
]
if
t
-
window
<=
window
:
return
x
# NOTE: randrange(a, b) emits a, a + 1, ..., b - 1
center
=
random
.
randrange
(
window
,
t
-
window
)
warped
=
random
.
randrange
(
center
-
window
,
center
+
window
)
+
1
# 1 ... t - 1
left
=
Image
.
fromarray
(
x
[:
center
]).
resize
((
x
.
shape
[
1
],
warped
),
BICUBIC
)
right
=
Image
.
fromarray
(
x
[
center
:]).
resize
((
x
.
shape
[
1
],
t
-
warped
),
BICUBIC
)
if
self
.
inplace
:
x
[:
warped
]
=
left
x
[
warped
:]
=
right
return
x
return
np
.
concatenate
((
left
,
right
),
0
)
elif
mode
==
"sparse_image_warp"
:
raise
NotImplementedError
(
'sparse_image_warp'
)
else
:
raise
NotImplementedError
(
"unknown resize mode: "
+
mode
+
", choose one from (PIL, sparse_image_warp)."
)
def
mask_freq
(
self
,
x
,
replace_with_zero
=
False
):
"""freq mask
def
mask_freq
(
self
,
xs
,
replace_with_zero
=
False
):
n_bins
=
xs
.
shape
[
0
]
Args:
x (np.ndarray): spectrogram (time, freq)
replace_with_zero (bool, optional): Defaults to False.
Returns:
np.ndarray: freq mask spectrogram (time, freq)
"""
n_bins
=
x
.
shape
[
1
]
for
i
in
range
(
0
,
self
.
n_freq_masks
):
f
=
int
(
self
.
_rng
.
uniform
(
low
=
0
,
high
=
self
.
F
))
f_0
=
int
(
self
.
_rng
.
uniform
(
low
=
0
,
high
=
n_bins
-
f
))
assert
f_0
<=
f_0
+
f
if
self
.
replace_with_zero
:
x
s
[
f_0
:
f_0
+
f
,
:
]
=
0
if
replace_with_zero
:
x
[:,
f_0
:
f_0
+
f
]
=
0
else
:
x
s
[
f_0
:
f_0
+
f
,
:]
=
xs
.
mean
()
x
[:,
f_0
:
f_0
+
f
]
=
x
.
mean
()
self
.
_freq_mask
=
(
f_0
,
f_0
+
f
)
return
xs
return
x
def
mask_time
(
self
,
x
,
replace_with_zero
=
False
):
"""time mask
def
mask_time
(
self
,
xs
,
replace_with_zero
=
False
):
n_frames
=
xs
.
shape
[
1
]
Args:
x (np.ndarray): spectrogram (time, freq)
replace_with_zero (bool, optional): Defaults to False.
Returns:
np.ndarray: time mask spectrogram (time, freq)
"""
n_frames
=
x
.
shape
[
0
]
if
self
.
adaptive_number_ratio
>
0
:
n_masks
=
int
(
n_frames
*
self
.
adaptive_number_ratio
)
...
...
@@ -161,26 +226,26 @@ class SpecAugmentor(AugmentorBase):
t
=
min
(
t
,
int
(
n_frames
*
self
.
p
))
t_0
=
int
(
self
.
_rng
.
uniform
(
low
=
0
,
high
=
n_frames
-
t
))
assert
t_0
<=
t_0
+
t
if
self
.
replace_with_zero
:
x
s
[:,
t_0
:
t_0
+
t
]
=
0
if
replace_with_zero
:
x
[
t_0
:
t_0
+
t
,
:
]
=
0
else
:
x
s
[:,
t_0
:
t_0
+
t
]
=
xs
.
mean
()
x
[
t_0
:
t_0
+
t
,
:]
=
x
.
mean
()
self
.
_time_mask
=
(
t_0
,
t_0
+
t
)
return
x
s
return
x
def
__call__
(
self
,
x
,
train
=
True
):
if
not
train
:
return
x
return
self
.
transform_feature
(
x
)
def
transform_feature
(
self
,
x
s
:
np
.
ndarray
):
def
transform_feature
(
self
,
x
:
np
.
ndarray
):
"""
Args:
x
s (FloatTensor): `[F, T
]`
x
(np.ndarray): `[T, F
]`
Returns:
x
s (FloatTensor): `[F, T
]`
x
(np.ndarray): `[T, F
]`
"""
x
s
=
self
.
time_warp
(
xs
)
x
s
=
self
.
mask_freq
(
xs
)
x
s
=
self
.
mask_time
(
xs
)
return
x
s
x
=
self
.
time_warp
(
x
,
self
.
mode
)
x
=
self
.
mask_freq
(
x
,
self
.
replace_with_zero
)
x
=
self
.
mask_time
(
x
,
self
.
replace_with_zero
)
return
x
deepspeech/frontend/featurizer/audio_featurizer.py
浏览文件 @
782f6be4
...
...
@@ -167,32 +167,6 @@ class AudioFeaturizer(object):
raise
ValueError
(
"Unknown specgram_type %s. "
"Supported values: linear."
%
self
.
_specgram_type
)
def
_compute_linear_specgram
(
self
,
samples
,
sample_rate
,
stride_ms
=
10.0
,
window_ms
=
20.0
,
max_freq
=
None
,
eps
=
1e-14
):
"""Compute the linear spectrogram from FFT energy."""
if
max_freq
is
None
:
max_freq
=
sample_rate
/
2
if
max_freq
>
sample_rate
/
2
:
raise
ValueError
(
"max_freq must not be greater than half of "
"sample rate."
)
if
stride_ms
>
window_ms
:
raise
ValueError
(
"Stride size must not be greater than "
"window size."
)
stride_size
=
int
(
0.001
*
sample_rate
*
stride_ms
)
window_size
=
int
(
0.001
*
sample_rate
*
window_ms
)
specgram
,
freqs
=
self
.
_specgram_real
(
samples
,
window_size
=
window_size
,
stride_size
=
stride_size
,
sample_rate
=
sample_rate
)
ind
=
np
.
where
(
freqs
<=
max_freq
)[
0
][
-
1
]
+
1
return
np
.
log
(
specgram
[:
ind
,
:]
+
eps
)
def
_specgram_real
(
self
,
samples
,
window_size
,
stride_size
,
sample_rate
):
"""Compute the spectrogram for samples from a real signal."""
# extract strided windows
...
...
@@ -217,26 +191,65 @@ class AudioFeaturizer(object):
freqs
=
float
(
sample_rate
)
/
window_size
*
np
.
arange
(
fft
.
shape
[
0
])
return
fft
,
freqs
def
_compute_linear_specgram
(
self
,
samples
,
sample_rate
,
stride_ms
=
10.0
,
window_ms
=
20.0
,
max_freq
=
None
,
eps
=
1e-14
):
"""Compute the linear spectrogram from FFT energy.
Args:
samples ([type]): [description]
sample_rate ([type]): [description]
stride_ms (float, optional): [description]. Defaults to 10.0.
window_ms (float, optional): [description]. Defaults to 20.0.
max_freq ([type], optional): [description]. Defaults to None.
eps ([type], optional): [description]. Defaults to 1e-14.
Raises:
ValueError: [description]
ValueError: [description]
Returns:
np.ndarray: log spectrogram, (time, freq)
"""
if
max_freq
is
None
:
max_freq
=
sample_rate
/
2
if
max_freq
>
sample_rate
/
2
:
raise
ValueError
(
"max_freq must not be greater than half of "
"sample rate."
)
if
stride_ms
>
window_ms
:
raise
ValueError
(
"Stride size must not be greater than "
"window size."
)
stride_size
=
int
(
0.001
*
sample_rate
*
stride_ms
)
window_size
=
int
(
0.001
*
sample_rate
*
window_ms
)
specgram
,
freqs
=
self
.
_specgram_real
(
samples
,
window_size
=
window_size
,
stride_size
=
stride_size
,
sample_rate
=
sample_rate
)
ind
=
np
.
where
(
freqs
<=
max_freq
)[
0
][
-
1
]
+
1
# (freq, time)
spec
=
np
.
log
(
specgram
[:
ind
,
:]
+
eps
)
return
np
.
transpose
(
spec
)
def
_concat_delta_delta
(
self
,
feat
):
"""append delat, delta-delta feature.
Args:
feat (np.ndarray): (
D, T
)
feat (np.ndarray): (
T, D
)
Returns:
np.ndarray: feat with delta-delta, (
3*D, T
)
np.ndarray: feat with delta-delta, (
T, 3*D
)
"""
feat
=
np
.
transpose
(
feat
)
# Deltas
d_feat
=
delta
(
feat
,
2
)
# Deltas-Deltas
dd_feat
=
delta
(
feat
,
2
)
# transpose
feat
=
np
.
transpose
(
feat
)
d_feat
=
np
.
transpose
(
d_feat
)
dd_feat
=
np
.
transpose
(
dd_feat
)
# concat above three features
concat_feat
=
np
.
concatenate
((
feat
,
d_feat
,
dd_feat
))
concat_feat
=
np
.
concatenate
((
feat
,
d_feat
,
dd_feat
)
,
axis
=
1
)
return
concat_feat
def
_compute_mfcc
(
self
,
...
...
@@ -292,7 +305,6 @@ class AudioFeaturizer(object):
ceplifter
=
22
,
useEnergy
=
True
,
winfunc
=
'povey'
)
mfcc_feat
=
np
.
transpose
(
mfcc_feat
)
if
delta_delta
:
mfcc_feat
=
self
.
_concat_delta_delta
(
mfcc_feat
)
return
mfcc_feat
...
...
@@ -346,8 +358,6 @@ class AudioFeaturizer(object):
remove_dc_offset
=
True
,
preemph
=
0.97
,
wintype
=
'povey'
)
fbank_feat
=
np
.
transpose
(
fbank_feat
)
if
delta_delta
:
fbank_feat
=
self
.
_concat_delta_delta
(
fbank_feat
)
return
fbank_feat
deepspeech/frontend/normalizer.py
浏览文件 @
782f6be4
...
...
@@ -40,21 +40,21 @@ class CollateFunc(object):
number
=
0
for
item
in
batch
:
audioseg
=
AudioSegment
.
from_file
(
item
[
'feat'
])
feat
=
self
.
feature_func
(
audioseg
)
#(
D, T
)
feat
=
self
.
feature_func
(
audioseg
)
#(
T, D
)
sums
=
np
.
sum
(
feat
,
axis
=
1
)
sums
=
np
.
sum
(
feat
,
axis
=
0
)
if
mean_stat
is
None
:
mean_stat
=
sums
else
:
mean_stat
+=
sums
square_sums
=
np
.
sum
(
np
.
square
(
feat
),
axis
=
1
)
square_sums
=
np
.
sum
(
np
.
square
(
feat
),
axis
=
0
)
if
var_stat
is
None
:
var_stat
=
square_sums
else
:
var_stat
+=
square_sums
number
+=
feat
.
shape
[
1
]
number
+=
feat
.
shape
[
0
]
return
number
,
mean_stat
,
var_stat
...
...
@@ -120,7 +120,7 @@ class FeatureNormalizer(object):
"""Normalize features to be of zero mean and unit stddev.
:param features: Input features to be normalized.
:type features: ndarray, shape (
D, T
)
:type features: ndarray, shape (
T, D
)
:param eps: added to stddev to provide numerical stablibity.
:type eps: float
:return: Normalized features.
...
...
@@ -131,8 +131,8 @@ class FeatureNormalizer(object):
def
_read_mean_std_from_file
(
self
,
filepath
,
eps
=
1e-20
):
"""Load mean and std from file."""
mean
,
istd
=
load_cmvn
(
filepath
,
filetype
=
'json'
)
self
.
_mean
=
np
.
expand_dims
(
mean
,
axis
=
-
1
)
self
.
_istd
=
np
.
expand_dims
(
istd
,
axis
=
-
1
)
self
.
_mean
=
np
.
expand_dims
(
mean
,
axis
=
0
)
self
.
_istd
=
np
.
expand_dims
(
istd
,
axis
=
0
)
def
write_to_file
(
self
,
filepath
):
"""Write the mean and stddev to the file.
...
...
deepspeech/io/collator.py
浏览文件 @
782f6be4
...
...
@@ -242,7 +242,6 @@ class SpeechCollator():
# specgram augment
specgram
=
self
.
_augmentation_pipeline
.
transform_feature
(
specgram
)
specgram
=
specgram
.
transpose
([
1
,
0
])
return
specgram
,
transcript_part
def
__call__
(
self
,
batch
):
...
...
@@ -250,7 +249,7 @@ class SpeechCollator():
Args:
batch ([List]): batch is (audio, text)
audio (np.ndarray) shape (
D, T
)
audio (np.ndarray) shape (
T, D
)
text (List[int] or str): shape (U,)
Returns:
...
...
deepspeech/io/collator_st.py
浏览文件 @
782f6be4
...
...
@@ -217,6 +217,34 @@ class SpeechCollator():
return
self
.
_local_data
.
tar2object
[
tarpath
].
extractfile
(
self
.
_local_data
.
tar2info
[
tarpath
][
filename
])
@
property
def
manifest
(
self
):
return
self
.
_manifest
@
property
def
vocab_size
(
self
):
return
self
.
_speech_featurizer
.
vocab_size
@
property
def
vocab_list
(
self
):
return
self
.
_speech_featurizer
.
vocab_list
@
property
def
vocab_dict
(
self
):
return
self
.
_speech_featurizer
.
vocab_dict
@
property
def
text_feature
(
self
):
return
self
.
_speech_featurizer
.
text_feature
@
property
def
feature_size
(
self
):
return
self
.
_speech_featurizer
.
feature_size
@
property
def
stride_ms
(
self
):
return
self
.
_speech_featurizer
.
stride_ms
def
process_utterance
(
self
,
audio_file
,
translation
):
"""Load, augment, featurize and normalize for speech data.
...
...
@@ -244,7 +272,6 @@ class SpeechCollator():
# specgram augment
specgram
=
self
.
_augmentation_pipeline
.
transform_feature
(
specgram
)
specgram
=
specgram
.
transpose
([
1
,
0
])
return
specgram
,
translation_part
def
__call__
(
self
,
batch
):
...
...
@@ -252,7 +279,7 @@ class SpeechCollator():
Args:
batch ([List]): batch is (audio, text)
audio (np.ndarray) shape (
D, T
)
audio (np.ndarray) shape (
T, D
)
text (List[int] or str): shape (U,)
Returns:
...
...
@@ -296,34 +323,6 @@ class SpeechCollator():
text_lens
=
np
.
array
(
text_lens
).
astype
(
np
.
int64
)
return
utts
,
padded_audios
,
audio_lens
,
padded_texts
,
text_lens
@
property
def
manifest
(
self
):
return
self
.
_manifest
@
property
def
vocab_size
(
self
):
return
self
.
_speech_featurizer
.
vocab_size
@
property
def
vocab_list
(
self
):
return
self
.
_speech_featurizer
.
vocab_list
@
property
def
vocab_dict
(
self
):
return
self
.
_speech_featurizer
.
vocab_dict
@
property
def
text_feature
(
self
):
return
self
.
_speech_featurizer
.
text_feature
@
property
def
feature_size
(
self
):
return
self
.
_speech_featurizer
.
feature_size
@
property
def
stride_ms
(
self
):
return
self
.
_speech_featurizer
.
stride_ms
class
TripletSpeechCollator
(
SpeechCollator
):
def
process_utterance
(
self
,
audio_file
,
translation
,
transcript
):
...
...
@@ -355,7 +354,6 @@ class TripletSpeechCollator(SpeechCollator):
# specgram augment
specgram
=
self
.
_augmentation_pipeline
.
transform_feature
(
specgram
)
specgram
=
specgram
.
transpose
([
1
,
0
])
return
specgram
,
translation_part
,
transcript_part
def
__call__
(
self
,
batch
):
...
...
@@ -363,7 +361,7 @@ class TripletSpeechCollator(SpeechCollator):
Args:
batch ([List]): batch is (audio, text)
audio (np.ndarray) shape (
D, T
)
audio (np.ndarray) shape (
T, D
)
text (List[int] or str): shape (U,)
Returns:
...
...
@@ -524,49 +522,19 @@ class KaldiPrePorocessedCollator(SpeechCollator):
:rtype: tuple of (2darray, list)
"""
specgram
=
kaldiio
.
load_mat
(
audio_file
)
specgram
=
specgram
.
transpose
([
1
,
0
])
assert
specgram
.
shape
[
0
]
==
self
.
_feat_dim
,
'expect feat dim {}, but got {}'
.
format
(
self
.
_feat_dim
,
specgram
.
shape
[
0
])
1
]
==
self
.
_feat_dim
,
'expect feat dim {}, but got {}'
.
format
(
self
.
_feat_dim
,
specgram
.
shape
[
1
])
# specgram augment
specgram
=
self
.
_augmentation_pipeline
.
transform_feature
(
specgram
)
specgram
=
specgram
.
transpose
([
1
,
0
])
if
self
.
_keep_transcription_text
:
return
specgram
,
translation
else
:
text_ids
=
self
.
_text_featurizer
.
featurize
(
translation
)
return
specgram
,
text_ids
@
property
def
manifest
(
self
):
return
self
.
_manifest
@
property
def
vocab_size
(
self
):
return
self
.
_text_featurizer
.
vocab_size
@
property
def
vocab_list
(
self
):
return
self
.
_text_featurizer
.
vocab_list
@
property
def
vocab_dict
(
self
):
return
self
.
_text_featurizer
.
vocab_dict
@
property
def
text_feature
(
self
):
return
self
.
_text_featurizer
@
property
def
feature_size
(
self
):
return
self
.
_feat_dim
@
property
def
stride_ms
(
self
):
return
self
.
_stride_ms
class
TripletKaldiPrePorocessedCollator
(
KaldiPrePorocessedCollator
):
def
process_utterance
(
self
,
audio_file
,
translation
,
transcript
):
...
...
@@ -583,15 +551,13 @@ class TripletKaldiPrePorocessedCollator(KaldiPrePorocessedCollator):
:rtype: tuple of (2darray, (list, list))
"""
specgram
=
kaldiio
.
load_mat
(
audio_file
)
specgram
=
specgram
.
transpose
([
1
,
0
])
assert
specgram
.
shape
[
0
]
==
self
.
_feat_dim
,
'expect feat dim {}, but got {}'
.
format
(
self
.
_feat_dim
,
specgram
.
shape
[
0
])
1
]
==
self
.
_feat_dim
,
'expect feat dim {}, but got {}'
.
format
(
self
.
_feat_dim
,
specgram
.
shape
[
1
])
# specgram augment
specgram
=
self
.
_augmentation_pipeline
.
transform_feature
(
specgram
)
specgram
=
specgram
.
transpose
([
1
,
0
])
if
self
.
_keep_transcription_text
:
return
specgram
,
translation
,
transcript
else
:
...
...
@@ -604,7 +570,7 @@ class TripletKaldiPrePorocessedCollator(KaldiPrePorocessedCollator):
Args:
batch ([List]): batch is (audio, text)
audio (np.ndarray) shape (
D, T
)
audio (np.ndarray) shape (
T, D
)
translation (List[int] or str): shape (U,)
transcription (List[int] or str): shape (V,)
...
...
requirements.txt
浏览文件 @
782f6be4
coverage
gpustat
kaldiio
Pillow
pre-commit
pybind11
resampy
==0.2.2
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录