Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
64cf538e
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
64cf538e
编写于
8月 18, 2021
作者:
H
Hui Zhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor converter
上级
7d133368
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
82 addition
and
202 deletion
+82
-202
deepspeech/io/__init__.py
deepspeech/io/__init__.py
+0
-136
deepspeech/io/converter.py
deepspeech/io/converter.py
+80
-0
deepspeech/io/dataloader.py
deepspeech/io/dataloader.py
+1
-1
deepspeech/io/dataset.py
deepspeech/io/dataset.py
+1
-65
未找到文件。
deepspeech/io/__init__.py
浏览文件 @
64cf538e
...
@@ -11,139 +11,3 @@
...
@@ -11,139 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
numpy
as
np
from
paddle.io
import
DataLoader
from
deepspeech.io.collator
import
SpeechCollator
from
deepspeech.io.dataset
import
ManifestDataset
from
deepspeech.io.sampler
import
SortagradBatchSampler
from
deepspeech.io.sampler
import
SortagradDistributedBatchSampler
def
create_dataloader
(
manifest_path
,
unit_type
,
vocab_filepath
,
mean_std_filepath
,
spm_model_prefix
,
augmentation_config
=
'{}'
,
max_input_len
=
float
(
'inf'
),
min_input_len
=
0.0
,
max_output_len
=
float
(
'inf'
),
min_output_len
=
0.0
,
max_output_input_ratio
=
float
(
'inf'
),
min_output_input_ratio
=
0.0
,
stride_ms
=
10.0
,
window_ms
=
20.0
,
max_freq
=
None
,
specgram_type
=
'linear'
,
feat_dim
=
None
,
delta_delta
=
False
,
use_dB_normalization
=
True
,
random_seed
=
0
,
keep_transcription_text
=
False
,
is_training
=
False
,
batch_size
=
1
,
num_workers
=
0
,
sortagrad
=
False
,
shuffle_method
=
None
,
dist
=
False
):
dataset
=
ManifestDataset
(
manifest_path
=
manifest_path
,
unit_type
=
unit_type
,
vocab_filepath
=
vocab_filepath
,
mean_std_filepath
=
mean_std_filepath
,
spm_model_prefix
=
spm_model_prefix
,
augmentation_config
=
augmentation_config
,
max_input_len
=
max_input_len
,
min_input_len
=
min_input_len
,
max_output_len
=
max_output_len
,
min_output_len
=
min_output_len
,
max_output_input_ratio
=
max_output_input_ratio
,
min_output_input_ratio
=
min_output_input_ratio
,
stride_ms
=
stride_ms
,
window_ms
=
window_ms
,
max_freq
=
max_freq
,
specgram_type
=
specgram_type
,
feat_dim
=
feat_dim
,
delta_delta
=
delta_delta
,
use_dB_normalization
=
use_dB_normalization
,
random_seed
=
random_seed
,
keep_transcription_text
=
keep_transcription_text
)
if
dist
:
batch_sampler
=
SortagradDistributedBatchSampler
(
dataset
,
batch_size
,
num_replicas
=
None
,
rank
=
None
,
shuffle
=
is_training
,
drop_last
=
is_training
,
sortagrad
=
is_training
,
shuffle_method
=
shuffle_method
)
else
:
batch_sampler
=
SortagradBatchSampler
(
dataset
,
shuffle
=
is_training
,
batch_size
=
batch_size
,
drop_last
=
is_training
,
sortagrad
=
is_training
,
shuffle_method
=
shuffle_method
)
def
padding_batch
(
batch
,
padding_to
=-
1
,
flatten
=
False
,
keep_transcription_text
=
True
):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch
=
[]
# get target shape
max_length
=
max
([
audio
.
shape
[
1
]
for
audio
,
text
in
batch
])
if
padding_to
!=
-
1
:
if
padding_to
<
max_length
:
raise
ValueError
(
"If padding_to is not -1, it should be larger "
"than any instance's shape in the batch"
)
max_length
=
padding_to
max_text_length
=
max
([
len
(
text
)
for
audio
,
text
in
batch
])
# padding
padded_audios
=
[]
audio_lens
=
[]
texts
,
text_lens
=
[],
[]
for
audio
,
text
in
batch
:
padded_audio
=
np
.
zeros
([
audio
.
shape
[
0
],
max_length
])
padded_audio
[:,
:
audio
.
shape
[
1
]]
=
audio
if
flatten
:
padded_audio
=
padded_audio
.
flatten
()
padded_audios
.
append
(
padded_audio
)
audio_lens
.
append
(
audio
.
shape
[
1
])
padded_text
=
np
.
zeros
([
max_text_length
])
if
keep_transcription_text
:
padded_text
[:
len
(
text
)]
=
[
ord
(
t
)
for
t
in
text
]
# string
else
:
padded_text
[:
len
(
text
)]
=
text
# ids
texts
.
append
(
padded_text
)
text_lens
.
append
(
len
(
text
))
padded_audios
=
np
.
array
(
padded_audios
).
astype
(
'float32'
)
audio_lens
=
np
.
array
(
audio_lens
).
astype
(
'int64'
)
texts
=
np
.
array
(
texts
).
astype
(
'int32'
)
text_lens
=
np
.
array
(
text_lens
).
astype
(
'int64'
)
return
padded_audios
,
audio_lens
,
texts
,
text_lens
# collate_fn=functools.partial(padding_batch, keep_transcription_text=keep_transcription_text),
collate_fn
=
SpeechCollator
(
keep_transcription_text
=
keep_transcription_text
)
loader
=
DataLoader
(
dataset
,
batch_sampler
=
batch_sampler
,
collate_fn
=
collate_fn
,
num_workers
=
num_workers
)
return
loader
deepspeech/io/converter.py
0 → 100644
浏览文件 @
64cf538e
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
from
deepspeech.io.utility
import
pad_list
from
deepspeech.utils.log
import
Log
__all__
=
[
"CustomConverter"
]
logger
=
Log
(
__name__
).
getlog
()
class
CustomConverter
():
"""Custom batch converter.
Args:
subsampling_factor (int): The subsampling factor.
dtype (np.dtype): Data type to convert.
"""
def
__init__
(
self
,
subsampling_factor
=
1
,
dtype
=
np
.
float32
):
"""Construct a CustomConverter object."""
self
.
subsampling_factor
=
subsampling_factor
self
.
ignore_id
=
-
1
self
.
dtype
=
dtype
def
__call__
(
self
,
batch
):
"""Transform a batch and send it to a device.
Args:
batch (list): The batch to transform.
Returns:
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
"""
# batch should be located in list
assert
len
(
batch
)
==
1
(
xs
,
ys
),
utts
=
batch
[
0
]
# perform subsampling
if
self
.
subsampling_factor
>
1
:
xs
=
[
x
[::
self
.
subsampling_factor
,
:]
for
x
in
xs
]
# get batch of lengths of input sequences
ilens
=
np
.
array
([
x
.
shape
[
0
]
for
x
in
xs
])
# perform padding and convert to tensor
# currently only support real number
if
xs
[
0
].
dtype
.
kind
==
"c"
:
xs_pad_real
=
pad_list
([
x
.
real
for
x
in
xs
],
0
).
astype
(
self
.
dtype
)
xs_pad_imag
=
pad_list
([
x
.
imag
for
x
in
xs
],
0
).
astype
(
self
.
dtype
)
# Note(kamo):
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
# Don't create ComplexTensor and give it E2E here
# because torch.nn.DataParellel can't handle it.
xs_pad
=
{
"real"
:
xs_pad_real
,
"imag"
:
xs_pad_imag
}
else
:
xs_pad
=
pad_list
(
xs
,
0
).
astype
(
self
.
dtype
)
# NOTE: this is for multi-output (e.g., speech translation)
ys_pad
=
pad_list
(
[
np
.
array
(
y
[
0
][:])
if
isinstance
(
y
,
tuple
)
else
y
for
y
in
ys
],
self
.
ignore_id
)
olens
=
np
.
array
(
[
y
[
0
].
shape
[
0
]
if
isinstance
(
y
,
tuple
)
else
y
.
shape
[
0
]
for
y
in
ys
])
return
utts
,
xs_pad
,
ilens
,
ys_pad
,
olens
deepspeech/io/dataloader.py
浏览文件 @
64cf538e
...
@@ -15,8 +15,8 @@ from paddle.io import DataLoader
...
@@ -15,8 +15,8 @@ from paddle.io import DataLoader
from
deepspeech.frontend.utility
import
read_manifest
from
deepspeech.frontend.utility
import
read_manifest
from
deepspeech.io.batchfy
import
make_batchset
from
deepspeech.io.batchfy
import
make_batchset
from
deepspeech.io.dataset
import
CustomConverter
from
deepspeech.io.dataset
import
TransformDataset
from
deepspeech.io.dataset
import
TransformDataset
from
deepspeech.io.reader
import
CustomConverter
from
deepspeech.io.reader
import
LoadInputsAndTargets
from
deepspeech.io.reader
import
LoadInputsAndTargets
from
deepspeech.utils.log
import
Log
from
deepspeech.utils.log
import
Log
...
...
deepspeech/io/dataset.py
浏览文件 @
64cf538e
...
@@ -13,18 +13,13 @@
...
@@ -13,18 +13,13 @@
# limitations under the License.
# limitations under the License.
from
typing
import
Optional
from
typing
import
Optional
import
numpy
as
np
from
paddle.io
import
Dataset
from
paddle.io
import
Dataset
from
yacs.config
import
CfgNode
from
yacs.config
import
CfgNode
from
deepspeech.frontend.utility
import
read_manifest
from
deepspeech.frontend.utility
import
read_manifest
from
deepspeech.io.utility
import
pad_list
from
deepspeech.utils.log
import
Log
from
deepspeech.utils.log
import
Log
__all__
=
[
__all__
=
[
"ManifestDataset"
,
"TripletManifestDataset"
,
"TransformDataset"
]
"ManifestDataset"
,
"TripletManifestDataset"
,
"TransformDataset"
,
"CustomConverter"
]
logger
=
Log
(
__name__
).
getlog
()
logger
=
Log
(
__name__
).
getlog
()
...
@@ -129,65 +124,6 @@ class TripletManifestDataset(ManifestDataset):
...
@@ -129,65 +124,6 @@ class TripletManifestDataset(ManifestDataset):
"text1"
]
"text1"
]
class
CustomConverter
():
"""Custom batch converter.
Args:
subsampling_factor (int): The subsampling factor.
dtype (np.dtype): Data type to convert.
"""
def
__init__
(
self
,
subsampling_factor
=
1
,
dtype
=
np
.
float32
):
"""Construct a CustomConverter object."""
self
.
subsampling_factor
=
subsampling_factor
self
.
ignore_id
=
-
1
self
.
dtype
=
dtype
def
__call__
(
self
,
batch
):
"""Transform a batch and send it to a device.
Args:
batch (list): The batch to transform.
Returns:
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
"""
# batch should be located in list
assert
len
(
batch
)
==
1
(
xs
,
ys
),
utts
=
batch
[
0
]
# perform subsampling
if
self
.
subsampling_factor
>
1
:
xs
=
[
x
[::
self
.
subsampling_factor
,
:]
for
x
in
xs
]
# get batch of lengths of input sequences
ilens
=
np
.
array
([
x
.
shape
[
0
]
for
x
in
xs
])
# perform padding and convert to tensor
# currently only support real number
if
xs
[
0
].
dtype
.
kind
==
"c"
:
xs_pad_real
=
pad_list
([
x
.
real
for
x
in
xs
],
0
).
astype
(
self
.
dtype
)
xs_pad_imag
=
pad_list
([
x
.
imag
for
x
in
xs
],
0
).
astype
(
self
.
dtype
)
# Note(kamo):
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
# Don't create ComplexTensor and give it E2E here
# because torch.nn.DataParellel can't handle it.
xs_pad
=
{
"real"
:
xs_pad_real
,
"imag"
:
xs_pad_imag
}
else
:
xs_pad
=
pad_list
(
xs
,
0
).
astype
(
self
.
dtype
)
# NOTE: this is for multi-output (e.g., speech translation)
ys_pad
=
pad_list
(
[
np
.
array
(
y
[
0
][:])
if
isinstance
(
y
,
tuple
)
else
y
for
y
in
ys
],
self
.
ignore_id
)
olens
=
np
.
array
(
[
y
[
0
].
shape
[
0
]
if
isinstance
(
y
,
tuple
)
else
y
.
shape
[
0
]
for
y
in
ys
])
return
utts
,
xs_pad
,
ilens
,
ys_pad
,
olens
class
TransformDataset
(
Dataset
):
class
TransformDataset
(
Dataset
):
"""Transform Dataset.
"""Transform Dataset.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录