"[1] Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 23rd international conference on Machine learning. 2006: 369-376.\n",
"\n",
"[2] Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks[C]//2013 IEEE international conference on acoustics, speech and signal processing. Ieee, 2013: 6645-6649.\n",
"\n",
"[3] Hannun A, Case C, Casper J, et al. Deep speech: Scaling up end-to-end speech recognition[J]. arXiv preprint arXiv:1412.5567, 2014.\n",
"\n",
"[4] Amodei D, Ananthanarayanan S, Anubhai R, et al. Deep speech 2: End-to-end speech recognition in english and mandarin[C]//International conference on machine learning. PMLR, 2016: 173-182.\n",
"\n",
"[5] Chan W, Jaitly N, Le Q, et al. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 4960-4964.\n",
"\n",
"[6] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.\n",
"\n",
"[7] Zhang Q, Lu H, Sak H, et al. Transformer transducer: A streamable speech recognition model with transformer encoders and rnn-t loss[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 7829-7833.\n",
"\n",
"[8] Gulati A, Qin J, Chiu C C, et al. Conformer: Convolution-augmented transformer for speech recognition[J]. arXiv preprint arXiv:2005.08100, 2020.\n",
"\n",
"[9] Retrieved 2021-12-6,from \"Sequence Modeling With CTC\": https://distill.pub/2017/ctc/#inference\n",
"\n",
"[10] Hannun A Y, Maas A L, Jurafsky D, et al. First-pass large vocabulary continuous speech recognition using bi-directional recurrent dnns[J]. arXiv preprint arXiv:1408.2873, 2014."
"[1] Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 23rd international conference on Machine learning. 2006: 369-376.\n",
"\n",
"[2] Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks[C]//2013 IEEE international conference on acoustics, speech and signal processing. Ieee, 2013: 6645-6649.\n",
"\n",
"[3] Hannun A, Case C, Casper J, et al. Deep speech: Scaling up end-to-end speech recognition[J]. arXiv preprint arXiv:1412.5567, 2014.\n",
"\n",
"[4] Amodei D, Ananthanarayanan S, Anubhai R, et al. Deep speech 2: End-to-end speech recognition in english and mandarin[C]//International conference on machine learning. PMLR, 2016: 173-182.\n",
"\n",
"[5] Chan W, Jaitly N, Le Q, et al. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 4960-4964.\n",
"\n",
"[6] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.\n",
"\n",
"[7] Zhang Q, Lu H, Sak H, et al. Transformer transducer: A streamable speech recognition model with transformer encoders and rnn-t loss[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 7829-7833.\n",
"\n",
"[8] Gulati A, Qin J, Chiu C C, et al. Conformer: Convolution-augmented transformer for speech recognition[J]. arXiv preprint arXiv:2005.08100, 2020."
"[4] Gemmeke, J.F., Ellis, D.P., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C., Plakal, M., & Ritter, M. (2017). Audio Set: An ontology and human-labeled dataset for audio events. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 776-780.\n",
"\n",
"[5] Piczak, K.J. (2015). ESC: Dataset for Environmental Sound Classification. Proceedings of the 23rd ACM international conference on Multimedia.\n"