未验证 提交 5c4df656 编写于 作者: W WilliamZhang06 提交者: GitHub

Merge branch 'PaddlePaddle:develop' into develop

# Changelog # Changelog
Date: 2022-1-29, Author: yt605155624.
Add features to: T2S:
- Update aishell3 vc0 with new Tacotron2.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1419
Date: 2022-1-29, Author: yt605155624.
Add features to: T2S:
- Add ljspeech Tacotron2.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1416
Date: 2022-1-24, Author: yt605155624.
Add features to: T2S:
- Add csmsc WaveRNN.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1379
Date: 2022-1-19, Author: yt605155624. Date: 2022-1-19, Author: yt605155624.
Add features to: T2S: Add features to: T2S:
- Add csmsc Tacotron2. - Add csmsc Tacotron2.
......
...@@ -16,12 +16,15 @@ ...@@ -16,12 +16,15 @@
<p align="center"> <p align="center">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-red.svg"></a> <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-red.svg"></a>
<a href="support os"><img src="https://img.shields.io/badge/os-linux-yellow.svg"></a> <a href="https://github.com/PaddlePaddle/PaddleSpeech/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleSpeech?color=ffa"></a>
<a href="support os"><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a> <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleSpeech?color=9ea"></a> <a href="https://github.com/PaddlePaddle/PaddleSpeech/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleSpeech?color=9ea"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleSpeech?color=3af"></a> <a href="https://github.com/PaddlePaddle/PaddleSpeech/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleSpeech?color=3af"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleSpeech?color=9cc"></a> <a href="https://github.com/PaddlePaddle/PaddleSpeech/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleSpeech?color=9cc"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleSpeech?color=ccf"></a> <a href="https://github.com/PaddlePaddle/PaddleSpeech/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleSpeech?color=ccf"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://img.shields.io/pypi/dm/PaddleSpeech"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://static.pepy.tech/badge/paddlespeech"></a>
<a href="https://huggingface.co/spaces"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"></a> <a href="https://huggingface.co/spaces"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"></a>
</p> </p>
...@@ -143,6 +146,8 @@ For more synthesized audios, please refer to [PaddleSpeech Text-to-Speech sample ...@@ -143,6 +146,8 @@ For more synthesized audios, please refer to [PaddleSpeech Text-to-Speech sample
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div> <div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech Demo Video](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
### 🔥 Hot Activities ### 🔥 Hot Activities
- 2021.12.21~12.24 - 2021.12.21~12.24
...@@ -317,14 +322,15 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r ...@@ -317,14 +322,15 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</tr> </tr>
<tr> <tr>
<td rowspan="4">Acoustic Model</td> <td rowspan="4">Acoustic Model</td>
<td >Tacotron2</td> <td>Tacotron2</td>
<td rowspan="2" >LJSpeech</td> <td>LJSpeech / CSMSC</td>
<td> <td>
<a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a> <a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a> / <a href = "./examples/csmsc/tts0">tacotron2-csmsc</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td>Transformer TTS</td> <td>Transformer TTS</td>
<td>LJSpeech</td>
<td> <td>
<a href = "./examples/ljspeech/tts1">transformer-ljspeech</a> <a href = "./examples/ljspeech/tts1">transformer-ljspeech</a>
</td> </td>
...@@ -344,7 +350,7 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r ...@@ -344,7 +350,7 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</td> </td>
</tr> </tr>
<tr> <tr>
<td rowspan="5">Vocoder</td> <td rowspan="6">Vocoder</td>
<td >WaveFlow</td> <td >WaveFlow</td>
<td >LJSpeech</td> <td >LJSpeech</td>
<td> <td>
...@@ -378,7 +384,14 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r ...@@ -378,7 +384,14 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
<td> <td>
<a href = "./examples/csmsc/voc5">HiFiGAN-csmsc</a> <a href = "./examples/csmsc/voc5">HiFiGAN-csmsc</a>
</td> </td>
</tr>
<tr> <tr>
<td >WaveRNN</td>
<td >CSMSC</td>
<td>
<a href = "./examples/csmsc/voc6">WaveRNN-csmsc</a>
</td>
</tr>
<tr> <tr>
<td rowspan="3">Voice Cloning</td> <td rowspan="3">Voice Cloning</td>
<td>GE2E</td> <td>GE2E</td>
...@@ -416,7 +429,6 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r ...@@ -416,7 +429,6 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</tr> </tr>
</thead> </thead>
<tbody> <tbody>
<tr> <tr>
<td>Audio Classification</td> <td>Audio Classification</td>
<td>ESC-50</td> <td>ESC-50</td>
...@@ -440,7 +452,6 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r ...@@ -440,7 +452,6 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</tr> </tr>
</thead> </thead>
<tbody> <tbody>
<tr> <tr>
<td>Punctuation Restoration</td> <td>Punctuation Restoration</td>
<td>IWLST2012_zh</td> <td>IWLST2012_zh</td>
...@@ -488,7 +499,17 @@ author={PaddlePaddle Authors}, ...@@ -488,7 +499,17 @@ author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleSpeech}}, howpublished = {\url{https://github.com/PaddlePaddle/PaddleSpeech}},
year={2021} year={2021}
} }
@inproceedings{zheng2021fused,
title={Fused acoustic and text encoding for multimodal bilingual pretraining and speech translation},
author={Zheng, Renjie and Chen, Junkun and Ma, Mingbo and Huang, Liang},
booktitle={International Conference on Machine Learning},
pages={12736--12746},
year={2021},
organization={PMLR}
}
``` ```
<a name="contribution"></a> <a name="contribution"></a>
## Contribute to PaddleSpeech ## Contribute to PaddleSpeech
......
...@@ -147,6 +147,8 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme ...@@ -147,6 +147,8 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div> <div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech 示例视频](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
### 🔥 热门活动 ### 🔥 热门活动
...@@ -315,14 +317,15 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声 ...@@ -315,14 +317,15 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</tr> </tr>
<tr> <tr>
<td rowspan="4">声学模型</td> <td rowspan="4">声学模型</td>
<td >Tacotron2</td> <td>Tacotron2</td>
<td rowspan="2" >LJSpeech</td> <td>LJSpeech / CSMSC</td>
<td> <td>
<a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a> <a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a> / <a href = "./examples/csmsc/tts0">tacotron2-csmsc</a>
</td> </td>
</tr> </tr>
<tr> <tr>
<td>Transformer TTS</td> <td>Transformer TTS</td>
<td>LJSpeech</td>
<td> <td>
<a href = "./examples/ljspeech/tts1">transformer-ljspeech</a> <a href = "./examples/ljspeech/tts1">transformer-ljspeech</a>
</td> </td>
...@@ -342,7 +345,7 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声 ...@@ -342,7 +345,7 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</td> </td>
</tr> </tr>
<tr> <tr>
<td rowspan="5">声码器</td> <td rowspan="6">声码器</td>
<td >WaveFlow</td> <td >WaveFlow</td>
<td >LJSpeech</td> <td >LJSpeech</td>
<td> <td>
...@@ -376,7 +379,14 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声 ...@@ -376,7 +379,14 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
<td> <td>
<a href = "./examples/csmsc/voc5">HiFiGAN-csmsc</a> <a href = "./examples/csmsc/voc5">HiFiGAN-csmsc</a>
</td> </td>
</tr>
<tr> <tr>
<td >WaveRNN</td>
<td >CSMSC</td>
<td>
<a href = "./examples/csmsc/voc6">WaveRNN-csmsc</a>
</td>
</tr>
<tr> <tr>
<td rowspan="3">声音克隆</td> <td rowspan="3">声音克隆</td>
<td>GE2E</td> <td>GE2E</td>
...@@ -415,8 +425,6 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声 ...@@ -415,8 +425,6 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</tr> </tr>
</thead> </thead>
<tbody> <tbody>
<tr> <tr>
<td>声音分类</td> <td>声音分类</td>
<td>ESC-50</td> <td>ESC-50</td>
...@@ -440,7 +448,6 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声 ...@@ -440,7 +448,6 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</tr> </tr>
</thead> </thead>
<tbody> <tbody>
<tr> <tr>
<td>标点恢复</td> <td>标点恢复</td>
<td>IWLST2012_zh</td> <td>IWLST2012_zh</td>
......
Demo Video
==================
.. raw:: html
<video controls width="1024">
<source src="https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/PaddleSpeech_Demo.mp4"
type="video/mp4">
Sorry, your browser doesn't support embedded videos.
</video>
...@@ -42,6 +42,7 @@ Contents ...@@ -42,6 +42,7 @@ Contents
tts/demo tts/demo
tts/demo_2 tts/demo_2
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
:caption: Released Models :caption: Released Models
...@@ -50,12 +51,14 @@ Contents ...@@ -50,12 +51,14 @@ Contents
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
:caption: Acknowledgement :caption: Demos
asr/reference
demo_video
tts_demo_video
.. toctree::
:maxdepth: 1
:caption: Acknowledgement
asr/reference
# Released Models # Released Models
## Speech-to-Text Models ## Speech-to-Text Models
...@@ -32,14 +33,15 @@ Language Model | Training Data | Token-based | Size | Descriptions ...@@ -32,14 +33,15 @@ Language Model | Training Data | Token-based | Size | Descriptions
### Acoustic Models ### Acoustic Models
Model Type | Dataset| Example Link | Pretrained Models|Static Models|Size (static) Model Type | Dataset| Example Link | Pretrained Models|Static Models|Size (static)
:-------------:| :------------:| :-----: | :-----:| :-----:| :-----: :-------------:| :------------:| :-----: | :-----:| :-----:| :-----:
Tacotron2|LJSpeech|[tacotron2-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts0)|[tacotron2_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.3.zip)||| Tacotron2|LJSpeech|[tacotron2-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts0)|[tacotron2_ljspeech_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.2.0.zip)|||
Tacotron2|CSMSC|[tacotron2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts0)|[tacotron2_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_ckpt_0.2.0.zip)|[tacotron2_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_static_0.2.0.zip)|103MB|
TransformerTTS| LJSpeech| [transformer-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts1)|[transformer_tts_ljspeech_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/transformer_tts/transformer_tts_ljspeech_ckpt_0.4.zip)||| TransformerTTS| LJSpeech| [transformer-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts1)|[transformer_tts_ljspeech_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/transformer_tts/transformer_tts_ljspeech_ckpt_0.4.zip)|||
SpeedySpeech| CSMSC | [speedyspeech-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts2) |[speedyspeech_nosil_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_ckpt_0.5.zip)|[speedyspeech_nosil_baker_static_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_static_0.5.zip)|12MB| SpeedySpeech| CSMSC | [speedyspeech-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts2) |[speedyspeech_nosil_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_ckpt_0.5.zip)|[speedyspeech_nosil_baker_static_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_static_0.5.zip)|12MB|
FastSpeech2| CSMSC |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts3)|[fastspeech2_nosil_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_ckpt_0.4.zip)|[fastspeech2_nosil_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_static_0.4.zip)|157MB| FastSpeech2| CSMSC |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts3)|[fastspeech2_nosil_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_ckpt_0.4.zip)|[fastspeech2_nosil_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_static_0.4.zip)|157MB|
FastSpeech2-Conformer| CSMSC |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts3)|[fastspeech2_conformer_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip)||| FastSpeech2-Conformer| CSMSC |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts3)|[fastspeech2_conformer_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip)|||
FastSpeech2| AISHELL-3 |[fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/tts3)|[fastspeech2_nosil_aishell3_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_ckpt_0.4.zip)||| FastSpeech2| AISHELL-3 |[fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/tts3)|[fastspeech2_nosil_aishell3_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_ckpt_0.4.zip)|||
FastSpeech2| LJSpeech |[fastspeech2-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts3)|[fastspeech2_nosil_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_ljspeech_ckpt_0.5.zip)||| FastSpeech2| LJSpeech |[fastspeech2-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts3)|[fastspeech2_nosil_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_ljspeech_ckpt_0.5.zip)|||
FastSpeech2| VCTK |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/tts3)|[fastspeech2_nosil_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_vctk_ckpt_0.5.zip)||| FastSpeech2| VCTK |[fastspeech2-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/tts3)|[fastspeech2_nosil_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_vctk_ckpt_0.5.zip)|||
### Vocoders ### Vocoders
Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size (static) Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size (static)
...@@ -52,12 +54,14 @@ Parallel WaveGAN| VCTK |[PWGAN-vctk](https://github.com/PaddlePaddle/PaddleSpeec ...@@ -52,12 +54,14 @@ Parallel WaveGAN| VCTK |[PWGAN-vctk](https://github.com/PaddlePaddle/PaddleSpeec
|Multi Band MelGAN | CSMSC |[MB MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc3) | [mb_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_ckpt_0.1.1.zip) <br>[mb_melgan_baker_finetune_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_baker_finetune_ckpt_0.5.zip)|[mb_melgan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_static_0.1.1.zip) |8.2MB| |Multi Band MelGAN | CSMSC |[MB MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc3) | [mb_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_ckpt_0.1.1.zip) <br>[mb_melgan_baker_finetune_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_baker_finetune_ckpt_0.5.zip)|[mb_melgan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_static_0.1.1.zip) |8.2MB|
Style MelGAN | CSMSC |[Style MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc4)|[style_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/style_melgan/style_melgan_csmsc_ckpt_0.1.1.zip)| | | Style MelGAN | CSMSC |[Style MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc4)|[style_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/style_melgan/style_melgan_csmsc_ckpt_0.1.1.zip)| | |
HiFiGAN | CSMSC |[HiFiGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc5)|[hifigan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_ckpt_0.1.1.zip)|[hifigan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_static_0.1.1.zip)|50MB| HiFiGAN | CSMSC |[HiFiGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc5)|[hifigan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_ckpt_0.1.1.zip)|[hifigan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_static_0.1.1.zip)|50MB|
WaveRNN | CSMSC |[WaveRNN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc6)|[wavernn_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip)|[wavernn_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_static_0.2.0.zip)|18MB|
### Voice Cloning ### Voice Cloning
Model Type | Dataset| Example Link | Pretrained Models Model Type | Dataset| Example Link | Pretrained Models
:-------------:| :------------:| :-----: | :-----: :-------------:| :------------:| :-----: | :-----:
GE2E| AISHELL-3, etc. |[ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e)|[ge2e_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ge2e/ge2e_ckpt_0.3.zip) GE2E| AISHELL-3, etc. |[ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e)|[ge2e_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ge2e/ge2e_ckpt_0.3.zip)
GE2E + Tactron2| AISHELL-3 |[ge2e-tactron2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc0)|[tacotron2_aishell3_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_0.3.zip) GE2E + Tactron2| AISHELL-3 |[ge2e-tactron2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc0)|[tacotron2_aishell3_ckpt_vc0_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_vc0_0.2.0.zip)
GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc1)|[fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip) GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc1)|[fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip)
......
TTS Demo Video
==================
.. raw:: html
<video controls width="1024">
<source src="https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/paddle2021_with_me.mp4"
type="video/mp4">
Sorry, your browser doesn't support embedded videos.
</video>
# Tacotron2 + AISHELL-3 Voice Cloning # Tacotron2 + AISHELL-3 Voice Cloning
This example contains code used to train a [Tacotron2](https://arxiv.org/abs/1712.05884) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf). The general steps are as follows: This example contains code used to train a [Tacotron2](https://arxiv.org/abs/1712.05884) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf). The general steps are as follows:
1. Speaker Encoder: We use Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in `Tacotron2` because the transcriptions are not needed, we use more datasets, refer to [ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e). 1. Speaker Encoder: We use Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in `Tacotron2` because the transcriptions are not needed, we use more datasets, refer to [ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e).
...@@ -17,7 +16,7 @@ mkdir data_aishell3 ...@@ -17,7 +16,7 @@ mkdir data_aishell3
tar zxvf data_aishell3.tgz -C data_aishell3 tar zxvf data_aishell3.tgz -C data_aishell3
``` ```
### Get MFA Result and Extract ### Get MFA Result and Extract
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2. We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for Tacotron2, the durations of MFA are not needed here.
You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo. You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Pretrained GE2E Model ## Pretrained GE2E Model
...@@ -117,3 +116,25 @@ ref_audio ...@@ -117,3 +116,25 @@ ref_audio
```bash ```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/voice_cloning.sh ${conf_path} ${train_output_path} ${ckpt_name} ${ge2e_params_path} ${ref_audio_dir} CUDA_VISIBLE_DEVICES=${gpus} ./local/voice_cloning.sh ${conf_path} ${train_output_path} ${ckpt_name} ${ge2e_params_path} ${ref_audio_dir}
``` ```
## Pretrained Model
[tacotron2_aishell3_ckpt_vc0_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_vc0_0.2.0.zip)
Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
default| 2(gpu) x 37596|0.58704|0.39623|0.15073|0.039|1.9981e-04|
Tacotron2 checkpoint contains files listed below.
(There is no need for `speaker_id_map.txt` here )
```text
tacotron2_aishell3_ckpt_vc0_0.2.0
├── default.yaml # default config used to train tacotron2
├── phone_id_map.txt # phone vocabulary file when training tacotron2
├── snapshot_iter_37596.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training tacotron2
```
## More
We strongly recommend that you use [FastSpeech2 + AISHELL-3 Voice Cloning](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc1) which works better.
...@@ -77,7 +77,7 @@ optimizer: ...@@ -77,7 +77,7 @@ optimizer:
########################################################### ###########################################################
# TRAINING SETTING # # TRAINING SETTING #
########################################################### ###########################################################
max_epoch: 200 max_epoch: 100
num_snapshots: 5 num_snapshots: 5
########################################################### ###########################################################
......
...@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1 ...@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1
export PYTHONIOENCODING=UTF-8 export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH} export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=new_tacotron2 MODEL=tacotron2
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL} export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
# FastSpeech2 + AISHELL-3 Voice Cloning # FastSpeech2 + AISHELL-3 Voice Cloning
This example contains code used to train a [FastSpeech2](https://arxiv.org/abs/2006.04558) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf). The general steps are as follows: This example contains code used to train a [FastSpeech2](https://arxiv.org/abs/2006.04558) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf). The general steps are as follows:
1. Speaker Encoder: We use Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in `FastSpeech2` because the transcriptions are not needed, we use more datasets, refer to [ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e). 1. Speaker Encoder: We use Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in `FastSpeech2` because the transcriptions are not needed, we use more datasets, refer to [ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e).
......
# Callcenter 8k sample rate
Data distribution:
```
676048 utts
491.4004722221223 h
4357792.0 text
2.4633630739178654 text/sec
2.6167397877068495 sec/utt
```
train/dev/test partition:
```
33802 manifest.dev
67606 manifest.test
574640 manifest.train
676048 total
```
...@@ -10,3 +10,5 @@ ...@@ -10,3 +10,5 @@
* voc2 - MelGAN * voc2 - MelGAN
* voc3 - MultiBand MelGAN * voc3 - MultiBand MelGAN
* voc4 - Style MelGAN * voc4 - Style MelGAN
* voc5 - HiFiGAN
* voc6 - WaveRNN
...@@ -212,6 +212,8 @@ optional arguments: ...@@ -212,6 +212,8 @@ optional arguments:
Pretrained Tacotron2 model with no silence in the edge of audios: Pretrained Tacotron2 model with no silence in the edge of audios:
- [tacotron2_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_ckpt_0.2.0.zip) - [tacotron2_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_ckpt_0.2.0.zip)
The static model can be downloaded here [tacotron2_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_static_0.2.0.zip).
Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------: :-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
......
...@@ -7,6 +7,7 @@ ckpt_name=$3 ...@@ -7,6 +7,7 @@ ckpt_name=$3
stage=0 stage=0
stop_stage=0 stop_stage=0
# TODO: tacotron2 动转静的结果没有静态图的响亮, 可能还是 decode 的时候某个函数动静不对齐
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \ FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
...@@ -33,7 +34,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then ...@@ -33,7 +34,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \ FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \ python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \ --am=tacotron2_csmsc \
--am_config=${config_path} \ --am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \ --am_stat=dump/train/speech_stats.npy \
...@@ -55,7 +56,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then ...@@ -55,7 +56,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \ FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \ python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \ --am=tacotron2_csmsc \
--am_config=${config_path} \ --am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \ --am_stat=dump/train/speech_stats.npy \
...@@ -76,7 +77,7 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then ...@@ -76,7 +77,7 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
FLAGS_allocator_strategy=naive_best_fit \ FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \ python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \ --am=tacotron2_csmsc \
--am_config=${config_path} \ --am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \ --am_stat=dump/train/speech_stats.npy \
...@@ -90,3 +91,24 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then ...@@ -90,3 +91,24 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
--inference_dir=${train_output_path}/inference \ --inference_dir=${train_output_path}/inference \
--phones_dict=dump/phone_id_map.txt --phones_dict=dump/phone_id_map.txt
fi fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=tacotron2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference
fi
\ No newline at end of file
...@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1 ...@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1
export PYTHONIOENCODING=UTF-8 export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH} export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=new_tacotron2 MODEL=tacotron2
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL} export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
...@@ -35,3 +35,8 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then ...@@ -35,3 +35,8 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan # synthesize_e2e, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1 CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# inference with static model
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1
fi
...@@ -92,3 +92,26 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then ...@@ -92,3 +92,26 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
--phones_dict=dump/phone_id_map.txt \ --phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt --tones_dict=dump/tone_id_map.txt
fi fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--inference_dir=${train_output_path}/inference
fi
...@@ -243,6 +243,8 @@ fastspeech2_nosil_baker_ckpt_0.4 ...@@ -243,6 +243,8 @@ fastspeech2_nosil_baker_ckpt_0.4
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2 └── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2
``` ```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models. You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models.
If you want to use fastspeech2_conformer, you must delete this line `--inference_dir=exp/default/inference \` to skip the step of dygraph to static graph, cause we haven't tested dygraph to static graph for fastspeech2_conformer till now.
```bash ```bash
source path.sh source path.sh
......
...@@ -102,9 +102,9 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then ...@@ -102,9 +102,9 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \ --am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \ --am_stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \ --voc=wavernn_csmsc \
--voc_config=wavernn_test/default.yaml \ --voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_test/snapshot_iter_5000.pdz \ --voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_test/feats_stats.npy \ --voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \ --lang=zh \
--text=${BIN_DIR}/../sentences.txt \ --text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \ --output_dir=${train_output_path}/test_e2e \
......
...@@ -36,3 +36,8 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then ...@@ -36,3 +36,8 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1 CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# inference with static model
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1
fi
# WaveRNN with CSMSC
This example contains code used to train a [WaveRNN](https://arxiv.org/abs/1802.08435) model with [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html).
## Dataset
### Download and Extract
Download CSMSC from the [official website](https://www.data-baker.com/data/index/source) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) results to cut silence at the edge of audio.
You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`.
Assume the path to the MFA result of CSMSC is `./baker_alignment_tone`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── feats_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and `test`, each of which contains a `norm` and `raw` subfolder. The `raw` folder contains the log magnitude of the mel spectrogram of each utterance, while the norm folder contains the normalized spectrogram. The statistics used to normalize the spectrogram are computed from the training set, which is located in `dump/train/feats_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains id and paths to the spectrogram of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
Here's the complete help message.
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU]
Train a WaveRNN model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG config file to overwrite default config.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
```
1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
### Synthesizing
`./local/synthesize.sh` calls `${BIN_DIR}/synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize.py [-h] [--config CONFIG] [--checkpoint CHECKPOINT]
[--test-metadata TEST_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU]
Synthesize with WaveRNN.
optional arguments:
-h, --help show this help message and exit
--config CONFIG Vocoder config file.
--checkpoint CHECKPOINT
snapshot to load.
--test-metadata TEST_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
```
1. `--config` wavernn config file. You should use the same config with which the model is trained.
2. `--checkpoint` is the checkpoint to load. Pick one of the checkpoints from `checkpoints` inside the training output directory.
3. `--test-metadata` is the metadata of the test dataset. Use the `metadata.jsonl` in the `dev/norm` subfolder from the processed directory.
4. `--output-dir` is the directory to save the synthesized audio files.
5. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Models
The pretrained model can be downloaded here [wavernn_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip).
The static model can be downloaded here [wavernn_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_static_0.2.0.zip).
Model | Step | eval/loss
:-------------:|:------------:| :------------:
default| 1(gpu) x 400000|2.602768
WaveRNN checkpoint contains files listed below.
```text
wavernn_csmsc_ckpt_0.2.0
├── default.yaml # default config used to train wavernn
├── feats_stats.npy # statistics used to normalize spectrogram when training wavernn
└── snapshot_iter_400000.pdz # parameters of wavernn
```
# Tacotron2 with LJSpeech-1.1
This example contains code used to train a [Tacotron2](https://arxiv.org/abs/1712.05884) model with [LJSpeech-1.1](https://keithito.com/LJ-Speech-Dataset/)
## Dataset
### Download and Extract
Download LJSpeech-1.1 from the [official website](https://keithito.com/LJ-Speech-Dataset/).
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for Tacotron2, the durations of MFA are not needed here.
You can download from here [ljspeech_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/LJSpeech-1.1`.
Assume the path to the MFA result of LJSpeech-1.1 is `./ljspeech_alignment`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from a text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and the id of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
Here's the complete help message.
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU] [--phones-dict PHONES_DICT]
Train a Tacotron2 model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG tacotron2 config file.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--phones-dict PHONES_DICT
phone vocabulary file.
```
1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
5. `--phones-dict` is the path of the phone vocabulary file.
### Synthesizing
We use [parallel wavegan](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc1) as the neural vocoder.
Download pretrained parallel wavegan model from [pwg_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_ljspeech_ckpt_0.5.zip) and unzip it.
```bash
unzip pwg_ljspeech_ckpt_0.5.zip
```
Parallel WaveGAN checkpoint contains files listed below.
```text
pwg_ljspeech_ckpt_0.5
├── pwg_default.yaml # default config used to train parallel wavegan
├── pwg_snapshot_iter_400000.pdz # generator parameters of parallel wavegan
└── pwg_stats.npy # statistics used to normalize spectrogram when training parallel wavegan
```
`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize.py [-h]
[--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT] [--speaker_dict SPEAKER_DICT]
[--voice-cloning VOICE_CLONING]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--ngpu NGPU]
[--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model. Use deault config when it is
None.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc. Use deault config when it is None.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--ngpu NGPU if ngpu == 0, use cpu.
--test_metadata TEST_METADATA
test metadata.
--output_dir OUTPUT_DIR
output dir.
```
`./local/synthesize_e2e.sh` calls `${BIN_DIR}/../synthesize_e2e.py`, which can synthesize waveform from text file.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize_e2e.py [-h]
[--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT]
[--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--lang LANG]
[--inference_dir INFERENCE_DIR] [--ngpu NGPU]
[--text TEXT] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model. Use deault config when it is
None.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--spk_id SPK_ID spk id for multi speaker acoustic model
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc. Use deault config when it is None.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
```
1. `--am` is acoustic model type with the format {model_name}_{dataset}
2. `--am_config`, `--am_checkpoint`, `--am_stat` and `--phones_dict` are arguments for acoustic model, which correspond to the 4 files in the Tacotron2 pretrained model.
3. `--voc` is vocoder type with the format {model_name}_{dataset}
4. `--voc_config`, `--voc_checkpoint`, `--voc_stat` are arguments for vocoder, which correspond to the 3 files in the parallel wavegan pretrained model.
5. `--lang` is the model language, which can be `zh` or `en`.
6. `--test_metadata` should be the metadata file in the normalized subfolder of `test` in the `dump` folder.
7. `--text` is the text file, which contains sentences to synthesize.
8. `--output_dir` is the directory to save synthesized audio files.
9. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Model
Pretrained Tacotron2 model with no silence in the edge of audios:
- [tacotron2_ljspeech_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.2.0.zip)
Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
default| 1(gpu) x 60300|0.554092|0.394260|0.141046|0.018747|3.8e-05|
Tacotron2 checkpoint contains files listed below.
```text
tacotron2_ljspeech_ckpt_0.2.0
├── default.yaml # default config used to train Tacotron2
├── phone_id_map.txt # phone vocabulary file when training Tacotron2
├── snapshot_iter_60300.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training Tacotron2
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences_en.txt` using pretrained Tacotron2 and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=tacotron2_ljspeech \
--am_config=tacotron2_ljspeech_ckpt_0.2.0/default.yaml \
--am_ckpt=tacotron2_ljspeech_ckpt_0.2.0/snapshot_iter_60300.pdz \
--am_stat=tacotron2_ljspeech_ckpt_0.2.0/speech_stats.npy \
--voc=pwgan_ljspeech\
--voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \
--voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \
--lang=en \
--text=${BIN_DIR}/../sentences_en.txt \
--output_dir=exp/default/test_e2e \
--phones_dict=tacotron2_ljspeech_ckpt_0.2.0/phone_id_map.txt
```
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
# TODO: dygraph to static graph is not good for tacotron2_ljspeech now
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=tacotron2_ljspeech \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=pwgan_ljspeech \
--voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \
--voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \
--lang=en \
--text=${BIN_DIR}/../sentences_en.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
# --inference_dir=${train_output_path}/inference
\ No newline at end of file
...@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1 ...@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1
export PYTHONIOENCODING=UTF-8 export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH} export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=new_tacotron2 MODEL=tacotron2
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL} export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
# FastSpeech2 with the LJSpeech-1.1 # FastSpeech2 with LJSpeech-1.1
This example contains code used to train a [Fastspeech2](https://arxiv.org/abs/2006.04558) model with [LJSpeech-1.1](https://keithito.com/LJ-Speech-Dataset/). This example contains code used to train a [Fastspeech2](https://arxiv.org/abs/2006.04558) model with [LJSpeech-1.1](https://keithito.com/LJ-Speech-Dataset/).
## Dataset ## Dataset
......
dataset info refer to [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/index.html#about)
sv0 - speaker verfication with softmax backend etc, all python code
more info refer to the sv0/readme.txt
sv1 - dependence on kaldi, speaker verfication with plda/sc backend,
more info refer to the sv1/readme.txt
#!/usr/bin/python3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Make VoxCeleb1 trial of kaldi format
this script creat the test trial from kaldi trial voxceleb1_test_v2.txt or official trial veri_test2.txt
to kaldi trial format
"""
import argparse
import codecs
import os
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--voxceleb_trial",
default="voxceleb1_test_v2",
type=str,
help="VoxCeleb trial file. Default we use the kaldi trial voxceleb1_test_v2.txt")
parser.add_argument("--trial",
default="data/test/trial",
type=str,
help="Kaldi format trial file")
args = parser.parse_args()
def main(voxceleb_trial, trial):
"""
VoxCeleb provide several trial file, which format is different with kaldi format.
VoxCeleb format's meaning is as following:
--------------------------------
target_or_nontarget path1 path2
--------------------------------
target_or_nontarget is an integer: 1 target path1 is equal to path2
0 nontarget path1 is unequal to path2
path1: spkr_id/rec_id/name
path2: spkr_id/rec_id/name
Kaldi format's meaning is as following:
---------------------------------------
utt_id1 utt_id2 target_or_nontarget
---------------------------------------
utt_id1: utterance identification or speaker identification
utt_id2: utterance identification or speaker identification
target_or_nontarget is an string: 'target' utt_id1 is equal to utt_id2
'nontarget' utt_id2 is unequal to utt_id2
"""
print("Start convert the voxceleb trial to kaldi format")
if not os.path.exists(voxceleb_trial):
raise RuntimeError("{} does not exist. Pleas input the correct file path".format(voxceleb_trial))
trial_dirname = os.path.dirname(trial)
if not os.path.exists(trial_dirname):
os.mkdir(trial_dirname)
with codecs.open(voxceleb_trial, 'r', encoding='utf-8') as f, \
codecs.open(trial, 'w', encoding='utf-8') as w:
for line in f:
target_or_nontarget, path1, path2 = line.strip().split()
utt_id1 = "-".join(path1.split("/"))
utt_id2 = "-".join(path2.split("/"))
target = "nontarget"
if int(target_or_nontarget):
target = "target"
w.write("{} {} {}\n".format(utt_id1, utt_id2, target))
print("Convert the voxceleb trial to kaldi format successfully")
if __name__ == "__main__":
main(args.voxceleb_trial, args.trial)
...@@ -415,11 +415,11 @@ def mfcc(x, ...@@ -415,11 +415,11 @@ def mfcc(x,
**kwargs) **kwargs)
# librosa mfcc: # librosa mfcc:
spect = librosa.feature.melspectrogram(x,sr=16000,n_fft=512, spect = librosa.feature.melspectrogram(y=x,sr=16000,n_fft=512,
win_length=512, win_length=512,
hop_length=320, hop_length=320,
n_mels=64, fmin=50) n_mels=64, fmin=50)
b = librosa.feature.mfcc(x, b = librosa.feature.mfcc(y=x,
sr=16000, sr=16000,
S=spect, S=spect,
n_mfcc=20, n_mfcc=20,
......
...@@ -311,8 +311,10 @@ class ASRExecutor(BaseExecutor): ...@@ -311,8 +311,10 @@ class ASRExecutor(BaseExecutor):
audio = audio[:, 0] audio = audio[:, 0]
# pcm16 -> pcm 32 # pcm16 -> pcm 32
audio = self._pcm16to32(audio) audio = self._pcm16to32(audio)
audio = librosa.resample(audio, audio_sample_rate, audio = librosa.resample(
self.sample_rate) audio,
orig_sr=audio_sample_rate,
target_sr=self.sample_rate)
audio_sample_rate = self.sample_rate audio_sample_rate = self.sample_rate
# pcm32 -> pcm 16 # pcm32 -> pcm 16
audio = self._pcm32to16(audio) audio = self._pcm32to16(audio)
......
...@@ -114,8 +114,9 @@ class CLSExecutor(BaseExecutor): ...@@ -114,8 +114,9 @@ class CLSExecutor(BaseExecutor):
""" """
Download and returns pretrained resources path of current task. Download and returns pretrained resources path of current task.
""" """
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format( support_models = list(pretrained_models.keys())
tag) assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag) res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag], decompressed_path = download_and_decompress(pretrained_models[tag],
......
...@@ -112,8 +112,9 @@ class STExecutor(BaseExecutor): ...@@ -112,8 +112,9 @@ class STExecutor(BaseExecutor):
""" """
Download and returns pretrained resources path of current task. Download and returns pretrained resources path of current task.
""" """
assert tag in pretrained_models, "Can not find pretrained resources of {}.".format( support_models = list(pretrained_models.keys())
tag) assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag) res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag], decompressed_path = download_and_decompress(pretrained_models[tag],
......
...@@ -124,8 +124,9 @@ class TextExecutor(BaseExecutor): ...@@ -124,8 +124,9 @@ class TextExecutor(BaseExecutor):
""" """
Download and returns pretrained resources path of current task. Download and returns pretrained resources path of current task.
""" """
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format( support_models = list(pretrained_models.keys())
tag) assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag) res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag], decompressed_path = download_and_decompress(pretrained_models[tag],
......
...@@ -117,6 +117,36 @@ pretrained_models = { ...@@ -117,6 +117,36 @@ pretrained_models = {
'speaker_dict': 'speaker_dict':
'speaker_id_map.txt', 'speaker_id_map.txt',
}, },
# tacotron2
"tacotron2_csmsc-zh": {
'url':
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_ckpt_0.2.0.zip',
'md5':
'0df4b6f0bcbe0d73c5ed6df8867ab91a',
'config':
'default.yaml',
'ckpt':
'snapshot_iter_30600.pdz',
'speech_stats':
'speech_stats.npy',
'phones_dict':
'phone_id_map.txt',
},
"tacotron2_ljspeech-en": {
'url':
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.2.0.zip',
'md5':
'6a5eddd81ae0e81d16959b97481135f3',
'config':
'default.yaml',
'ckpt':
'snapshot_iter_60300.pdz',
'speech_stats':
'speech_stats.npy',
'phones_dict':
'phone_id_map.txt',
},
# pwgan # pwgan
"pwgan_csmsc-zh": { "pwgan_csmsc-zh": {
'url': 'url':
...@@ -205,6 +235,20 @@ pretrained_models = { ...@@ -205,6 +235,20 @@ pretrained_models = {
'speech_stats': 'speech_stats':
'feats_stats.npy', 'feats_stats.npy',
}, },
# wavernn
"wavernn_csmsc-zh": {
'url':
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip',
'md5':
'ee37b752f09bcba8f2af3b777ca38e13',
'config':
'default.yaml',
'ckpt':
'snapshot_iter_400000.pdz',
'speech_stats':
'feats_stats.npy',
}
} }
model_alias = { model_alias = {
...@@ -217,6 +261,10 @@ model_alias = { ...@@ -217,6 +261,10 @@ model_alias = {
"paddlespeech.t2s.models.fastspeech2:FastSpeech2", "paddlespeech.t2s.models.fastspeech2:FastSpeech2",
"fastspeech2_inference": "fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference", "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2":
"paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference":
"paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc # voc
"pwgan": "pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator", "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
...@@ -234,6 +282,10 @@ model_alias = { ...@@ -234,6 +282,10 @@ model_alias = {
"paddlespeech.t2s.models.hifigan:HiFiGANGenerator", "paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
"hifigan_inference": "hifigan_inference":
"paddlespeech.t2s.models.hifigan:HiFiGANInference", "paddlespeech.t2s.models.hifigan:HiFiGANInference",
"wavernn":
"paddlespeech.t2s.models.wavernn:WaveRNN",
"wavernn_inference":
"paddlespeech.t2s.models.wavernn:WaveRNNInference",
} }
...@@ -253,9 +305,13 @@ class TTSExecutor(BaseExecutor): ...@@ -253,9 +305,13 @@ class TTSExecutor(BaseExecutor):
type=str, type=str,
default='fastspeech2_csmsc', default='fastspeech2_csmsc',
choices=[ choices=[
'speedyspeech_csmsc', 'fastspeech2_csmsc', 'speedyspeech_csmsc',
'fastspeech2_ljspeech', 'fastspeech2_aishell3', 'fastspeech2_csmsc',
'fastspeech2_vctk' 'fastspeech2_ljspeech',
'fastspeech2_aishell3',
'fastspeech2_vctk',
'tacotron2_csmsc',
'tacotron2_ljspeech',
], ],
help='Choose acoustic model type of tts task.') help='Choose acoustic model type of tts task.')
self.parser.add_argument( self.parser.add_argument(
...@@ -300,8 +356,14 @@ class TTSExecutor(BaseExecutor): ...@@ -300,8 +356,14 @@ class TTSExecutor(BaseExecutor):
type=str, type=str,
default='pwgan_csmsc', default='pwgan_csmsc',
choices=[ choices=[
'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk', 'pwgan_csmsc',
'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc' 'pwgan_ljspeech',
'pwgan_aishell3',
'pwgan_vctk',
'mb_melgan_csmsc',
'style_melgan_csmsc',
'hifigan_csmsc',
'wavernn_csmsc',
], ],
help='Choose vocoder type of tts task.') help='Choose vocoder type of tts task.')
...@@ -340,8 +402,9 @@ class TTSExecutor(BaseExecutor): ...@@ -340,8 +402,9 @@ class TTSExecutor(BaseExecutor):
""" """
Download and returns pretrained resources path of current task. Download and returns pretrained resources path of current task.
""" """
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format( support_models = list(pretrained_models.keys())
tag) assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag) res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag], decompressed_path = download_and_decompress(pretrained_models[tag],
...@@ -368,7 +431,7 @@ class TTSExecutor(BaseExecutor): ...@@ -368,7 +431,7 @@ class TTSExecutor(BaseExecutor):
""" """
Init model and other resources from a specific path. Init model and other resources from a specific path.
""" """
if hasattr(self, 'am') and hasattr(self, 'voc'): if hasattr(self, 'am_inference') and hasattr(self, 'voc_inference'):
logger.info('Models had been initialized.') logger.info('Models had been initialized.')
return return
# am # am
...@@ -488,6 +551,8 @@ class TTSExecutor(BaseExecutor): ...@@ -488,6 +551,8 @@ class TTSExecutor(BaseExecutor):
vocab_size=vocab_size, vocab_size=vocab_size,
tone_size=tone_size, tone_size=tone_size,
**self.am_config["model"]) **self.am_config["model"])
elif am_name == 'tacotron2':
am = am_class(idim=vocab_size, odim=odim, **self.am_config["model"])
am.set_state_dict(paddle.load(self.am_ckpt)["main_params"]) am.set_state_dict(paddle.load(self.am_ckpt)["main_params"])
am.eval() am.eval()
...@@ -505,10 +570,15 @@ class TTSExecutor(BaseExecutor): ...@@ -505,10 +570,15 @@ class TTSExecutor(BaseExecutor):
voc_class = dynamic_import(voc_name, model_alias) voc_class = dynamic_import(voc_name, model_alias)
voc_inference_class = dynamic_import(voc_name + '_inference', voc_inference_class = dynamic_import(voc_name + '_inference',
model_alias) model_alias)
if voc_name != 'wavernn':
voc = voc_class(**self.voc_config["generator_params"]) voc = voc_class(**self.voc_config["generator_params"])
voc.set_state_dict(paddle.load(self.voc_ckpt)["generator_params"]) voc.set_state_dict(paddle.load(self.voc_ckpt)["generator_params"])
voc.remove_weight_norm() voc.remove_weight_norm()
voc.eval() voc.eval()
else:
voc = voc_class(**self.voc_config["model"])
voc.set_state_dict(paddle.load(self.voc_ckpt)["main_params"])
voc.eval()
voc_mu, voc_std = np.load(self.voc_stat) voc_mu, voc_std = np.load(self.voc_stat)
voc_mu = paddle.to_tensor(voc_mu) voc_mu = paddle.to_tensor(voc_mu)
voc_std = paddle.to_tensor(voc_std) voc_std = paddle.to_tensor(voc_std)
......
...@@ -175,7 +175,7 @@ class U2Trainer(Trainer): ...@@ -175,7 +175,7 @@ class U2Trainer(Trainer):
observation['batch_cost'] = observation[ observation['batch_cost'] = observation[
'reader_cost'] + observation['step_cost'] 'reader_cost'] + observation['step_cost']
observation['samples'] = observation['batch_size'] observation['samples'] = observation['batch_size']
observation['ips,sent./sec'] = observation[ observation['ips,samples/s'] = observation[
'batch_size'] / observation['batch_cost'] 'batch_size'] / observation['batch_cost']
for k, v in observation.items(): for k, v in observation.items():
msg += f" {k.split(',')[0]}: " msg += f" {k.split(',')[0]}: "
......
...@@ -419,7 +419,7 @@ def make_batchset( ...@@ -419,7 +419,7 @@ def make_batchset(
# sort it by input lengths (long to short) # sort it by input lengths (long to short)
sorted_data = sorted( sorted_data = sorted(
d.items(), d.items(),
key=lambda data: int(data[1][batch_sort_key][batch_sort_axis]["shape"][0]), key=lambda data: float(data[1][batch_sort_key][batch_sort_axis]["shape"][0]),
reverse=not shortest_first, ) reverse=not shortest_first, )
logger.info("# utts: " + str(len(sorted_data))) logger.info("# utts: " + str(len(sorted_data)))
......
...@@ -61,7 +61,7 @@ class BatchDataLoader(): ...@@ -61,7 +61,7 @@ class BatchDataLoader():
def __init__(self, def __init__(self,
json_file: str, json_file: str,
train_mode: bool, train_mode: bool,
sortagrad: bool=False, sortagrad: int=0,
batch_size: int=0, batch_size: int=0,
maxlen_in: float=float('inf'), maxlen_in: float=float('inf'),
maxlen_out: float=float('inf'), maxlen_out: float=float('inf'),
......
...@@ -252,8 +252,7 @@ class Trainer(): ...@@ -252,8 +252,7 @@ class Trainer():
if self.args.benchmark_max_step and self.iteration > self.args.benchmark_max_step: if self.args.benchmark_max_step and self.iteration > self.args.benchmark_max_step:
logger.info( logger.info(
f"Reach benchmark-max-step: {self.args.benchmark_max_step}") f"Reach benchmark-max-step: {self.args.benchmark_max_step}")
sys.exit( sys.exit(0)
f"Reach benchmark-max-step: {self.args.benchmark_max_step}")
def do_train(self): def do_train(self):
"""The training process control by epoch.""" """The training process control by epoch."""
...@@ -282,7 +281,7 @@ class Trainer(): ...@@ -282,7 +281,7 @@ class Trainer():
observation['batch_cost'] = observation[ observation['batch_cost'] = observation[
'reader_cost'] + observation['step_cost'] 'reader_cost'] + observation['step_cost']
observation['samples'] = observation['batch_size'] observation['samples'] = observation['batch_size']
observation['ips[sent./sec]'] = observation[ observation['ips samples/s'] = observation[
'batch_size'] / observation['batch_cost'] 'batch_size'] / observation['batch_cost']
for k, v in observation.items(): for k, v in observation.items():
msg += f" {k}: " msg += f" {k}: "
......
...@@ -90,7 +90,8 @@ class SpeedPerturbation(): ...@@ -90,7 +90,8 @@ class SpeedPerturbation():
# Note1: resample requires the sampling-rate of input and output, # Note1: resample requires the sampling-rate of input and output,
# but actually only the ratio is used. # but actually only the ratio is used.
y = librosa.resample(x, ratio, 1, res_type=self.res_type) y = librosa.resample(
x, orig_sr=ratio, target_sr=1, res_type=self.res_type)
if self.keep_length: if self.keep_length:
diff = abs(len(x) - len(y)) diff = abs(len(x) - len(y))
......
...@@ -38,7 +38,7 @@ def stft(x, ...@@ -38,7 +38,7 @@ def stft(x,
x = np.stack( x = np.stack(
[ [
librosa.stft( librosa.stft(
x[:, ch], y=x[:, ch],
n_fft=n_fft, n_fft=n_fft,
hop_length=n_shift, hop_length=n_shift,
win_length=win_length, win_length=win_length,
...@@ -67,7 +67,7 @@ def istft(x, n_shift, win_length=None, window="hann", center=True): ...@@ -67,7 +67,7 @@ def istft(x, n_shift, win_length=None, window="hann", center=True):
x = np.stack( x = np.stack(
[ [
librosa.istft( librosa.istft(
x[:, ch].T, # [Time, Freq] -> [Freq, Time] stft_matrix=x[:, ch].T, # [Time, Freq] -> [Freq, Time]
hop_length=n_shift, hop_length=n_shift,
win_length=win_length, win_length=win_length,
window=window, window=window,
...@@ -95,7 +95,8 @@ def stft2logmelspectrogram(x_stft, ...@@ -95,7 +95,8 @@ def stft2logmelspectrogram(x_stft,
# spc: (Time, Channel, Freq) or (Time, Freq) # spc: (Time, Channel, Freq) or (Time, Freq)
spc = np.abs(x_stft) spc = np.abs(x_stft)
# mel_basis: (Mel_freq, Freq) # mel_basis: (Mel_freq, Freq)
mel_basis = librosa.filters.mel(fs, n_fft, n_mels, fmin, fmax) mel_basis = librosa.filters.mel(
sr=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
# lmspc: (Time, Channel, Mel_freq) or (Time, Mel_freq) # lmspc: (Time, Channel, Mel_freq) or (Time, Mel_freq)
lmspc = np.log10(np.maximum(eps, np.dot(spc, mel_basis.T))) lmspc = np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))
......
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
# limitations under the License. # limitations under the License.
import logging import logging
from . import data
from . import datasets from . import datasets
from . import exps from . import exps
from . import frontend from . import frontend
......
...@@ -53,8 +53,8 @@ class AudioProcessor(object): ...@@ -53,8 +53,8 @@ class AudioProcessor(object):
def _create_mel_filter(self): def _create_mel_filter(self):
mel_filter = librosa.filters.mel( mel_filter = librosa.filters.mel(
self.sample_rate, sr=self.sample_rate,
self.n_fft, n_fft=self.n_fft,
n_mels=self.n_mels, n_mels=self.n_mels,
fmin=self.fmin, fmin=self.fmin,
fmax=self.fmax) fmax=self.fmax)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""t2s's infrastructure for data processing.
"""
from .batch import *
from .dataset import *
...@@ -11,5 +11,4 @@ ...@@ -11,5 +11,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .common import *
from .ljspeech import * from .ljspeech import *
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import numpy as np import numpy as np
import paddle import paddle
from paddlespeech.t2s.data.batch import batch_sequences from paddlespeech.t2s.datasets.batch import batch_sequences
def tacotron2_single_spk_batch_fn(examples): def tacotron2_single_spk_batch_fn(examples):
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import List
import librosa
import numpy as np
from paddle.io import Dataset
__all__ = ["AudioSegmentDataset", "AudioDataset", "AudioFolderDataset"]
class AudioSegmentDataset(Dataset):
"""A simple dataset adaptor for audio files to train vocoders.
Read -> trim silence -> normalize -> extract a segment
"""
def __init__(self,
file_paths: List[Path],
sample_rate: int,
length: int,
top_db: float):
self.file_paths = file_paths
self.sr = sample_rate
self.top_db = top_db
self.length = length # samples in the clip
def __getitem__(self, i):
fpath = self.file_paths[i]
y, sr = librosa.load(fpath, self.sr)
y, _ = librosa.effects.trim(y, top_db=self.top_db)
y = librosa.util.normalize(y)
y = y.astype(np.float32)
# pad or trim
if y.size <= self.length:
y = np.pad(y, [0, self.length - len(y)], mode='constant')
else:
start = np.random.randint(0, 1 + len(y) - self.length)
y = y[start:start + self.length]
return y
def __len__(self):
return len(self.file_paths)
class AudioDataset(Dataset):
"""A simple dataset adaptor for the audio files.
Read -> trim silence -> normalize
"""
def __init__(self,
file_paths: List[Path],
sample_rate: int,
top_db: float=60):
self.file_paths = file_paths
self.sr = sample_rate
self.top_db = top_db
def __getitem__(self, i):
fpath = self.file_paths[i]
y, sr = librosa.load(fpath, self.sr)
y, _ = librosa.effects.trim(y, top_db=self.top_db)
y = librosa.util.normalize(y)
y = y.astype(np.float32)
return y
def __len__(self):
return len(self.file_paths)
class AudioFolderDataset(AudioDataset):
def __init__(
self,
root,
sample_rate,
top_db=60,
extension=".wav", ):
root = Path(root).expanduser()
file_paths = sorted(list(root.rglob("*{}".format(extension))))
super().__init__(file_paths, sample_rate, top_db)
...@@ -22,25 +22,16 @@ from paddle.io import Dataset ...@@ -22,25 +22,16 @@ from paddle.io import Dataset
class DataTable(Dataset): class DataTable(Dataset):
"""Dataset to load and convert data for general purpose. """Dataset to load and convert data for general purpose.
Args:
Parameters data (List[Dict[str, Any]]): Metadata, a list of meta datum, each of which is composed of several fields
---------- fields (List[str], optional): Fields to use, if not specified, all the fields in the data are used, by default None
data : List[Dict[str, Any]] converters (Dict[str, Callable], optional): Converters used to process each field, by default None
Metadata, a list of meta datum, each of which is composed of use_cache (bool, optional): Whether to use cache, by default False
several fields
fields : List[str], optional Raises:
Fields to use, if not specified, all the fields in the data are ValueError:
used, by default None
converters : Dict[str, Callable], optional
Converters used to process each field, by default None
use_cache : bool, optional
Whether to use cache, by default False
Raises
------
ValueError
If there is some field that does not exist in data. If there is some field that does not exist in data.
ValueError ValueError:
If there is some field in converters that does not exist in fields. If there is some field in converters that does not exist in fields.
""" """
...@@ -95,15 +86,11 @@ class DataTable(Dataset): ...@@ -95,15 +86,11 @@ class DataTable(Dataset):
"""Convert a meta datum to an example by applying the corresponding """Convert a meta datum to an example by applying the corresponding
converters to each fields requested. converters to each fields requested.
Parameters Args:
---------- meta_datum (Dict[str, Any]): Meta datum
meta_datum : Dict[str, Any]
Meta datum
Returns Returns:
------- Dict[str, Any]: Converted example
Dict[str, Any]
Converted example
""" """
example = {} example = {}
for field in self.fields: for field in self.fields:
...@@ -118,16 +105,11 @@ class DataTable(Dataset): ...@@ -118,16 +105,11 @@ class DataTable(Dataset):
def __getitem__(self, idx: int) -> Dict[str, Any]: def __getitem__(self, idx: int) -> Dict[str, Any]:
"""Get an example given an index. """Get an example given an index.
Args:
idx (int): Index of the example to get
Parameters Returns:
---------- Dict[str, Any]: A converted example
idx : int
Index of the example to get
Returns
-------
Dict[str, Any]
A converted example
""" """
if self.use_cache and self.caches[idx] is not None: if self.use_cache and self.caches[idx] is not None:
return self.caches[idx] return self.caches[idx]
......
...@@ -18,14 +18,10 @@ import re ...@@ -18,14 +18,10 @@ import re
def get_phn_dur(file_name): def get_phn_dur(file_name):
''' '''
read MFA duration.txt read MFA duration.txt
Parameters Args:
---------- file_name (str or Path): path of gen_duration_from_textgrid.py's result
file_name : str or Path Returns:
path of gen_duration_from_textgrid.py's result Dict: sentence: {'utt': ([char], [int])}
Returns
----------
Dict
sentence: {'utt': ([char], [int])}
''' '''
f = open(file_name, 'r') f = open(file_name, 'r')
sentence = {} sentence = {}
...@@ -48,10 +44,8 @@ def get_phn_dur(file_name): ...@@ -48,10 +44,8 @@ def get_phn_dur(file_name):
def merge_silence(sentence): def merge_silence(sentence):
''' '''
merge silences merge silences
Parameters Args:
---------- sentence (Dict): sentence: {'utt': (([char], [int]), str)}
sentence : Dict
sentence: {'utt': (([char], [int]), str)}
''' '''
for utt in sentence: for utt in sentence:
cur_phn, cur_dur, speaker = sentence[utt] cur_phn, cur_dur, speaker = sentence[utt]
...@@ -81,12 +75,9 @@ def merge_silence(sentence): ...@@ -81,12 +75,9 @@ def merge_silence(sentence):
def get_input_token(sentence, output_path, dataset="baker"): def get_input_token(sentence, output_path, dataset="baker"):
''' '''
get phone set from training data and save it get phone set from training data and save it
Parameters Args:
---------- sentence (Dict): sentence: {'utt': ([char], [int])}
sentence : Dict output_path (str or path):path to save phone_id_map
sentence: {'utt': ([char], [int])}
output_path : str or path
path to save phone_id_map
''' '''
phn_token = set() phn_token = set()
for utt in sentence: for utt in sentence:
...@@ -112,14 +103,10 @@ def get_phones_tones(sentence, ...@@ -112,14 +103,10 @@ def get_phones_tones(sentence,
dataset="baker"): dataset="baker"):
''' '''
get phone set and tone set from training data and save it get phone set and tone set from training data and save it
Parameters Args:
---------- sentence (Dict): sentence: {'utt': ([char], [int])}
sentence : Dict phones_output_path (str or path): path to save phone_id_map
sentence: {'utt': ([char], [int])} tones_output_path (str or path): path to save tone_id_map
phones_output_path : str or path
path to save phone_id_map
tones_output_path : str or path
path to save tone_id_map
''' '''
phn_token = set() phn_token = set()
tone_token = set() tone_token = set()
...@@ -162,14 +149,10 @@ def get_spk_id_map(speaker_set, output_path): ...@@ -162,14 +149,10 @@ def get_spk_id_map(speaker_set, output_path):
def compare_duration_and_mel_length(sentences, utt, mel): def compare_duration_and_mel_length(sentences, utt, mel):
''' '''
check duration error, correct sentences[utt] if possible, else pop sentences[utt] check duration error, correct sentences[utt] if possible, else pop sentences[utt]
Parameters Args:
---------- sentences (Dict): sentences[utt] = [phones_list ,durations_list]
sentences : Dict utt (str): utt_id
sentences[utt] = [phones_list ,durations_list] mel (np.ndarry): features (num_frames, n_mels)
utt : str
utt_id
mel : np.ndarry
features (num_frames, n_mels)
''' '''
if utt in sentences: if utt in sentences:
......
...@@ -29,15 +29,11 @@ class Clip(object): ...@@ -29,15 +29,11 @@ class Clip(object):
hop_size=256, hop_size=256,
aux_context_window=0, ): aux_context_window=0, ):
"""Initialize customized collater for DataLoader. """Initialize customized collater for DataLoader.
Args:
Parameters batch_max_steps (int): The maximum length of input signal in batch.
---------- hop_size (int): Hop size of auxiliary features.
batch_max_steps : int aux_context_window (int): Context window size for auxiliary feature conv.
The maximum length of input signal in batch.
hop_size : int
Hop size of auxiliary features.
aux_context_window : int
Context window size for auxiliary feature conv.
""" """
if batch_max_steps % hop_size != 0: if batch_max_steps % hop_size != 0:
...@@ -56,17 +52,14 @@ class Clip(object): ...@@ -56,17 +52,14 @@ class Clip(object):
def __call__(self, batch): def __call__(self, batch):
"""Convert into batch tensors. """Convert into batch tensors.
Parameters Args:
---------- batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
batch : list
list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Returns Returns:
---------- Tensor:
Tensor
Auxiliary feature batch (B, C, T'), where Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size. T = (T' - 2 * aux_context_window) * hop_size.
Tensor Tensor:
Target signal batch (B, 1, T). Target signal batch (B, 1, T).
""" """
...@@ -104,8 +97,7 @@ class Clip(object): ...@@ -104,8 +97,7 @@ class Clip(object):
def _adjust_length(self, x, c): def _adjust_length(self, x, c):
"""Adjust the audio and feature lengths. """Adjust the audio and feature lengths.
Note Note:
-------
Basically we assume that the length of x and c are adjusted Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed through preprocessing stage, but if we use other library processed
features, this process will be needed. features, this process will be needed.
...@@ -162,22 +154,14 @@ class WaveRNNClip(Clip): ...@@ -162,22 +154,14 @@ class WaveRNNClip(Clip):
# voc_pad = 2 this will pad the input so that the resnet can 'see' wider than input length # voc_pad = 2 this will pad the input so that the resnet can 'see' wider than input length
# max_offsets = n_frames - 2 - (mel_win + 2 * hp.voc_pad) = n_frames - 15 # max_offsets = n_frames - 2 - (mel_win + 2 * hp.voc_pad) = n_frames - 15
"""Convert into batch tensors. """Convert into batch tensors.
Args:
Parameters batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
----------
batch : list Returns:
list of tuple of the pair of audio and features. Tensor: Input signal batch (B, 1, T).
Audio shape (T, ), features shape(T', C). Tensor: Target signal batch (B, 1, T).
Tensor: Auxiliary feature batch (B, C, T'),
Returns where T = (T' - 2 * aux_context_window) * hop_size.
----------
Tensor
Input signal batch (B, 1, T).
Tensor
Target signal batch (B, 1, T).
Tensor
Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size.
""" """
# check length # check length
......
...@@ -27,9 +27,9 @@ import tqdm ...@@ -27,9 +27,9 @@ import tqdm
import yaml import yaml
from yacs.config import CfgNode from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import Energy from paddlespeech.t2s.datasets.get_feats import Energy
from paddlespeech.t2s.data.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.data.get_feats import Pitch from paddlespeech.t2s.datasets.get_feats import Pitch
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
......
...@@ -162,7 +162,6 @@ def train_sp(args, config): ...@@ -162,7 +162,6 @@ def train_sp(args, config):
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend( trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
# print(trainer.extensions)
trainer.run() trainer.run()
......
...@@ -23,7 +23,7 @@ import soundfile as sf ...@@ -23,7 +23,7 @@ import soundfile as sf
import yaml import yaml
from yacs.config import CfgNode from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
from paddlespeech.t2s.models.parallel_wavegan import PWGInference from paddlespeech.t2s.models.parallel_wavegan import PWGInference
from paddlespeech.t2s.modules.normalizer import ZScore from paddlespeech.t2s.modules.normalizer import ZScore
......
...@@ -198,7 +198,6 @@ def train_sp(args, config): ...@@ -198,7 +198,6 @@ def train_sp(args, config):
Snapshot(max_size=config.num_snapshots), Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration')) trigger=(config.save_interval_steps, 'iteration'))
# print(trainer.extensions.keys())
print("Trainer Done!") print("Trainer Done!")
trainer.run() trainer.run()
......
...@@ -27,7 +27,7 @@ import tqdm ...@@ -27,7 +27,7 @@ import tqdm
import yaml import yaml
from yacs.config import CfgNode from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
from paddlespeech.t2s.utils import str2bool from paddlespeech.t2s.utils import str2bool
......
...@@ -27,7 +27,7 @@ import tqdm ...@@ -27,7 +27,7 @@ import tqdm
import yaml import yaml
from yacs.config import CfgNode from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import get_phones_tones from paddlespeech.t2s.datasets.preprocess_utils import get_phones_tones
......
...@@ -38,9 +38,9 @@ model_alias = { ...@@ -38,9 +38,9 @@ model_alias = {
"fastspeech2_inference": "fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference", "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2": "tacotron2":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2", "paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference": "tacotron2_inference":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2Inference", "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc # voc
"pwgan": "pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator", "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
......
...@@ -39,9 +39,9 @@ model_alias = { ...@@ -39,9 +39,9 @@ model_alias = {
"fastspeech2_inference": "fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference", "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2": "tacotron2":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2", "paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference": "tacotron2_inference":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2Inference", "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc # voc
"pwgan": "pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator", "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
...@@ -229,6 +229,11 @@ def evaluate(args): ...@@ -229,6 +229,11 @@ def evaluate(args):
output_dir = Path(args.output_dir) output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True) output_dir.mkdir(parents=True, exist_ok=True)
merge_sentences = False merge_sentences = False
# Avoid not stopping at the end of a sub sentence when tacotron2_ljspeech dygraph to static graph
# but still not stopping in the end (NOTE by yuantian01 Feb 9 2022)
if am_name == 'tacotron2':
merge_sentences = True
for utt_id, sentence in sentences: for utt_id, sentence in sentences:
get_tone_ids = False get_tone_ids = False
if am_name == 'speedyspeech': if am_name == 'speedyspeech':
......
...@@ -27,7 +27,7 @@ import tqdm ...@@ -27,7 +27,7 @@ import tqdm
import yaml import yaml
from yacs.config import CfgNode from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
......
...@@ -30,9 +30,9 @@ from yacs.config import CfgNode ...@@ -30,9 +30,9 @@ from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import tacotron2_multi_spk_batch_fn from paddlespeech.t2s.datasets.am_batch_fn import tacotron2_multi_spk_batch_fn
from paddlespeech.t2s.datasets.am_batch_fn import tacotron2_single_spk_batch_fn from paddlespeech.t2s.datasets.am_batch_fn import tacotron2_single_spk_batch_fn
from paddlespeech.t2s.datasets.data_table import DataTable from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.new_tacotron2 import Tacotron2 from paddlespeech.t2s.models.tacotron2 import Tacotron2
from paddlespeech.t2s.models.new_tacotron2 import Tacotron2Evaluator from paddlespeech.t2s.models.tacotron2 import Tacotron2Evaluator
from paddlespeech.t2s.models.new_tacotron2 import Tacotron2Updater from paddlespeech.t2s.models.tacotron2 import Tacotron2Updater
from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.optimizer import build_optimizers from paddlespeech.t2s.training.optimizer import build_optimizers
...@@ -157,7 +157,6 @@ def train_sp(args, config): ...@@ -157,7 +157,6 @@ def train_sp(args, config):
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend( trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
# print(trainer.extensions)
trainer.run() trainer.run()
......
...@@ -26,20 +26,17 @@ import tqdm ...@@ -26,20 +26,17 @@ import tqdm
import yaml import yaml
from yacs.config import CfgNode as Configuration from yacs.config import CfgNode as Configuration
from paddlespeech.t2s.data.get_feats import LogMelFBank from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.frontend import English from paddlespeech.t2s.frontend import English
def get_lj_sentences(file_name, frontend): def get_lj_sentences(file_name, frontend):
''' '''read MFA duration.txt
read MFA duration.txt
Parameters Args:
---------- file_name (str or Path)
file_name : str or Path Returns:
Returns Dict: sentence: {'utt': ([char], [int])}
----------
Dict
sentence: {'utt': ([char], [int])}
''' '''
f = open(file_name, 'r') f = open(file_name, 'r')
sentence = {} sentence = {}
...@@ -59,14 +56,11 @@ def get_lj_sentences(file_name, frontend): ...@@ -59,14 +56,11 @@ def get_lj_sentences(file_name, frontend):
def get_input_token(sentence, output_path): def get_input_token(sentence, output_path):
''' '''get phone set from training data and save it
get phone set from training data and save it
Parameters Args:
---------- sentence (Dict): sentence: {'utt': ([char], str)}
sentence : Dict output_path (str or path): path to save phone_id_map
sentence: {'utt': ([char], str)}
output_path : str or path
path to save phone_id_map
''' '''
phn_token = set() phn_token = set()
for utt in sentence: for utt in sentence:
......
...@@ -150,7 +150,6 @@ def train_sp(args, config): ...@@ -150,7 +150,6 @@ def train_sp(args, config):
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration")) trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend( trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch')) Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
# print(trainer.extensions)
trainer.run() trainer.run()
......
...@@ -34,9 +34,9 @@ model_alias = { ...@@ -34,9 +34,9 @@ model_alias = {
"fastspeech2_inference": "fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference", "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2": "tacotron2":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2", "paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference": "tacotron2_inference":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2Inference", "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc # voc
"pwgan": "pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator", "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
......
...@@ -17,8 +17,8 @@ import numpy as np ...@@ -17,8 +17,8 @@ import numpy as np
import pandas import pandas
from paddle.io import Dataset from paddle.io import Dataset
from paddlespeech.t2s.data.batch import batch_spec from paddlespeech.t2s.datasets.batch import batch_spec
from paddlespeech.t2s.data.batch import batch_wav from paddlespeech.t2s.datasets.batch import batch_wav
class LJSpeech(Dataset): class LJSpeech(Dataset):
......
...@@ -19,7 +19,7 @@ from paddle import distributed as dist ...@@ -19,7 +19,7 @@ from paddle import distributed as dist
from paddle.io import DataLoader from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler from paddle.io import DistributedBatchSampler
from paddlespeech.t2s.data import dataset from paddlespeech.t2s.datasets import dataset
from paddlespeech.t2s.exps.waveflow.config import get_cfg_defaults from paddlespeech.t2s.exps.waveflow.config import get_cfg_defaults
from paddlespeech.t2s.exps.waveflow.ljspeech import LJSpeech from paddlespeech.t2s.exps.waveflow.ljspeech import LJSpeech
from paddlespeech.t2s.exps.waveflow.ljspeech import LJSpeechClipCollector from paddlespeech.t2s.exps.waveflow.ljspeech import LJSpeechClipCollector
......
...@@ -31,7 +31,7 @@ from paddlespeech.t2s.models.wavernn import WaveRNN ...@@ -31,7 +31,7 @@ from paddlespeech.t2s.models.wavernn import WaveRNN
def main(): def main():
parser = argparse.ArgumentParser(description="Synthesize with WaveRNN.") parser = argparse.ArgumentParser(description="Synthesize with WaveRNN.")
parser.add_argument("--config", type=str, help="GANVocoder config file.") parser.add_argument("--config", type=str, help="Vocoder config file.")
parser.add_argument("--checkpoint", type=str, help="snapshot to load.") parser.add_argument("--checkpoint", type=str, help="snapshot to load.")
parser.add_argument("--test-metadata", type=str, help="dev data.") parser.add_argument("--test-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.") parser.add_argument("--output-dir", type=str, help="output dir.")
......
...@@ -179,7 +179,7 @@ def train_sp(args, config): ...@@ -179,7 +179,7 @@ def train_sp(args, config):
def main(): def main():
# parse args and config and redirect to train_sp # parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.") parser = argparse.ArgumentParser(description="Train a WaveRNN model.")
parser.add_argument( parser.add_argument(
"--config", type=str, help="config file to overwrite default config.") "--config", type=str, help="config file to overwrite default config.")
parser.add_argument("--train-metadata", type=str, help="training data.") parser.add_argument("--train-metadata", type=str, help="training data.")
......
...@@ -133,16 +133,11 @@ class ARPABET(Phonetics): ...@@ -133,16 +133,11 @@ class ARPABET(Phonetics):
def phoneticize(self, sentence, add_start_end=False): def phoneticize(self, sentence, add_start_end=False):
""" Normalize the input text sequence and convert it into pronunciation sequence. """ Normalize the input text sequence and convert it into pronunciation sequence.
Args:
sentence (str): The input text sequence.
Parameters Returns:
----------- List[str]: The list of pronunciation sequence.
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
""" """
phonemes = [ phonemes = [
self._remove_vowels(item) for item in self.backend(sentence) self._remove_vowels(item) for item in self.backend(sentence)
...@@ -157,15 +152,11 @@ class ARPABET(Phonetics): ...@@ -157,15 +152,11 @@ class ARPABET(Phonetics):
def numericalize(self, phonemes): def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence. """ Convert pronunciation sequence into pronunciation id sequence.
Parameters Args:
----------- phonemes (List[str]): The list of pronunciation sequence.
phonemes: List[str]
The list of pronunciation sequence.
Returns Returns:
---------- List[int]: The list of pronunciation id sequence.
List[int]
The list of pronunciation id sequence.
""" """
ids = [self.vocab.lookup(item) for item in phonemes] ids = [self.vocab.lookup(item) for item in phonemes]
return ids return ids
...@@ -173,14 +164,11 @@ class ARPABET(Phonetics): ...@@ -173,14 +164,11 @@ class ARPABET(Phonetics):
def reverse(self, ids): def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence. """ Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Parameters Args:
----------- ids( List[int]): The list of pronunciation id sequence.
ids: List[int]
The list of pronunciation id sequence.
Returns Returns:
---------- List[str]:
List[str]
The list of pronunciation sequence. The list of pronunciation sequence.
""" """
return [self.vocab.reverse(i) for i in ids] return [self.vocab.reverse(i) for i in ids]
...@@ -188,15 +176,11 @@ class ARPABET(Phonetics): ...@@ -188,15 +176,11 @@ class ARPABET(Phonetics):
def __call__(self, sentence, add_start_end=False): def __call__(self, sentence, add_start_end=False):
""" Convert the input text sequence into pronunciation id sequence. """ Convert the input text sequence into pronunciation id sequence.
Parameters Args:
----------- sentence (str): The input text sequence.
sentence: str
The input text sequence.
Returns Returns:
---------- List[str]: The list of pronunciation id sequence.
List[str]
The list of pronunciation id sequence.
""" """
return self.numericalize( return self.numericalize(
self.phoneticize(sentence, add_start_end=add_start_end)) self.phoneticize(sentence, add_start_end=add_start_end))
...@@ -229,15 +213,11 @@ class ARPABETWithStress(Phonetics): ...@@ -229,15 +213,11 @@ class ARPABETWithStress(Phonetics):
def phoneticize(self, sentence, add_start_end=False): def phoneticize(self, sentence, add_start_end=False):
""" Normalize the input text sequence and convert it into pronunciation sequence. """ Normalize the input text sequence and convert it into pronunciation sequence.
Parameters Args:
----------- sentence (str): The input text sequence.
sentence: str
The input text sequence.
Returns Returns:
---------- List[str]: The list of pronunciation sequence.
List[str]
The list of pronunciation sequence.
""" """
phonemes = self.backend(sentence) phonemes = self.backend(sentence)
if add_start_end: if add_start_end:
...@@ -250,46 +230,32 @@ class ARPABETWithStress(Phonetics): ...@@ -250,46 +230,32 @@ class ARPABETWithStress(Phonetics):
def numericalize(self, phonemes): def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence. """ Convert pronunciation sequence into pronunciation id sequence.
Parameters Args:
----------- phonemes (List[str]): The list of pronunciation sequence.
phonemes: List[str]
The list of pronunciation sequence.
Returns Returns:
---------- List[int]: The list of pronunciation id sequence.
List[int]
The list of pronunciation id sequence.
""" """
ids = [self.vocab.lookup(item) for item in phonemes] ids = [self.vocab.lookup(item) for item in phonemes]
return ids return ids
def reverse(self, ids): def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence. """ Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Args:
ids (List[int]): The list of pronunciation id sequence.
Parameters Returns:
----------- List[str]: The list of pronunciation sequence.
ids: List[int]
The list of pronunciation id sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
""" """
return [self.vocab.reverse(i) for i in ids] return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence, add_start_end=False): def __call__(self, sentence, add_start_end=False):
""" Convert the input text sequence into pronunciation id sequence. """ Convert the input text sequence into pronunciation id sequence.
Args:
sentence (str): The input text sequence.
Parameters Returns:
----------- List[str]: The list of pronunciation id sequence.
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation id sequence.
""" """
return self.numericalize( return self.numericalize(
self.phoneticize(sentence, add_start_end=add_start_end)) self.phoneticize(sentence, add_start_end=add_start_end))
......
...@@ -65,14 +65,10 @@ class English(Phonetics): ...@@ -65,14 +65,10 @@ class English(Phonetics):
def phoneticize(self, sentence): def phoneticize(self, sentence):
""" Normalize the input text sequence and convert it into pronunciation sequence. """ Normalize the input text sequence and convert it into pronunciation sequence.
Parameters Args:
----------- sentence (str): The input text sequence.
sentence: str Returns:
The input text sequence. List[str]: The list of pronunciation sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
""" """
start = self.vocab.start_symbol start = self.vocab.start_symbol
end = self.vocab.end_symbol end = self.vocab.end_symbol
...@@ -83,11 +79,6 @@ class English(Phonetics): ...@@ -83,11 +79,6 @@ class English(Phonetics):
return phonemes return phonemes
def _p2id(self, phonemes: List[str]) -> np.array: def _p2id(self, phonemes: List[str]) -> np.array:
# replace unk phone with sp
phonemes = [
phn if (phn in self.vocab_phones and phn not in self.punc) else "sp"
for phn in phonemes
]
phone_ids = [self.vocab_phones[item] for item in phonemes] phone_ids = [self.vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64) return np.array(phone_ids, np.int64)
...@@ -102,6 +93,12 @@ class English(Phonetics): ...@@ -102,6 +93,12 @@ class English(Phonetics):
# remove start_symbol and end_symbol # remove start_symbol and end_symbol
phones = phones[1:-1] phones = phones[1:-1]
phones = [phn for phn in phones if not phn.isspace()] phones = [phn for phn in phones if not phn.isspace()]
# replace unk phone with sp
phones = [
phn
if (phn in self.vocab_phones and phn not in self.punc) else "sp"
for phn in phones
]
phones_list.append(phones) phones_list.append(phones)
if merge_sentences: if merge_sentences:
...@@ -122,14 +119,10 @@ class English(Phonetics): ...@@ -122,14 +119,10 @@ class English(Phonetics):
def numericalize(self, phonemes): def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence. """ Convert pronunciation sequence into pronunciation id sequence.
Parameters Args:
----------- phonemes (List[str]): The list of pronunciation sequence.
phonemes: List[str] Returns:
The list of pronunciation sequence. List[int]: The list of pronunciation id sequence.
Returns
----------
List[int]
The list of pronunciation id sequence.
""" """
ids = [ ids = [
self.vocab.lookup(item) for item in phonemes self.vocab.lookup(item) for item in phonemes
...@@ -139,27 +132,19 @@ class English(Phonetics): ...@@ -139,27 +132,19 @@ class English(Phonetics):
def reverse(self, ids): def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence. """ Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Parameters Args:
----------- ids (List[int]): The list of pronunciation id sequence.
ids: List[int] Returns:
The list of pronunciation id sequence. List[str]: The list of pronunciation sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
""" """
return [self.vocab.reverse(i) for i in ids] return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence): def __call__(self, sentence):
""" Convert the input text sequence into pronunciation id sequence. """ Convert the input text sequence into pronunciation id sequence.
Parameters Args:
----------- sentence(str): The input text sequence.
sentence: str Returns:
The input text sequence. List[str]: The list of pronunciation id sequence.
Returns
----------
List[str]
The list of pronunciation id sequence.
""" """
return self.numericalize(self.phoneticize(sentence)) return self.numericalize(self.phoneticize(sentence))
...@@ -182,27 +167,20 @@ class EnglishCharacter(Phonetics): ...@@ -182,27 +167,20 @@ class EnglishCharacter(Phonetics):
def phoneticize(self, sentence): def phoneticize(self, sentence):
""" Normalize the input text sequence. """ Normalize the input text sequence.
Parameters Args:
----------- sentence(str): The input text sequence.
sentence: str Returns:
The input text sequence. str: A text sequence after normalize.
Returns
----------
str
A text sequence after normalize.
""" """
words = normalize(sentence) words = normalize(sentence)
return words return words
def numericalize(self, sentence): def numericalize(self, sentence):
""" Convert a text sequence into ids. """ Convert a text sequence into ids.
Parameters Args:
----------- sentence (str): The input text sequence.
sentence: str Returns:
The input text sequence. List[int]:
Returns
----------
List[int]
List of a character id sequence. List of a character id sequence.
""" """
ids = [ ids = [
...@@ -213,27 +191,19 @@ class EnglishCharacter(Phonetics): ...@@ -213,27 +191,19 @@ class EnglishCharacter(Phonetics):
def reverse(self, ids): def reverse(self, ids):
""" Convert a character id sequence into text. """ Convert a character id sequence into text.
Parameters Args:
----------- ids (List[int]): List of a character id sequence.
ids: List[int] Returns:
List of a character id sequence. str: The input text sequence.
Returns
----------
str
The input text sequence.
""" """
return [self.vocab.reverse(i) for i in ids] return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence): def __call__(self, sentence):
""" Normalize the input text sequence and convert it into character id sequence. """ Normalize the input text sequence and convert it into character id sequence.
Parameters Args:
----------- sentence (str): The input text sequence.
sentence: str Returns:
The input text sequence. List[int]: List of a character id sequence.
Returns
----------
List[int]
List of a character id sequence.
""" """
return self.numericalize(self.phoneticize(sentence)) return self.numericalize(self.phoneticize(sentence))
...@@ -263,14 +233,10 @@ class Chinese(Phonetics): ...@@ -263,14 +233,10 @@ class Chinese(Phonetics):
def phoneticize(self, sentence): def phoneticize(self, sentence):
""" Normalize the input text sequence and convert it into pronunciation sequence. """ Normalize the input text sequence and convert it into pronunciation sequence.
Parameters Args:
----------- sentence(str): The input text sequence.
sentence: str Returns:
The input text sequence. List[str]: The list of pronunciation sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
""" """
# simplified = self.opencc_backend.convert(sentence) # simplified = self.opencc_backend.convert(sentence)
simplified = sentence simplified = sentence
...@@ -295,28 +261,20 @@ class Chinese(Phonetics): ...@@ -295,28 +261,20 @@ class Chinese(Phonetics):
def numericalize(self, phonemes): def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence. """ Convert pronunciation sequence into pronunciation id sequence.
Parameters Args:
----------- phonemes(List[str]): The list of pronunciation sequence.
phonemes: List[str] Returns:
The list of pronunciation sequence. List[int]: The list of pronunciation id sequence.
Returns
----------
List[int]
The list of pronunciation id sequence.
""" """
ids = [self.vocab.lookup(item) for item in phonemes] ids = [self.vocab.lookup(item) for item in phonemes]
return ids return ids
def __call__(self, sentence): def __call__(self, sentence):
""" Convert the input text sequence into pronunciation id sequence. """ Convert the input text sequence into pronunciation id sequence.
Parameters Args:
----------- sentence (str): The input text sequence.
sentence: str Returns:
The input text sequence. List[str]: The list of pronunciation id sequence.
Returns
----------
List[str]
The list of pronunciation id sequence.
""" """
return self.numericalize(self.phoneticize(sentence)) return self.numericalize(self.phoneticize(sentence))
...@@ -328,13 +286,9 @@ class Chinese(Phonetics): ...@@ -328,13 +286,9 @@ class Chinese(Phonetics):
def reverse(self, ids): def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence. """ Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Parameters Args:
----------- ids (List[int]): The list of pronunciation id sequence.
ids: List[int] Returns:
The list of pronunciation id sequence. List[str]: The list of pronunciation sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
""" """
return [self.vocab.reverse(i) for i in ids] return [self.vocab.reverse(i) for i in ids]
...@@ -20,22 +20,12 @@ __all__ = ["Vocab"] ...@@ -20,22 +20,12 @@ __all__ = ["Vocab"]
class Vocab(object): class Vocab(object):
""" Vocabulary. """ Vocabulary.
Parameters Args:
----------- symbols (Iterable[str]): Common symbols.
symbols: Iterable[str] padding_symbol (str, optional): Symbol for pad. Defaults to "<pad>".
Common symbols. unk_symbol (str, optional): Symbol for unknow. Defaults to "<unk>"
start_symbol (str, optional): Symbol for start. Defaults to "<s>"
padding_symbol: str, optional end_symbol (str, optional): Symbol for end. Defaults to "</s>"
Symbol for pad. Defaults to "<pad>".
unk_symbol: str, optional
Symbol for unknow. Defaults to "<unk>"
start_symbol: str, optional
Symbol for start. Defaults to "<s>"
end_symbol: str, optional
Symbol for end. Defaults to "</s>"
""" """
def __init__(self, def __init__(self,
......
...@@ -44,11 +44,9 @@ RE_TIME_RANGE = re.compile(r'([0-1]?[0-9]|2[0-3])' ...@@ -44,11 +44,9 @@ RE_TIME_RANGE = re.compile(r'([0-1]?[0-9]|2[0-3])'
def replace_time(match) -> str: def replace_time(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
...@@ -87,11 +85,9 @@ RE_DATE = re.compile(r'(\d{4}|\d{2})年' ...@@ -87,11 +85,9 @@ RE_DATE = re.compile(r'(\d{4}|\d{2})年'
def replace_date(match) -> str: def replace_date(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
year = match.group(1) year = match.group(1)
...@@ -114,11 +110,9 @@ RE_DATE2 = re.compile( ...@@ -114,11 +110,9 @@ RE_DATE2 = re.compile(
def replace_date2(match) -> str: def replace_date2(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
year = match.group(1) year = match.group(1)
......
...@@ -36,11 +36,9 @@ RE_FRAC = re.compile(r'(-?)(\d+)/(\d+)') ...@@ -36,11 +36,9 @@ RE_FRAC = re.compile(r'(-?)(\d+)/(\d+)')
def replace_frac(match) -> str: def replace_frac(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
sign = match.group(1) sign = match.group(1)
...@@ -59,11 +57,9 @@ RE_PERCENTAGE = re.compile(r'(-?)(\d+(\.\d+)?)%') ...@@ -59,11 +57,9 @@ RE_PERCENTAGE = re.compile(r'(-?)(\d+(\.\d+)?)%')
def replace_percentage(match) -> str: def replace_percentage(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
sign = match.group(1) sign = match.group(1)
...@@ -81,11 +77,9 @@ RE_INTEGER = re.compile(r'(-)' r'(\d+)') ...@@ -81,11 +77,9 @@ RE_INTEGER = re.compile(r'(-)' r'(\d+)')
def replace_negative_num(match) -> str: def replace_negative_num(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
sign = match.group(1) sign = match.group(1)
...@@ -103,11 +97,9 @@ RE_DEFAULT_NUM = re.compile(r'\d{3}\d*') ...@@ -103,11 +97,9 @@ RE_DEFAULT_NUM = re.compile(r'\d{3}\d*')
def replace_default_num(match): def replace_default_num(match):
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
number = match.group(0) number = match.group(0)
...@@ -124,11 +116,9 @@ RE_NUMBER = re.compile(r'(-?)((\d+)(\.\d+)?)' r'|(\.(\d+))') ...@@ -124,11 +116,9 @@ RE_NUMBER = re.compile(r'(-?)((\d+)(\.\d+)?)' r'|(\.(\d+))')
def replace_positive_quantifier(match) -> str: def replace_positive_quantifier(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
number = match.group(1) number = match.group(1)
...@@ -142,11 +132,9 @@ def replace_positive_quantifier(match) -> str: ...@@ -142,11 +132,9 @@ def replace_positive_quantifier(match) -> str:
def replace_number(match) -> str: def replace_number(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
sign = match.group(1) sign = match.group(1)
...@@ -169,11 +157,9 @@ RE_RANGE = re.compile( ...@@ -169,11 +157,9 @@ RE_RANGE = re.compile(
def replace_range(match) -> str: def replace_range(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
first, second = match.group(1), match.group(8) first, second = match.group(1), match.group(8)
...@@ -222,7 +208,7 @@ def verbalize_digit(value_string: str, alt_one=False) -> str: ...@@ -222,7 +208,7 @@ def verbalize_digit(value_string: str, alt_one=False) -> str:
result_symbols = [DIGITS[digit] for digit in value_string] result_symbols = [DIGITS[digit] for digit in value_string]
result = ''.join(result_symbols) result = ''.join(result_symbols)
if alt_one: if alt_one:
result.replace("一", "幺") result = result.replace("一", "幺")
return result return result
......
...@@ -45,11 +45,9 @@ def phone2str(phone_string: str, mobile=True) -> str: ...@@ -45,11 +45,9 @@ def phone2str(phone_string: str, mobile=True) -> str:
def replace_phone(match) -> str: def replace_phone(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
return phone2str(match.group(0), mobile=False) return phone2str(match.group(0), mobile=False)
...@@ -57,11 +55,9 @@ def replace_phone(match) -> str: ...@@ -57,11 +55,9 @@ def replace_phone(match) -> str:
def replace_mobile(match) -> str: def replace_mobile(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
return phone2str(match.group(0)) return phone2str(match.group(0))
...@@ -22,11 +22,9 @@ RE_TEMPERATURE = re.compile(r'(-?)(\d+(\.\d+)?)(°C|℃|度|摄氏度)') ...@@ -22,11 +22,9 @@ RE_TEMPERATURE = re.compile(r'(-?)(\d+(\.\d+)?)(°C|℃|度|摄氏度)')
def replace_temperature(match) -> str: def replace_temperature(match) -> str:
""" """
Parameters Args:
---------- match (re.Match)
match : re.Match Returns:
Returns
----------
str str
""" """
sign = match.group(1) sign = match.group(1)
......
...@@ -55,14 +55,10 @@ class TextNormalizer(): ...@@ -55,14 +55,10 @@ class TextNormalizer():
def _split(self, text: str, lang="zh") -> List[str]: def _split(self, text: str, lang="zh") -> List[str]:
"""Split long text into sentences with sentence-splitting punctuations. """Split long text into sentences with sentence-splitting punctuations.
Parameters Args:
---------- text (str): The input text.
text : str Returns:
The input text. List[str]: Sentences.
Returns
-------
List[str]
Sentences.
""" """
# Only for pure Chinese here # Only for pure Chinese here
if lang == "zh": if lang == "zh":
......
...@@ -14,9 +14,9 @@ ...@@ -14,9 +14,9 @@
from .fastspeech2 import * from .fastspeech2 import *
from .hifigan import * from .hifigan import *
from .melgan import * from .melgan import *
from .new_tacotron2 import *
from .parallel_wavegan import * from .parallel_wavegan import *
from .speedyspeech import * from .speedyspeech import *
from .tacotron2 import *
from .transformer_tts import * from .transformer_tts import *
from .waveflow import * from .waveflow import *
from .wavernn import * from .wavernn import *
...@@ -37,34 +37,20 @@ class HiFiGANGenerator(nn.Layer): ...@@ -37,34 +37,20 @@ class HiFiGANGenerator(nn.Layer):
use_weight_norm: bool=True, use_weight_norm: bool=True,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initialize HiFiGANGenerator module. """Initialize HiFiGANGenerator module.
Parameters Args:
---------- in_channels (int): Number of input channels.
in_channels : int out_channels (int): Number of output channels.
Number of input channels. channels (int): Number of hidden representation channels.
out_channels : int kernel_size (int): Kernel size of initial and final conv layer.
Number of output channels. upsample_scales (list): List of upsampling scales.
channels : int upsample_kernel_sizes (list): List of kernel sizes for upsampling layers.
Number of hidden representation channels. resblock_kernel_sizes (list): List of kernel sizes for residual blocks.
kernel_size : int resblock_dilations (list): List of dilation list for residual blocks.
Kernel size of initial and final conv layer. use_additional_convs (bool): Whether to use additional conv layers in residual blocks.
upsample_scales : list bias (bool): Whether to add bias parameter in convolution layers.
List of upsampling scales. nonlinear_activation (str): Activation function module name.
upsample_kernel_sizes : list nonlinear_activation_params (dict): Hyperparameters for activation function.
List of kernel sizes for upsampling layers. use_weight_norm (bool): Whether to use weight norm.
resblock_kernel_sizes : list
List of kernel sizes for residual blocks.
resblock_dilations : list
List of dilation list for residual blocks.
use_additional_convs : bool
Whether to use additional conv layers in residual blocks.
bias : bool
Whether to add bias parameter in convolution layers.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers. If set to true, it will be applied to all of the conv layers.
""" """
super().__init__() super().__init__()
...@@ -134,14 +120,11 @@ class HiFiGANGenerator(nn.Layer): ...@@ -134,14 +120,11 @@ class HiFiGANGenerator(nn.Layer):
def forward(self, c): def forward(self, c):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
c : Tensor c (Tensor): Input tensor (B, in_channels, T).
Input tensor (B, in_channels, T). Returns:
Returns Tensor: Output tensor (B, out_channels, T).
----------
Tensor
Output tensor (B, out_channels, T).
""" """
c = self.input_conv(c) c = self.input_conv(c)
for i in range(self.num_upsamples): for i in range(self.num_upsamples):
...@@ -196,14 +179,11 @@ class HiFiGANGenerator(nn.Layer): ...@@ -196,14 +179,11 @@ class HiFiGANGenerator(nn.Layer):
def inference(self, c): def inference(self, c):
"""Perform inference. """Perform inference.
Parameters Args:
---------- c (Tensor): Input tensor (T, in_channels).
c : Tensor
Input tensor (T, in_channels).
normalize_before (bool): Whether to perform normalization. normalize_before (bool): Whether to perform normalization.
Returns Returns:
---------- Tensor:
Tensor
Output tensor (T ** prod(upsample_scales), out_channels). Output tensor (T ** prod(upsample_scales), out_channels).
""" """
c = self.forward(c.transpose([1, 0]).unsqueeze(0)) c = self.forward(c.transpose([1, 0]).unsqueeze(0))
...@@ -229,35 +209,22 @@ class HiFiGANPeriodDiscriminator(nn.Layer): ...@@ -229,35 +209,22 @@ class HiFiGANPeriodDiscriminator(nn.Layer):
use_spectral_norm: bool=False, use_spectral_norm: bool=False,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initialize HiFiGANPeriodDiscriminator module. """Initialize HiFiGANPeriodDiscriminator module.
Parameters
---------- Args:
in_channels : int in_channels (int): Number of input channels.
Number of input channels. out_channels (int): Number of output channels.
out_channels : int period (int): Period.
Number of output channels. kernel_sizes (list): Kernel sizes of initial conv layers and the final conv layer.
period : int channels (int): Number of initial channels.
Period. downsample_scales (list): List of downsampling scales.
kernel_sizes : list max_downsample_channels (int): Number of maximum downsampling channels.
Kernel sizes of initial conv layers and the final conv layer. use_additional_convs (bool): Whether to use additional conv layers in residual blocks.
channels : int bias (bool): Whether to add bias parameter in convolution layers.
Number of initial channels. nonlinear_activation (str): Activation function module name.
downsample_scales : list nonlinear_activation_params (dict): Hyperparameters for activation function.
List of downsampling scales. use_weight_norm (bool): Whether to use weight norm.
max_downsample_channels : int
Number of maximum downsampling channels.
use_additional_convs : bool
Whether to use additional conv layers in residual blocks.
bias : bool
Whether to add bias parameter in convolution layers.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers. If set to true, it will be applied to all of the conv layers.
use_spectral_norm : bool use_spectral_norm (bool): Whether to use spectral norm.
Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers. If set to true, it will be applied to all of the conv layers.
""" """
super().__init__() super().__init__()
...@@ -307,14 +274,11 @@ class HiFiGANPeriodDiscriminator(nn.Layer): ...@@ -307,14 +274,11 @@ class HiFiGANPeriodDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
c : Tensor c (Tensor): Input tensor (B, in_channels, T).
Input tensor (B, in_channels, T). Returns:
Returns list: List of each layer's tensors.
----------
list
List of each layer's tensors.
""" """
# transform 1d to 2d -> (B, C, T/P, P) # transform 1d to 2d -> (B, C, T/P, P)
b, c, t = paddle.shape(x) b, c, t = paddle.shape(x)
...@@ -379,12 +343,10 @@ class HiFiGANMultiPeriodDiscriminator(nn.Layer): ...@@ -379,12 +343,10 @@ class HiFiGANMultiPeriodDiscriminator(nn.Layer):
}, },
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initialize HiFiGANMultiPeriodDiscriminator module. """Initialize HiFiGANMultiPeriodDiscriminator module.
Parameters
---------- Args:
periods : list periods (list): List of periods.
List of periods. discriminator_params (dict): Parameters for hifi-gan period discriminator module.
discriminator_params : dict
Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten. The period parameter will be overwritten.
""" """
super().__init__() super().__init__()
...@@ -399,14 +361,11 @@ class HiFiGANMultiPeriodDiscriminator(nn.Layer): ...@@ -399,14 +361,11 @@ class HiFiGANMultiPeriodDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
x : Tensor x (Tensor): Input noise signal (B, 1, T).
Input noise signal (B, 1, T). Returns:
Returns List: List of list of each discriminator outputs, which consists of each layer output tensors.
----------
List
List of list of each discriminator outputs, which consists of each layer output tensors.
""" """
outs = [] outs = []
for f in self.discriminators: for f in self.discriminators:
...@@ -434,32 +393,21 @@ class HiFiGANScaleDiscriminator(nn.Layer): ...@@ -434,32 +393,21 @@ class HiFiGANScaleDiscriminator(nn.Layer):
use_spectral_norm: bool=False, use_spectral_norm: bool=False,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initilize HiFiGAN scale discriminator module. """Initilize HiFiGAN scale discriminator module.
Parameters
---------- Args:
in_channels : int in_channels (int): Number of input channels.
Number of input channels. out_channels (int): Number of output channels.
out_channels : int kernel_sizes (list): List of four kernel sizes. The first will be used for the first conv layer,
Number of output channels.
kernel_sizes : list
List of four kernel sizes. The first will be used for the first conv layer,
and the second is for downsampling part, and the remaining two are for output layers. and the second is for downsampling part, and the remaining two are for output layers.
channels : int channels (int): Initial number of channels for conv layer.
Initial number of channels for conv layer. max_downsample_channels (int): Maximum number of channels for downsampling layers.
max_downsample_channels : int bias (bool): Whether to add bias parameter in convolution layers.
Maximum number of channels for downsampling layers. downsample_scales (list): List of downsampling scales.
bias : bool nonlinear_activation (str): Activation function module name.
Whether to add bias parameter in convolution layers. nonlinear_activation_params (dict): Hyperparameters for activation function.
downsample_scales : list use_weight_norm (bool): Whether to use weight norm.
List of downsampling scales.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers. If set to true, it will be applied to all of the conv layers.
use_spectral_norm : bool use_spectral_norm (bool): Whether to use spectral norm.
Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers. If set to true, it will be applied to all of the conv layers.
""" """
super().__init__() super().__init__()
...@@ -546,14 +494,11 @@ class HiFiGANScaleDiscriminator(nn.Layer): ...@@ -546,14 +494,11 @@ class HiFiGANScaleDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
x : Tensor x (Tensor): Input noise signal (B, 1, T).
Input noise signal (B, 1, T). Returns:
Returns List: List of output tensors of each layer.
----------
List
List of output tensors of each layer.
""" """
outs = [] outs = []
for f in self.layers: for f in self.layers:
...@@ -613,20 +558,14 @@ class HiFiGANMultiScaleDiscriminator(nn.Layer): ...@@ -613,20 +558,14 @@ class HiFiGANMultiScaleDiscriminator(nn.Layer):
follow_official_norm: bool=False, follow_official_norm: bool=False,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initilize HiFiGAN multi-scale discriminator module. """Initilize HiFiGAN multi-scale discriminator module.
Parameters
---------- Args:
scales : int scales (int): Number of multi-scales.
Number of multi-scales. downsample_pooling (str): Pooling module name for downsampling of the inputs.
downsample_pooling : str downsample_pooling_params (dict): Parameters for the above pooling module.
Pooling module name for downsampling of the inputs. discriminator_params (dict): Parameters for hifi-gan scale discriminator module.
downsample_pooling_params : dict follow_official_norm (bool): Whether to follow the norm setting of the official
Parameters for the above pooling module. implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm.
discriminator_params : dict
Parameters for hifi-gan scale discriminator module.
follow_official_norm : bool
Whether to follow the norm setting of the official
implementaion. The first discriminator uses spectral norm and the other
discriminators use weight norm.
""" """
super().__init__() super().__init__()
...@@ -651,14 +590,11 @@ class HiFiGANMultiScaleDiscriminator(nn.Layer): ...@@ -651,14 +590,11 @@ class HiFiGANMultiScaleDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
x : Tensor x (Tensor): Input noise signal (B, 1, T).
Input noise signal (B, 1, T). Returns:
Returns List: List of list of each discriminator outputs, which consists of each layer output tensors.
----------
List
List of list of each discriminator outputs, which consists of each layer output tensors.
""" """
outs = [] outs = []
for f in self.discriminators: for f in self.discriminators:
...@@ -715,23 +651,16 @@ class HiFiGANMultiScaleMultiPeriodDiscriminator(nn.Layer): ...@@ -715,23 +651,16 @@ class HiFiGANMultiScaleMultiPeriodDiscriminator(nn.Layer):
}, },
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initilize HiFiGAN multi-scale + multi-period discriminator module. """Initilize HiFiGAN multi-scale + multi-period discriminator module.
Parameters
---------- Args:
scales : int scales (int): Number of multi-scales.
Number of multi-scales. scale_downsample_pooling (str): Pooling module name for downsampling of the inputs.
scale_downsample_pooling : str scale_downsample_pooling_params (dict): Parameters for the above pooling module.
Pooling module name for downsampling of the inputs. scale_discriminator_params (dict): Parameters for hifi-gan scale discriminator module.
scale_downsample_pooling_params : dict follow_official_norm (bool): Whether to follow the norm setting of the official implementaion.
Parameters for the above pooling module. The first discriminator uses spectral norm and the other discriminators use weight norm.
scale_discriminator_params : dict periods (list): List of periods.
Parameters for hifi-gan scale discriminator module. period_discriminator_params (dict): Parameters for hifi-gan period discriminator module.
follow_official_norm : bool): Whether to follow the norm setting of the official
implementaion. The first discriminator uses spectral norm and the other
discriminators use weight norm.
periods : list
List of periods.
period_discriminator_params : dict
Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten. The period parameter will be overwritten.
""" """
super().__init__() super().__init__()
...@@ -751,12 +680,10 @@ class HiFiGANMultiScaleMultiPeriodDiscriminator(nn.Layer): ...@@ -751,12 +680,10 @@ class HiFiGANMultiScaleMultiPeriodDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
x : Tensor x (Tensor): Input noise signal (B, 1, T).
Input noise signal (B, 1, T). Returns:
Returns
----------
List: List:
List of list of each discriminator outputs, List of list of each discriminator outputs,
which consists of each layer output tensors. which consists of each layer output tensors.
......
...@@ -51,41 +51,26 @@ class MelGANGenerator(nn.Layer): ...@@ -51,41 +51,26 @@ class MelGANGenerator(nn.Layer):
use_causal_conv: bool=False, use_causal_conv: bool=False,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initialize MelGANGenerator module. """Initialize MelGANGenerator module.
Parameters
---------- Args:
in_channels : int in_channels (int): Number of input channels.
Number of input channels. out_channels (int): Number of output channels,
out_channels : int
Number of output channels,
the number of sub-band is out_channels in multi-band melgan. the number of sub-band is out_channels in multi-band melgan.
kernel_size : int kernel_size (int): Kernel size of initial and final conv layer.
Kernel size of initial and final conv layer. channels (int): Initial number of channels for conv layer.
channels : int bias (bool): Whether to add bias parameter in convolution layers.
Initial number of channels for conv layer. upsample_scales (List[int]): List of upsampling scales.
bias : bool stack_kernel_size (int): Kernel size of dilated conv layers in residual stack.
Whether to add bias parameter in convolution layers. stacks (int): Number of stacks in a single residual stack.
upsample_scales : List[int] nonlinear_activation (Optional[str], optional): Non linear activation in upsample network, by default None
List of upsampling scales. nonlinear_activation_params (Dict[str, Any], optional): Parameters passed to the linear activation in the upsample network,
stack_kernel_size : int
Kernel size of dilated conv layers in residual stack.
stacks : int
Number of stacks in a single residual stack.
nonlinear_activation : Optional[str], optional
Non linear activation in upsample network, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to the linear activation in the upsample network,
by default {} by default {}
pad : str pad (str): Padding function module name before dilated convolution layer.
Padding function module name before dilated convolution layer. pad_params (dict): Hyperparameters for padding function.
pad_params : dict use_final_nonlinear_activation (nn.Layer): Activation function for the final layer.
Hyperparameters for padding function. use_weight_norm (bool): Whether to use weight norm.
use_final_nonlinear_activation : nn.Layer
Activation function for the final layer.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers. If set to true, it will be applied to all of the conv layers.
use_causal_conv : bool use_causal_conv (bool): Whether to use causal convolution.
Whether to use causal convolution.
""" """
super().__init__() super().__init__()
...@@ -207,14 +192,11 @@ class MelGANGenerator(nn.Layer): ...@@ -207,14 +192,11 @@ class MelGANGenerator(nn.Layer):
def forward(self, c): def forward(self, c):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
c : Tensor c (Tensor): Input tensor (B, in_channels, T).
Input tensor (B, in_channels, T). Returns:
Returns Tensor: Output tensor (B, out_channels, T ** prod(upsample_scales)).
----------
Tensor
Output tensor (B, out_channels, T ** prod(upsample_scales)).
""" """
out = self.melgan(c) out = self.melgan(c)
return out return out
...@@ -260,14 +242,11 @@ class MelGANGenerator(nn.Layer): ...@@ -260,14 +242,11 @@ class MelGANGenerator(nn.Layer):
def inference(self, c): def inference(self, c):
"""Perform inference. """Perform inference.
Parameters
---------- Args:
c : Union[Tensor, ndarray] c (Union[Tensor, ndarray]): Input tensor (T, in_channels).
Input tensor (T, in_channels). Returns:
Returns Tensor: Output tensor (out_channels*T ** prod(upsample_scales), 1).
----------
Tensor
Output tensor (out_channels*T ** prod(upsample_scales), 1).
""" """
# pseudo batch # pseudo batch
c = c.transpose([1, 0]).unsqueeze(0) c = c.transpose([1, 0]).unsqueeze(0)
...@@ -298,33 +277,22 @@ class MelGANDiscriminator(nn.Layer): ...@@ -298,33 +277,22 @@ class MelGANDiscriminator(nn.Layer):
pad_params: Dict[str, Any]={"mode": "reflect"}, pad_params: Dict[str, Any]={"mode": "reflect"},
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initilize MelGAN discriminator module. """Initilize MelGAN discriminator module.
Parameters
---------- Args:
in_channels : int in_channels (int): Number of input channels.
Number of input channels. out_channels (int): Number of output channels.
out_channels : int kernel_sizes (List[int]): List of two kernel sizes. The prod will be used for the first conv layer,
Number of output channels.
kernel_sizes : List[int]
List of two kernel sizes. The prod will be used for the first conv layer,
and the first and the second kernel sizes will be used for the last two layers. and the first and the second kernel sizes will be used for the last two layers.
For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15, For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15,
the last two layers' kernel size will be 5 and 3, respectively. the last two layers' kernel size will be 5 and 3, respectively.
channels : int channels (int): Initial number of channels for conv layer.
Initial number of channels for conv layer. max_downsample_channels (int): Maximum number of channels for downsampling layers.
max_downsample_channels : int bias (bool): Whether to add bias parameter in convolution layers.
Maximum number of channels for downsampling layers. downsample_scales (List[int]): List of downsampling scales.
bias : bool nonlinear_activation (str): Activation function module name.
Whether to add bias parameter in convolution layers. nonlinear_activation_params (dict): Hyperparameters for activation function.
downsample_scales : List[int] pad (str): Padding function module name before dilated convolution layer.
List of downsampling scales. pad_params (dict): Hyperparameters for padding function.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
pad : str
Padding function module name before dilated convolution layer.
pad_params : dict
Hyperparameters for padding function.
""" """
super().__init__() super().__init__()
...@@ -395,14 +363,10 @@ class MelGANDiscriminator(nn.Layer): ...@@ -395,14 +363,10 @@ class MelGANDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters Args:
---------- x (Tensor): Input noise signal (B, 1, T).
x : Tensor Returns:
Input noise signal (B, 1, T). List: List of output tensors of each layer (for feat_match_loss).
Returns
----------
List
List of output tensors of each layer (for feat_match_loss).
""" """
outs = [] outs = []
for f in self.layers: for f in self.layers:
...@@ -440,39 +404,24 @@ class MelGANMultiScaleDiscriminator(nn.Layer): ...@@ -440,39 +404,24 @@ class MelGANMultiScaleDiscriminator(nn.Layer):
use_weight_norm: bool=True, use_weight_norm: bool=True,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initilize MelGAN multi-scale discriminator module. """Initilize MelGAN multi-scale discriminator module.
Parameters
---------- Args:
in_channels : int in_channels (int): Number of input channels.
Number of input channels. out_channels (int): Number of output channels.
out_channels : int scales (int): Number of multi-scales.
Number of output channels. downsample_pooling (str): Pooling module name for downsampling of the inputs.
scales : int downsample_pooling_params (dict): Parameters for the above pooling module.
Number of multi-scales. kernel_sizes (List[int]): List of two kernel sizes. The sum will be used for the first conv layer,
downsample_pooling : str
Pooling module name for downsampling of the inputs.
downsample_pooling_params : dict
Parameters for the above pooling module.
kernel_sizes : List[int]
List of two kernel sizes. The sum will be used for the first conv layer,
and the first and the second kernel sizes will be used for the last two layers. and the first and the second kernel sizes will be used for the last two layers.
channels : int channels (int): Initial number of channels for conv layer.
Initial number of channels for conv layer. max_downsample_channels (int): Maximum number of channels for downsampling layers.
max_downsample_channels : int bias (bool): Whether to add bias parameter in convolution layers.
Maximum number of channels for downsampling layers. downsample_scales (List[int]): List of downsampling scales.
bias : bool nonlinear_activation (str): Activation function module name.
Whether to add bias parameter in convolution layers. nonlinear_activation_params (dict): Hyperparameters for activation function.
downsample_scales : List[int] pad (str): Padding function module name before dilated convolution layer.
List of downsampling scales. pad_params (dict): Hyperparameters for padding function.
nonlinear_activation : str use_causal_conv (bool): Whether to use causal convolution.
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
pad : str
Padding function module name before dilated convolution layer.
pad_params : dict
Hyperparameters for padding function.
use_causal_conv : bool
Whether to use causal convolution.
""" """
super().__init__() super().__init__()
...@@ -514,14 +463,10 @@ class MelGANMultiScaleDiscriminator(nn.Layer): ...@@ -514,14 +463,10 @@ class MelGANMultiScaleDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters Args:
---------- x (Tensor): Input noise signal (B, 1, T).
x : Tensor Returns:
Input noise signal (B, 1, T). List: List of list of each discriminator outputs, which consists of each layer output tensors.
Returns
----------
List
List of list of each discriminator outputs, which consists of each layer output tensors.
""" """
outs = [] outs = []
for f in self.discriminators: for f in self.discriminators:
......
...@@ -52,36 +52,22 @@ class StyleMelGANGenerator(nn.Layer): ...@@ -52,36 +52,22 @@ class StyleMelGANGenerator(nn.Layer):
use_weight_norm: bool=True, use_weight_norm: bool=True,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initilize Style MelGAN generator. """Initilize Style MelGAN generator.
Parameters
---------- Args:
in_channels : int in_channels (int): Number of input noise channels.
Number of input noise channels. aux_channels (int): Number of auxiliary input channels.
aux_channels : int channels (int): Number of channels for conv layer.
Number of auxiliary input channels. out_channels (int): Number of output channels.
channels : int kernel_size (int): Kernel size of conv layers.
Number of channels for conv layer. dilation (int): Dilation factor for conv layers.
out_channels : int bias (bool): Whether to add bias parameter in convolution layers.
Number of output channels. noise_upsample_scales (list): List of noise upsampling scales.
kernel_size : int noise_upsample_activation (str): Activation function module name for noise upsampling.
Kernel size of conv layers. noise_upsample_activation_params (dict): Hyperparameters for the above activation function.
dilation : int upsample_scales (list): List of upsampling scales.
Dilation factor for conv layers. upsample_mode (str): Upsampling mode in TADE layer.
bias : bool gated_function (str): Gated function in TADEResBlock ("softmax" or "sigmoid").
Whether to add bias parameter in convolution layers. use_weight_norm (bool): Whether to use weight norm.
noise_upsample_scales : list
List of noise upsampling scales.
noise_upsample_activation : str
Activation function module name for noise upsampling.
noise_upsample_activation_params : dict
Hyperparameters for the above activation function.
upsample_scales : list
List of upsampling scales.
upsample_mode : str
Upsampling mode in TADE layer.
gated_function : str
Gated function in TADEResBlock ("softmax" or "sigmoid").
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers. If set to true, it will be applied to all of the conv layers.
""" """
super().__init__() super().__init__()
...@@ -147,16 +133,12 @@ class StyleMelGANGenerator(nn.Layer): ...@@ -147,16 +133,12 @@ class StyleMelGANGenerator(nn.Layer):
def forward(self, c, z=None): def forward(self, c, z=None):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters
---------- Args:
c : Tensor c (Tensor): Auxiliary input tensor (B, channels, T).
Auxiliary input tensor (B, channels, T). z (Tensor): Input noise tensor (B, in_channels, 1).
z : Tensor Returns:
Input noise tensor (B, in_channels, 1). Tensor: Output tensor (B, out_channels, T ** prod(upsample_scales)).
Returns
----------
Tensor
Output tensor (B, out_channels, T ** prod(upsample_scales)).
""" """
# batch_max_steps(24000) == noise_upsample_factor(80) * upsample_factor(300) # batch_max_steps(24000) == noise_upsample_factor(80) * upsample_factor(300)
if z is None: if z is None:
...@@ -211,14 +193,10 @@ class StyleMelGANGenerator(nn.Layer): ...@@ -211,14 +193,10 @@ class StyleMelGANGenerator(nn.Layer):
def inference(self, c): def inference(self, c):
"""Perform inference. """Perform inference.
Parameters Args:
---------- c (Tensor): Input tensor (T, in_channels).
c : Tensor Returns:
Input tensor (T, in_channels). Tensor: Output tensor (T ** prod(upsample_scales), out_channels).
Returns
----------
Tensor
Output tensor (T ** prod(upsample_scales), out_channels).
""" """
# (1, in_channels, T) # (1, in_channels, T)
c = c.transpose([1, 0]).unsqueeze(0) c = c.transpose([1, 0]).unsqueeze(0)
...@@ -278,18 +256,13 @@ class StyleMelGANDiscriminator(nn.Layer): ...@@ -278,18 +256,13 @@ class StyleMelGANDiscriminator(nn.Layer):
use_weight_norm: bool=True, use_weight_norm: bool=True,
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initilize Style MelGAN discriminator. """Initilize Style MelGAN discriminator.
Parameters
---------- Args:
repeats : int repeats (int): Number of repititons to apply RWD.
Number of repititons to apply RWD. window_sizes (list): List of random window sizes.
window_sizes : list pqmf_params (list): List of list of Parameters for PQMF modules
List of random window sizes. discriminator_params (dict): Parameters for base discriminator module.
pqmf_params : list use_weight_nom (bool): Whether to apply weight normalization.
List of list of Parameters for PQMF modules
discriminator_params : dict
Parameters for base discriminator module.
use_weight_nom : bool
Whether to apply weight normalization.
""" """
super().__init__() super().__init__()
...@@ -325,14 +298,10 @@ class StyleMelGANDiscriminator(nn.Layer): ...@@ -325,14 +298,10 @@ class StyleMelGANDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters Args:
---------- x (Tensor): Input tensor (B, 1, T).
x : Tensor Returns:
Input tensor (B, 1, T). List: List of discriminator outputs, #items in the list will be
Returns
----------
List
List of discriminator outputs, #items in the list will be
equal to repeats * #discriminators. equal to repeats * #discriminators.
""" """
outs = [] outs = []
......
...@@ -31,51 +31,30 @@ from paddlespeech.t2s.modules.upsample import ConvInUpsampleNet ...@@ -31,51 +31,30 @@ from paddlespeech.t2s.modules.upsample import ConvInUpsampleNet
class PWGGenerator(nn.Layer): class PWGGenerator(nn.Layer):
"""Wave Generator for Parallel WaveGAN """Wave Generator for Parallel WaveGAN
Parameters Args:
---------- in_channels (int, optional): Number of channels of the input waveform, by default 1
in_channels : int, optional out_channels (int, optional): Number of channels of the output waveform, by default 1
Number of channels of the input waveform, by default 1 kernel_size (int, optional): Kernel size of the residual blocks inside, by default 3
out_channels : int, optional layers (int, optional): Number of residual blocks inside, by default 30
Number of channels of the output waveform, by default 1 stacks (int, optional): The number of groups to split the residual blocks into, by default 3
kernel_size : int, optional Within each group, the dilation of the residual block grows exponentially.
Kernel size of the residual blocks inside, by default 3 residual_channels (int, optional): Residual channel of the residual blocks, by default 64
layers : int, optional gate_channels (int, optional): Gate channel of the residual blocks, by default 128
Number of residual blocks inside, by default 30 skip_channels (int, optional): Skip channel of the residual blocks, by default 64
stacks : int, optional aux_channels (int, optional): Auxiliary channel of the residual blocks, by default 80
The number of groups to split the residual blocks into, by default 3 aux_context_window (int, optional): The context window size of the first convolution applied to the
Within each group, the dilation of the residual block grows
exponentially.
residual_channels : int, optional
Residual channel of the residual blocks, by default 64
gate_channels : int, optional
Gate channel of the residual blocks, by default 128
skip_channels : int, optional
Skip channel of the residual blocks, by default 64
aux_channels : int, optional
Auxiliary channel of the residual blocks, by default 80
aux_context_window : int, optional
The context window size of the first convolution applied to the
auxiliary input, by default 2 auxiliary input, by default 2
dropout : float, optional dropout (float, optional): Dropout of the residual blocks, by default 0.
Dropout of the residual blocks, by default 0. bias (bool, optional): Whether to use bias in residual blocks, by default True
bias : bool, optional use_weight_norm (bool, optional): Whether to use weight norm in all convolutions, by default True
Whether to use bias in residual blocks, by default True use_causal_conv (bool, optional): Whether to use causal padding in the upsample network and residual
use_weight_norm : bool, optional
Whether to use weight norm in all convolutions, by default True
use_causal_conv : bool, optional
Whether to use causal padding in the upsample network and residual
blocks, by default False blocks, by default False
upsample_scales : List[int], optional upsample_scales (List[int], optional): Upsample scales of the upsample network, by default [4, 4, 4, 4]
Upsample scales of the upsample network, by default [4, 4, 4, 4] nonlinear_activation (Optional[str], optional): Non linear activation in upsample network, by default None
nonlinear_activation : Optional[str], optional nonlinear_activation_params (Dict[str, Any], optional): Parameters passed to the linear activation in the upsample network,
Non linear activation in upsample network, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to the linear activation in the upsample network,
by default {} by default {}
interpolate_mode : str, optional interpolate_mode (str, optional): Interpolation mode of the upsample network, by default "nearest"
Interpolation mode of the upsample network, by default "nearest" freq_axis_kernel_size (int, optional): Kernel size along the frequency axis of the upsample network, by default 1
freq_axis_kernel_size : int, optional
Kernel size along the frequency axis of the upsample network, by default 1
""" """
def __init__( def __init__(
...@@ -167,18 +146,13 @@ class PWGGenerator(nn.Layer): ...@@ -167,18 +146,13 @@ class PWGGenerator(nn.Layer):
def forward(self, x, c): def forward(self, x, c):
"""Generate waveform. """Generate waveform.
Parameters Args:
---------- x(Tensor): Shape (N, C_in, T), The input waveform.
x : Tensor c(Tensor): Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram). It
Shape (N, C_in, T), The input waveform.
c : Tensor
Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram). It
is upsampled to match the time resolution of the input. is upsampled to match the time resolution of the input.
Returns Returns:
------- Tensor: Shape (N, C_out, T), the generated waveform.
Tensor
Shape (N, C_out, T), the generated waveform.
""" """
c = self.upsample_net(c) c = self.upsample_net(c)
assert c.shape[-1] == x.shape[-1] assert c.shape[-1] == x.shape[-1]
...@@ -218,19 +192,14 @@ class PWGGenerator(nn.Layer): ...@@ -218,19 +192,14 @@ class PWGGenerator(nn.Layer):
self.apply(_remove_weight_norm) self.apply(_remove_weight_norm)
def inference(self, c=None): def inference(self, c=None):
"""Waveform generation. This function is used for single instance """Waveform generation. This function is used for single instance inference.
inference.
Parameters Args:
---------- c(Tensor, optional, optional): Shape (T', C_aux), the auxiliary input, by default None
c : Tensor, optional x(Tensor, optional): Shape (T, C_in), the noise waveform, by default None
Shape (T', C_aux), the auxiliary input, by default None
x : Tensor, optional Returns:
Shape (T, C_in), the noise waveform, by default None Tensor: Shape (T, C_out), the generated waveform
If not provided, a sample is drawn from a gaussian distribution.
Returns
-------
Tensor
Shape (T, C_out), the generated waveform
""" """
# when to static, can not input x, see https://github.com/PaddlePaddle/Parakeet/pull/132/files # when to static, can not input x, see https://github.com/PaddlePaddle/Parakeet/pull/132/files
x = paddle.randn( x = paddle.randn(
...@@ -244,31 +213,20 @@ class PWGGenerator(nn.Layer): ...@@ -244,31 +213,20 @@ class PWGGenerator(nn.Layer):
class PWGDiscriminator(nn.Layer): class PWGDiscriminator(nn.Layer):
"""A convolutional discriminator for audio. """A convolutional discriminator for audio.
Parameters Args:
---------- in_channels (int, optional): Number of channels of the input audio, by default 1
in_channels : int, optional out_channels (int, optional): Output feature size, by default 1
Number of channels of the input audio, by default 1 kernel_size (int, optional): Kernel size of convolutional sublayers, by default 3
out_channels : int, optional layers (int, optional): Number of layers, by default 10
Output feature size, by default 1 conv_channels (int, optional): Feature size of the convolutional sublayers, by default 64
kernel_size : int, optional dilation_factor (int, optional): The factor with which dilation of each convolutional sublayers grows
Kernel size of convolutional sublayers, by default 3 exponentially if it is greater than 1, else the dilation of each convolutional sublayers grows linearly,
layers : int, optional by default 1
Number of layers, by default 10 nonlinear_activation (str, optional): The activation after each convolutional sublayer, by default "leakyrelu"
conv_channels : int, optional nonlinear_activation_params (Dict[str, Any], optional): The parameters passed to the activation's initializer, by default
Feature size of the convolutional sublayers, by default 64
dilation_factor : int, optional
The factor with which dilation of each convolutional sublayers grows
exponentially if it is greater than 1, else the dilation of each
convolutional sublayers grows linearly, by default 1
nonlinear_activation : str, optional
The activation after each convolutional sublayer, by default "leakyrelu"
nonlinear_activation_params : Dict[str, Any], optional
The parameters passed to the activation's initializer, by default
{"negative_slope": 0.2} {"negative_slope": 0.2}
bias : bool, optional bias (bool, optional): Whether to use bias in convolutional sublayers, by default True
Whether to use bias in convolutional sublayers, by default True use_weight_norm (bool, optional): Whether to use weight normalization at all convolutional sublayers,
use_weight_norm : bool, optional
Whether to use weight normalization at all convolutional sublayers,
by default True by default True
""" """
...@@ -330,15 +288,12 @@ class PWGDiscriminator(nn.Layer): ...@@ -330,15 +288,12 @@ class PWGDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
""" """
Parameters
---------- Args:
x : Tensor x (Tensor): Shape (N, in_channels, num_samples), the input audio.
Shape (N, in_channels, num_samples), the input audio.
Returns:
Returns Tensor: Shape (N, out_channels, num_samples), the predicted logits.
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
""" """
return self.conv_layers(x) return self.conv_layers(x)
...@@ -362,39 +317,25 @@ class PWGDiscriminator(nn.Layer): ...@@ -362,39 +317,25 @@ class PWGDiscriminator(nn.Layer):
class ResidualPWGDiscriminator(nn.Layer): class ResidualPWGDiscriminator(nn.Layer):
"""A wavenet-style discriminator for audio. """A wavenet-style discriminator for audio.
Parameters Args:
---------- in_channels (int, optional): Number of channels of the input audio, by default 1
in_channels : int, optional out_channels (int, optional): Output feature size, by default 1
Number of channels of the input audio, by default 1 kernel_size (int, optional): Kernel size of residual blocks, by default 3
out_channels : int, optional layers (int, optional): Number of residual blocks, by default 30
Output feature size, by default 1 stacks (int, optional): Number of groups of residual blocks, within which the dilation
kernel_size : int, optional
Kernel size of residual blocks, by default 3
layers : int, optional
Number of residual blocks, by default 30
stacks : int, optional
Number of groups of residual blocks, within which the dilation
of each residual blocks grows exponentially, by default 3 of each residual blocks grows exponentially, by default 3
residual_channels : int, optional residual_channels (int, optional): Residual channels of residual blocks, by default 64
Residual channels of residual blocks, by default 64 gate_channels (int, optional): Gate channels of residual blocks, by default 128
gate_channels : int, optional skip_channels (int, optional): Skip channels of residual blocks, by default 64
Gate channels of residual blocks, by default 128 dropout (float, optional): Dropout probability of residual blocks, by default 0.
skip_channels : int, optional bias (bool, optional): Whether to use bias in residual blocks, by default True
Skip channels of residual blocks, by default 64 use_weight_norm (bool, optional): Whether to use weight normalization in all convolutional layers,
dropout : float, optional
Dropout probability of residual blocks, by default 0.
bias : bool, optional
Whether to use bias in residual blocks, by default True
use_weight_norm : bool, optional
Whether to use weight normalization in all convolutional layers,
by default True by default True
use_causal_conv : bool, optional use_causal_conv (bool, optional): Whether to use causal convolution in residual blocks, by default False
Whether to use causal convolution in residual blocks, by default False nonlinear_activation (str, optional): Activation after convolutions other than those in residual blocks,
nonlinear_activation : str, optional
Activation after convolutions other than those in residual blocks,
by default "leakyrelu" by default "leakyrelu"
nonlinear_activation_params : Dict[str, Any], optional nonlinear_activation_params (Dict[str, Any], optional): Parameters to pass to the activation,
Parameters to pass to the activation, by default {"negative_slope": 0.2} by default {"negative_slope": 0.2}
""" """
def __init__( def __init__(
...@@ -463,15 +404,11 @@ class ResidualPWGDiscriminator(nn.Layer): ...@@ -463,15 +404,11 @@ class ResidualPWGDiscriminator(nn.Layer):
def forward(self, x): def forward(self, x):
""" """
Parameters Args:
---------- x(Tensor): Shape (N, in_channels, num_samples), the input audio.↩
x : Tensor
Shape (N, in_channels, num_samples), the input audio. Returns:
Tensor: Shape (N, out_channels, num_samples), the predicted logits.
Returns
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
""" """
x = self.first_conv(x) x = self.first_conv(x)
skip = 0 skip = 0
......
...@@ -81,69 +81,39 @@ class Tacotron2(nn.Layer): ...@@ -81,69 +81,39 @@ class Tacotron2(nn.Layer):
# training related # training related
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
"""Initialize Tacotron2 module. """Initialize Tacotron2 module.
Parameters Args:
---------- idim (int): Dimension of the inputs.
idim : int odim (int): Dimension of the outputs.
Dimension of the inputs. embed_dim (int): Dimension of the token embedding.
odim : int elayers (int): Number of encoder blstm layers.
Dimension of the outputs. eunits (int): Number of encoder blstm units.
embed_dim : int econv_layers (int): Number of encoder conv layers.
Dimension of the token embedding. econv_filts (int): Number of encoder conv filter size.
elayers : int econv_chans (int): Number of encoder conv filter channels.
Number of encoder blstm layers. dlayers (int): Number of decoder lstm layers.
eunits : int dunits (int): Number of decoder lstm units.
Number of encoder blstm units. prenet_layers (int): Number of prenet layers.
econv_layers : int prenet_units (int): Number of prenet units.
Number of encoder conv layers. postnet_layers (int): Number of postnet layers.
econv_filts : int postnet_filts (int): Number of postnet filter size.
Number of encoder conv filter size. postnet_chans (int): Number of postnet filter channels.
econv_chans : int output_activation (str): Name of activation function for outputs.
Number of encoder conv filter channels. adim (int): Number of dimension of mlp in attention.
dlayers : int aconv_chans (int): Number of attention conv filter channels.
Number of decoder lstm layers. aconv_filts (int): Number of attention conv filter size.
dunits : int cumulate_att_w (bool): Whether to cumulate previous attention weight.
Number of decoder lstm units. use_batch_norm (bool): Whether to use batch normalization.
prenet_layers : int use_concate (bool): Whether to concat enc outputs w/ dec lstm outputs.
Number of prenet layers. reduction_factor (int): Reduction factor.
prenet_units : int spk_num (Optional[int]): Number of speakers. If set to > 1, assume that the
Number of prenet units.
postnet_layers : int
Number of postnet layers.
postnet_filts : int
Number of postnet filter size.
postnet_chans : int
Number of postnet filter channels.
output_activation : str
Name of activation function for outputs.
adim : int
Number of dimension of mlp in attention.
aconv_chans : int
Number of attention conv filter channels.
aconv_filts : int
Number of attention conv filter size.
cumulate_att_w : bool
Whether to cumulate previous attention weight.
use_batch_norm : bool
Whether to use batch normalization.
use_concate : bool
Whether to concat enc outputs w/ dec lstm outputs.
reduction_factor : int
Reduction factor.
spk_num : Optional[int]
Number of speakers. If set to > 1, assume that the
sids will be provided as the input and use sid embedding layer. sids will be provided as the input and use sid embedding layer.
lang_num : Optional[int] lang_num (Optional[int]): Number of languages. If set to > 1, assume that the
Number of languages. If set to > 1, assume that the
lids will be provided as the input and use sid embedding layer. lids will be provided as the input and use sid embedding layer.
spk_embed_dim : Optional[int] spk_embed_dim (Optional[int]): Speaker embedding dimension. If set to > 0,
Speaker embedding dimension. If set to > 0,
assume that spk_emb will be provided as the input. assume that spk_emb will be provided as the input.
spk_embed_integration_type : str spk_embed_integration_type (str): How to integrate speaker embedding.
How to integrate speaker embedding. dropout_rate (float): Dropout rate.
dropout_rate : float zoneout_rate (float): Zoneout rate.
Dropout rate.
zoneout_rate : float
Zoneout rate.
""" """
assert check_argument_types() assert check_argument_types()
super().__init__() super().__init__()
...@@ -258,31 +228,19 @@ class Tacotron2(nn.Layer): ...@@ -258,31 +228,19 @@ class Tacotron2(nn.Layer):
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]: ) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
"""Calculate forward propagation. """Calculate forward propagation.
Parameters Args:
---------- text (Tensor(int64)): Batch of padded character ids (B, T_text).
text : Tensor(int64) text_lengths (Tensor(int64)): Batch of lengths of each input batch (B,).
Batch of padded character ids (B, T_text). speech (Tensor): Batch of padded target features (B, T_feats, odim).
text_lengths : Tensor(int64) speech_lengths (Tensor(int64)): Batch of the lengths of each target (B,).
Batch of lengths of each input batch (B,). spk_emb (Optional[Tensor]): Batch of speaker embeddings (B, spk_embed_dim).
speech : Tensor spk_id (Optional[Tensor]): Batch of speaker IDs (B, 1).
Batch of padded target features (B, T_feats, odim). lang_id (Optional[Tensor]): Batch of language IDs (B, 1).
speech_lengths : Tensor(int64)
Batch of the lengths of each target (B,). Returns:
spk_emb : Optional[Tensor] Tensor: Loss scalar value.
Batch of speaker embeddings (B, spk_embed_dim). Dict: Statistics to be monitored.
spk_id : Optional[Tensor] Tensor: Weight value if not joint training else model outputs.
Batch of speaker IDs (B, 1).
lang_id : Optional[Tensor]
Batch of language IDs (B, 1).
Returns
----------
Tensor
Loss scalar value.
Dict
Statistics to be monitored.
Tensor
Weight value if not joint training else model outputs.
""" """
text = text[:, :text_lengths.max()] text = text[:, :text_lengths.max()]
...@@ -369,35 +327,21 @@ class Tacotron2(nn.Layer): ...@@ -369,35 +327,21 @@ class Tacotron2(nn.Layer):
use_teacher_forcing: bool=False, ) -> Dict[str, paddle.Tensor]: use_teacher_forcing: bool=False, ) -> Dict[str, paddle.Tensor]:
"""Generate the sequence of features given the sequences of characters. """Generate the sequence of features given the sequences of characters.
Parameters Args:
---------- text (Tensor(int64)): Input sequence of characters (T_text,).
text Tensor(int64) speech (Optional[Tensor]): Feature sequence to extract style (N, idim).
Input sequence of characters (T_text,). spk_emb (ptional[Tensor]): Speaker embedding (spk_embed_dim,).
speech : Optional[Tensor] spk_id (Optional[Tensor]): Speaker ID (1,).
Feature sequence to extract style (N, idim). lang_id (Optional[Tensor]): Language ID (1,).
spk_emb : ptional[Tensor] threshold (float): Threshold in inference.
Speaker embedding (spk_embed_dim,). minlenratio (float): Minimum length ratio in inference.
spk_id : Optional[Tensor] maxlenratio (float): Maximum length ratio in inference.
Speaker ID (1,). use_att_constraint (bool): Whether to apply attention constraint.
lang_id : Optional[Tensor] backward_window (int): Backward window in attention constraint.
Language ID (1,). forward_window (int): Forward window in attention constraint.
threshold : float use_teacher_forcing (bool): Whether to use teacher forcing.
Threshold in inference.
minlenratio : float Returns:
Minimum length ratio in inference.
maxlenratio : float
Maximum length ratio in inference.
use_att_constraint : bool
Whether to apply attention constraint.
backward_window : int
Backward window in attention constraint.
forward_window : int
Forward window in attention constraint.
use_teacher_forcing : bool
Whether to use teacher forcing.
Return
----------
Dict[str, Tensor] Dict[str, Tensor]
Output dict including the following items: Output dict including the following items:
* feat_gen (Tensor): Output sequence of features (T_feats, odim). * feat_gen (Tensor): Output sequence of features (T_feats, odim).
...@@ -458,17 +402,12 @@ class Tacotron2(nn.Layer): ...@@ -458,17 +402,12 @@ class Tacotron2(nn.Layer):
spk_emb: paddle.Tensor) -> paddle.Tensor: spk_emb: paddle.Tensor) -> paddle.Tensor:
"""Integrate speaker embedding with hidden states. """Integrate speaker embedding with hidden states.
Parameters Args:
---------- hs (Tensor): Batch of hidden state sequences (B, Tmax, eunits).
hs : Tensor spk_emb (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Batch of hidden state sequences (B, Tmax, eunits).
spk_emb : Tensor Returns:
Batch of speaker embeddings (B, spk_embed_dim). Tensor: Batch of integrated hidden state sequences (B, Tmax, eunits) if
Returns
----------
Tensor
Batch of integrated hidden state sequences (B, Tmax, eunits) if
integration_type is "add" else (B, Tmax, eunits + spk_embed_dim). integration_type is "add" else (B, Tmax, eunits + spk_embed_dim).
""" """
......
...@@ -48,126 +48,66 @@ class TransformerTTS(nn.Layer): ...@@ -48,126 +48,66 @@ class TransformerTTS(nn.Layer):
.. _`Neural Speech Synthesis with Transformer Network`: .. _`Neural Speech Synthesis with Transformer Network`:
https://arxiv.org/pdf/1809.08895.pdf https://arxiv.org/pdf/1809.08895.pdf
Parameters Args:
---------- idim (int): Dimension of the inputs.
idim : int odim (int): Dimension of the outputs.
Dimension of the inputs. embed_dim (int, optional): Dimension of character embedding.
odim : int eprenet_conv_layers (int, optional): Number of encoder prenet convolution layers.
Dimension of the outputs. eprenet_conv_chans (int, optional): Number of encoder prenet convolution channels.
embed_dim : int, optional eprenet_conv_filts (int, optional): Filter size of encoder prenet convolution.
Dimension of character embedding. dprenet_layers (int, optional): Number of decoder prenet layers.
eprenet_conv_layers : int, optional dprenet_units (int, optional): Number of decoder prenet hidden units.
Number of encoder prenet convolution layers. elayers (int, optional): Number of encoder layers.
eprenet_conv_chans : int, optional eunits (int, optional): Number of encoder hidden units.
Number of encoder prenet convolution channels. adim (int, optional): Number of attention transformation dimensions.
eprenet_conv_filts : int, optional aheads (int, optional): Number of heads for multi head attention.
Filter size of encoder prenet convolution. dlayers (int, optional): Number of decoder layers.
dprenet_layers : int, optional dunits (int, optional): Number of decoder hidden units.
Number of decoder prenet layers. postnet_layers (int, optional): Number of postnet layers.
dprenet_units : int, optional postnet_chans (int, optional): Number of postnet channels.
Number of decoder prenet hidden units. postnet_filts (int, optional): Filter size of postnet.
elayers : int, optional use_scaled_pos_enc (pool, optional): Whether to use trainable scaled positional encoding.
Number of encoder layers. use_batch_norm (bool, optional): Whether to use batch normalization in encoder prenet.
eunits : int, optional encoder_normalize_before (bool, optional): Whether to perform layer normalization before encoder block.
Number of encoder hidden units. decoder_normalize_before (bool, optional): Whether to perform layer normalization before decoder block.
adim : int, optional encoder_concat_after (bool, optional): Whether to concatenate attention layer's input and output in encoder.
Number of attention transformation dimensions. decoder_concat_after (bool, optional): Whether to concatenate attention layer's input and output in decoder.
aheads : int, optional positionwise_layer_type (str, optional): Position-wise operation type.
Number of heads for multi head attention. positionwise_conv_kernel_size (int, optional): Kernel size in position wise conv 1d.
dlayers : int, optional reduction_factor (int, optional): Reduction factor.
Number of decoder layers. spk_embed_dim (int, optional): Number of speaker embedding dimenstions.
dunits : int, optional spk_embed_integration_type (str, optional): How to integrate speaker embedding.
Number of decoder hidden units. use_gst (str, optional): Whether to use global style token.
postnet_layers : int, optional gst_tokens (int, optional): The number of GST embeddings.
Number of postnet layers. gst_heads (int, optional): The number of heads in GST multihead attention.
postnet_chans : int, optional gst_conv_layers (int, optional): The number of conv layers in GST.
Number of postnet channels. gst_conv_chans_list (Sequence[int], optional): List of the number of channels of conv layers in GST.
postnet_filts : int, optional gst_conv_kernel_size (int, optional): Kernal size of conv layers in GST.
Filter size of postnet. gst_conv_stride (int, optional): Stride size of conv layers in GST.
use_scaled_pos_enc : pool, optional gst_gru_layers (int, optional): The number of GRU layers in GST.
Whether to use trainable scaled positional encoding. gst_gru_units (int, optional): The number of GRU units in GST.
use_batch_norm : bool, optional transformer_lr (float, optional): Initial value of learning rate.
Whether to use batch normalization in encoder prenet. transformer_warmup_steps (int, optional): Optimizer warmup steps.
encoder_normalize_before : bool, optional transformer_enc_dropout_rate (float, optional): Dropout rate in encoder except attention and positional encoding.
Whether to perform layer normalization before encoder block. transformer_enc_positional_dropout_rate (float, optional): Dropout rate after encoder positional encoding.
decoder_normalize_before : bool, optional transformer_enc_attn_dropout_rate (float, optional): Dropout rate in encoder self-attention module.
Whether to perform layer normalization before decoder block. transformer_dec_dropout_rate (float, optional): Dropout rate in decoder except attention & positional encoding.
encoder_concat_after : bool, optional transformer_dec_positional_dropout_rate (float, optional): Dropout rate after decoder positional encoding.
Whether to concatenate attention layer's input and output in encoder. transformer_dec_attn_dropout_rate (float, optional): Dropout rate in deocoder self-attention module.
decoder_concat_after : bool, optional transformer_enc_dec_attn_dropout_rate (float, optional): Dropout rate in encoder-deocoder attention module.
Whether to concatenate attention layer's input and output in decoder. init_type (str, optional): How to initialize transformer parameters.
positionwise_layer_type : str, optional init_enc_alpha (float, optional): Initial value of alpha in scaled pos encoding of the encoder.
Position-wise operation type. init_dec_alpha (float, optional): Initial value of alpha in scaled pos encoding of the decoder.
positionwise_conv_kernel_size : int, optional eprenet_dropout_rate (float, optional): Dropout rate in encoder prenet.
Kernel size in position wise conv 1d. dprenet_dropout_rate (float, optional): Dropout rate in decoder prenet.
reduction_factor : int, optional postnet_dropout_rate (float, optional): Dropout rate in postnet.
Reduction factor. use_masking (bool, optional): Whether to apply masking for padded part in loss calculation.
spk_embed_dim : int, optional use_weighted_masking (bool, optional): Whether to apply weighted masking in loss calculation.
Number of speaker embedding dimenstions. bce_pos_weight (float, optional): Positive sample weight in bce calculation (only for use_masking=true).
spk_embed_integration_type : str, optional loss_type (str, optional): How to calculate loss.
How to integrate speaker embedding. use_guided_attn_loss (bool, optional): Whether to use guided attention loss.
use_gst : str, optional num_heads_applied_guided_attn (int, optional): Number of heads in each layer to apply guided attention loss.
Whether to use global style token. num_layers_applied_guided_attn (int, optional): Number of layers to apply guided attention loss.
gst_tokens : int, optional
The number of GST embeddings.
gst_heads : int, optional
The number of heads in GST multihead attention.
gst_conv_layers : int, optional
The number of conv layers in GST.
gst_conv_chans_list : Sequence[int], optional
List of the number of channels of conv layers in GST.
gst_conv_kernel_size : int, optional
Kernal size of conv layers in GST.
gst_conv_stride : int, optional
Stride size of conv layers in GST.
gst_gru_layers : int, optional
The number of GRU layers in GST.
gst_gru_units : int, optional
The number of GRU units in GST.
transformer_lr : float, optional
Initial value of learning rate.
transformer_warmup_steps : int, optional
Optimizer warmup steps.
transformer_enc_dropout_rate : float, optional
Dropout rate in encoder except attention and positional encoding.
transformer_enc_positional_dropout_rate : float, optional
Dropout rate after encoder positional encoding.
transformer_enc_attn_dropout_rate : float, optional
Dropout rate in encoder self-attention module.
transformer_dec_dropout_rate : float, optional
Dropout rate in decoder except attention & positional encoding.
transformer_dec_positional_dropout_rate : float, optional
Dropout rate after decoder positional encoding.
transformer_dec_attn_dropout_rate : float, optional
Dropout rate in deocoder self-attention module.
transformer_enc_dec_attn_dropout_rate : float, optional
Dropout rate in encoder-deocoder attention module.
init_type : str, optional
How to initialize transformer parameters.
init_enc_alpha : float, optional
Initial value of alpha in scaled pos encoding of the encoder.
init_dec_alpha : float, optional
Initial value of alpha in scaled pos encoding of the decoder.
eprenet_dropout_rate : float, optional
Dropout rate in encoder prenet.
dprenet_dropout_rate : float, optional
Dropout rate in decoder prenet.
postnet_dropout_rate : float, optional
Dropout rate in postnet.
use_masking : bool, optional
Whether to apply masking for padded part in loss calculation.
use_weighted_masking : bool, optional
Whether to apply weighted masking in loss calculation.
bce_pos_weight : float, optional
Positive sample weight in bce calculation (only for use_masking=true).
loss_type : str, optional
How to calculate loss.
use_guided_attn_loss : bool, optional
Whether to use guided attention loss.
num_heads_applied_guided_attn : int, optional
Number of heads in each layer to apply guided attention loss.
num_layers_applied_guided_attn : int, optional
Number of layers to apply guided attention loss.
List of module names to apply guided attention loss. List of module names to apply guided attention loss.
""" """
...@@ -398,25 +338,16 @@ class TransformerTTS(nn.Layer): ...@@ -398,25 +338,16 @@ class TransformerTTS(nn.Layer):
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]: ) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
"""Calculate forward propagation. """Calculate forward propagation.
Parameters Args:
---------- text(Tensor(int64)): Batch of padded character ids (B, Tmax).
text : Tensor(int64) text_lengths(Tensor(int64)): Batch of lengths of each input batch (B,).
Batch of padded character ids (B, Tmax). speech(Tensor): Batch of padded target features (B, Lmax, odim).
text_lengths : Tensor(int64) speech_lengths(Tensor(int64)): Batch of the lengths of each target (B,).
Batch of lengths of each input batch (B,). spk_emb(Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim).
speech : Tensor
Batch of padded target features (B, Lmax, odim). Returns:
speech_lengths : Tensor(int64) Tensor: Loss scalar value.
Batch of the lengths of each target (B,). Dict: Statistics to be monitored.
spk_emb : Tensor, optional
Batch of speaker embeddings (B, spk_embed_dim).
Returns
----------
Tensor
Loss scalar value.
Dict
Statistics to be monitored.
""" """
# input of embedding must be int64 # input of embedding must be int64
...@@ -525,31 +456,19 @@ class TransformerTTS(nn.Layer): ...@@ -525,31 +456,19 @@ class TransformerTTS(nn.Layer):
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Generate the sequence of features given the sequences of characters. """Generate the sequence of features given the sequences of characters.
Parameters Args:
---------- text(Tensor(int64)): Input sequence of characters (T,).
text : Tensor(int64) speech(Tensor, optional): Feature sequence to extract style (N, idim).
Input sequence of characters (T,). spk_emb(Tensor, optional): Speaker embedding vector (spk_embed_dim,).
speech : Tensor, optional threshold(float, optional): Threshold in inference.
Feature sequence to extract style (N, idim). minlenratio(float, optional): Minimum length ratio in inference.
spk_emb : Tensor, optional maxlenratio(float, optional): Maximum length ratio in inference.
Speaker embedding vector (spk_embed_dim,). use_teacher_forcing(bool, optional): Whether to use teacher forcing.
threshold : float, optional
Threshold in inference. Returns:
minlenratio : float, optional Tensor: Output sequence of features (L, odim).
Minimum length ratio in inference. Tensor: Output sequence of stop probabilities (L,).
maxlenratio : float, optional Tensor: Encoder-decoder (source) attention weights (#layers, #heads, L, T).
Maximum length ratio in inference.
use_teacher_forcing : bool, optional
Whether to use teacher forcing.
Returns
----------
Tensor
Output sequence of features (L, odim).
Tensor
Output sequence of stop probabilities (L,).
Tensor
Encoder-decoder (source) attention weights (#layers, #heads, L, T).
""" """
# input of embedding must be int64 # input of embedding must be int64
...@@ -671,19 +590,13 @@ class TransformerTTS(nn.Layer): ...@@ -671,19 +590,13 @@ class TransformerTTS(nn.Layer):
def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor: def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
"""Make masks for self-attention. """Make masks for self-attention.
Parameters Args:
---------- ilens(Tensor): Batch of lengths (B,).
ilens : Tensor
Batch of lengths (B,).
Returns Returns:
------- Tensor: Mask tensor for self-attention. dtype=paddle.bool
Tensor
Mask tensor for self-attention.
dtype=paddle.bool
Examples Examples:
-------
>>> ilens = [5, 3] >>> ilens = [5, 3]
>>> self._source_mask(ilens) >>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1], tensor([[[1, 1, 1, 1, 1],
...@@ -696,18 +609,13 @@ class TransformerTTS(nn.Layer): ...@@ -696,18 +609,13 @@ class TransformerTTS(nn.Layer):
def _target_mask(self, olens: paddle.Tensor) -> paddle.Tensor: def _target_mask(self, olens: paddle.Tensor) -> paddle.Tensor:
"""Make masks for masked self-attention. """Make masks for masked self-attention.
Parameters Args:
---------- olens (Tensor(int64)): Batch of lengths (B,).
olens : LongTensor
Batch of lengths (B,).
Returns Returns:
---------- Tensor: Mask tensor for masked self-attention.
Tensor
Mask tensor for masked self-attention.
Examples Examples:
----------
>>> olens = [5, 3] >>> olens = [5, 3]
>>> self._target_mask(olens) >>> self._target_mask(olens)
tensor([[[1, 0, 0, 0, 0], tensor([[[1, 0, 0, 0, 0],
...@@ -731,17 +639,12 @@ class TransformerTTS(nn.Layer): ...@@ -731,17 +639,12 @@ class TransformerTTS(nn.Layer):
spk_emb: paddle.Tensor) -> paddle.Tensor: spk_emb: paddle.Tensor) -> paddle.Tensor:
"""Integrate speaker embedding with hidden states. """Integrate speaker embedding with hidden states.
Parameters Args:
---------- hs(Tensor): Batch of hidden state sequences (B, Tmax, adim).
hs : Tensor spk_emb(Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Batch of hidden state sequences (B, Tmax, adim).
spk_emb : Tensor Returns:
Batch of speaker embeddings (B, spk_embed_dim). Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).
Returns
----------
Tensor
Batch of integrated hidden state sequences (B, Tmax, adim).
""" """
if self.spk_embed_integration_type == "add": if self.spk_embed_integration_type == "add":
......
此差异已折叠。
...@@ -67,14 +67,10 @@ class MelResNet(nn.Layer): ...@@ -67,14 +67,10 @@ class MelResNet(nn.Layer):
def forward(self, x): def forward(self, x):
''' '''
Parameters Args:
---------- x (Tensor): Input tensor (B, in_dims, T).
x : Tensor Returns:
Input tensor (B, in_dims, T). Tensor: Output tensor (B, res_out_dims, T).
Returns
----------
Tensor
Output tensor (B, res_out_dims, T).
''' '''
x = self.conv_in(x) x = self.conv_in(x)
...@@ -121,16 +117,11 @@ class UpsampleNetwork(nn.Layer): ...@@ -121,16 +117,11 @@ class UpsampleNetwork(nn.Layer):
def forward(self, m): def forward(self, m):
''' '''
Parameters Args:
---------- c (Tensor): Input tensor (B, C_aux, T).
c : Tensor Returns:
Input tensor (B, C_aux, T). Tensor: Output tensor (B, (T - 2 * pad) * prob(upsample_scales), C_aux).
Returns Tensor: Output tensor (B, (T - 2 * pad) * prob(upsample_scales), res_out_dims).
----------
Tensor
Output tensor (B, (T - 2 * pad) * prob(upsample_scales), C_aux).
Tensor
Output tensor (B, (T - 2 * pad) * prob(upsample_scales), res_out_dims).
''' '''
# aux: [B, C_aux, T] # aux: [B, C_aux, T]
# -> [B, res_out_dims, T - 2 * aux_context_window] # -> [B, res_out_dims, T - 2 * aux_context_window]
...@@ -172,32 +163,20 @@ class WaveRNN(nn.Layer): ...@@ -172,32 +163,20 @@ class WaveRNN(nn.Layer):
mode='RAW', mode='RAW',
init_type: str="xavier_uniform", ): init_type: str="xavier_uniform", ):
''' '''
Parameters Args:
---------- rnn_dims (int, optional): Hidden dims of RNN Layers.
rnn_dims : int, optional fc_dims (int, optional): Dims of FC Layers.
Hidden dims of RNN Layers. bits (int, optional): bit depth of signal.
fc_dims : int, optional aux_context_window (int, optional): The context window size of the first convolution applied to the
Dims of FC Layers.
bits : int, optional
bit depth of signal.
aux_context_window : int, optional
The context window size of the first convolution applied to the
auxiliary input, by default 2 auxiliary input, by default 2
upsample_scales : List[int], optional upsample_scales (List[int], optional): Upsample scales of the upsample network.
Upsample scales of the upsample network. aux_channels (int, optional): Auxiliary channel of the residual blocks.
aux_channels : int, optional compute_dims (int, optional): Dims of Conv1D in MelResNet.
Auxiliary channel of the residual blocks. res_out_dims (int, optional): Dims of output in MelResNet.
compute_dims : int, optional res_blocks (int, optional): Number of residual blocks.
Dims of Conv1D in MelResNet. mode (str, optional): Output mode of the WaveRNN vocoder.
res_out_dims : int, optional `MOL` for Mixture of Logistic Distribution, and `RAW` for quantized bits as the model's output.
Dims of output in MelResNet. init_type (str): How to initialize parameters.
res_blocks : int, optional
Number of residual blocks.
mode : str, optional
Output mode of the WaveRNN vocoder. `MOL` for Mixture of Logistic Distribution,
and `RAW` for quantized bits as the model's output.
init_type : str
How to initialize parameters.
''' '''
super().__init__() super().__init__()
self.mode = mode self.mode = mode
...@@ -245,18 +224,13 @@ class WaveRNN(nn.Layer): ...@@ -245,18 +224,13 @@ class WaveRNN(nn.Layer):
def forward(self, x, c): def forward(self, x, c):
''' '''
Parameters Args:
---------- x (Tensor): wav sequence, [B, T]
x : Tensor c (Tensor): mel spectrogram [B, C_aux, T']
wav sequence, [B, T]
c : Tensor
mel spectrogram [B, C_aux, T']
T = (T' - 2 * aux_context_window ) * hop_length T = (T' - 2 * aux_context_window ) * hop_length
Returns Returns:
---------- Tensor: [B, T, n_classes]
Tensor
[B, T, n_classes]
''' '''
# Although we `_flatten_parameters()` on init, when using DataParallel # Although we `_flatten_parameters()` on init, when using DataParallel
# the model gets replicated, making it no longer guaranteed that the # the model gets replicated, making it no longer guaranteed that the
...@@ -304,22 +278,14 @@ class WaveRNN(nn.Layer): ...@@ -304,22 +278,14 @@ class WaveRNN(nn.Layer):
mu_law: bool=True, mu_law: bool=True,
gen_display: bool=False): gen_display: bool=False):
""" """
Parameters Args:
---------- c(Tensor): input mels, (T', C_aux)
c : Tensor batched(bool): generate in batch or not
input mels, (T', C_aux) target(int): target number of samples to be generated in each batch entry
batched : bool overlap(int): number of samples for crossfading between batches
generate in batch or not mu_law(bool)
target : int Returns:
target number of samples to be generated in each batch entry wav sequence: Output (T' * prod(upsample_scales), out_channels, C_out).
overlap : int
number of samples for crossfading between batches
mu_law : bool
use mu law or not
Returns
----------
wav sequence
Output (T' * prod(upsample_scales), out_channels, C_out).
""" """
self.eval() self.eval()
...@@ -434,15 +400,12 @@ class WaveRNN(nn.Layer): ...@@ -434,15 +400,12 @@ class WaveRNN(nn.Layer):
def pad_tensor(self, x, pad, side='both'): def pad_tensor(self, x, pad, side='both'):
''' '''
Parameters Args:
---------- x(Tensor): mel, [1, n_frames, 80]
x : Tensor pad(int):
mel, [1, n_frames, 80] side(str, optional): (Default value = 'both')
pad : int
side : str Returns:
'both', 'before' or 'after'
Returns
----------
Tensor Tensor
''' '''
b, t, _ = paddle.shape(x) b, t, _ = paddle.shape(x)
...@@ -461,33 +424,24 @@ class WaveRNN(nn.Layer): ...@@ -461,33 +424,24 @@ class WaveRNN(nn.Layer):
Fold the tensor with overlap for quick batched inference. Fold the tensor with overlap for quick batched inference.
Overlap will be used for crossfading in xfade_and_unfold() Overlap will be used for crossfading in xfade_and_unfold()
Parameters Args:
---------- x(Tensor): Upsampled conditioning features. mels or aux
x : Tensor
Upsampled conditioning features. mels or aux
shape=(1, T, features) shape=(1, T, features)
mels: [1, T, 80] mels: [1, T, 80]
aux: [1, T, 128] aux: [1, T, 128]
target : int target(int): Target timesteps for each index of batch
Target timesteps for each index of batch overlap(int): Timesteps for both xfade and rnn warmup
overlap : int
Timesteps for both xfade and rnn warmup Returns:
overlap = hop_length * 2 Tensor:
Returns
----------
Tensor
shape=(num_folds, target + 2 * overlap, features) shape=(num_folds, target + 2 * overlap, features)
num_flods = (time_seq - overlap) // (target + overlap) num_flods = (time_seq - overlap) // (target + overlap)
mel: [num_folds, target + 2 * overlap, 80] mel: [num_folds, target + 2 * overlap, 80]
aux: [num_folds, target + 2 * overlap, 128] aux: [num_folds, target + 2 * overlap, 128]
Details Details:
----------
x = [[h1, h2, ... hn]] x = [[h1, h2, ... hn]]
Where each h is a vector of conditioning features Where each h is a vector of conditioning features
Eg: target=2, overlap=1 with x.size(1)=10 Eg: target=2, overlap=1 with x.size(1)=10
folded = [[h1, h2, h3, h4], folded = [[h1, h2, h3, h4],
...@@ -520,24 +474,20 @@ class WaveRNN(nn.Layer): ...@@ -520,24 +474,20 @@ class WaveRNN(nn.Layer):
def xfade_and_unfold(self, y, target: int=12000, overlap: int=600): def xfade_and_unfold(self, y, target: int=12000, overlap: int=600):
''' Applies a crossfade and unfolds into a 1d array. ''' Applies a crossfade and unfolds into a 1d array.
Parameters Args:
---------- y (Tensor):
y : Tensor
Batched sequences of audio samples Batched sequences of audio samples
shape=(num_folds, target + 2 * overlap) shape=(num_folds, target + 2 * overlap)
dtype=paddle.float32 dtype=paddle.float32
overlap : int overlap (int): Timesteps for both xfade and rnn warmup
Timesteps for both xfade and rnn warmup
Returns Returns:
----------
Tensor Tensor
audio samples in a 1d array audio samples in a 1d array
shape=(total_len) shape=(total_len)
dtype=paddle.float32 dtype=paddle.float32
Details Details:
----------
y = [[seq1], y = [[seq1],
[seq2], [seq2],
[seq3]] [seq3]]
......
...@@ -41,14 +41,10 @@ class CausalConv1D(nn.Layer): ...@@ -41,14 +41,10 @@ class CausalConv1D(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters Args:
---------- x (Tensor): Input tensor (B, in_channels, T).
x : Tensor Returns:
Input tensor (B, in_channels, T). Tensor: Output tensor (B, out_channels, T).
Returns
----------
Tensor
Output tensor (B, out_channels, T).
""" """
return self.conv(self.pad(x))[:, :, :x.shape[2]] return self.conv(self.pad(x))[:, :, :x.shape[2]]
...@@ -70,13 +66,9 @@ class CausalConv1DTranspose(nn.Layer): ...@@ -70,13 +66,9 @@ class CausalConv1DTranspose(nn.Layer):
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
Parameters Args:
---------- x (Tensor): Input tensor (B, in_channels, T_in).
x : Tensor Returns:
Input tensor (B, in_channels, T_in). Tensor: Output tensor (B, out_channels, T_out).
Returns
----------
Tensor
Output tensor (B, out_channels, T_out).
""" """
return self.deconv(x)[:, :, :-self.stride] return self.deconv(x)[:, :, :-self.stride]
...@@ -18,12 +18,10 @@ from paddle import nn ...@@ -18,12 +18,10 @@ from paddle import nn
class ConvolutionModule(nn.Layer): class ConvolutionModule(nn.Layer):
"""ConvolutionModule in Conformer model. """ConvolutionModule in Conformer model.
Parameters
---------- Args:
channels : int channels (int): The number of channels of conv layers.
The number of channels of conv layers. kernel_size (int): Kernerl size of conv layers.
kernel_size : int
Kernerl size of conv layers.
""" """
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True): def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
...@@ -59,14 +57,11 @@ class ConvolutionModule(nn.Layer): ...@@ -59,14 +57,11 @@ class ConvolutionModule(nn.Layer):
def forward(self, x): def forward(self, x):
"""Compute convolution module. """Compute convolution module.
Parameters
---------- Args:
x : paddle.Tensor x (Tensor): Input tensor (#batch, time, channels).
Input tensor (#batch, time, channels). Returns:
Returns Tensor: Output tensor (#batch, time, channels).
----------
paddle.Tensor
Output tensor (#batch, time, channels).
""" """
# exchange the temporal dimension and the feature dimension # exchange the temporal dimension and the feature dimension
x = x.transpose([0, 2, 1]) x = x.transpose([0, 2, 1])
......
...@@ -21,36 +21,27 @@ from paddlespeech.t2s.modules.layer_norm import LayerNorm ...@@ -21,36 +21,27 @@ from paddlespeech.t2s.modules.layer_norm import LayerNorm
class EncoderLayer(nn.Layer): class EncoderLayer(nn.Layer):
"""Encoder layer module. """Encoder layer module.
Parameters
---------- Args:
size : int size (int): Input dimension.
Input dimension. self_attn (nn.Layer): Self-attention module instance.
self_attn : nn.Layer
Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument. can be used as the argument.
feed_forward : nn.Layer feed_forward (nn.Layer): Feed-forward module instance.
Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument. can be used as the argument.
feed_forward_macaron : nn.Layer feed_forward_macaron (nn.Layer): Additional feed-forward module instance.
Additional feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument. can be used as the argument.
conv_module : nn.Layer conv_module (nn.Layer): Convolution module instance.
Convolution module instance.
`ConvlutionModule` instance can be used as the argument. `ConvlutionModule` instance can be used as the argument.
dropout_rate : float dropout_rate (float): Dropout rate.
Dropout rate. normalize_before (bool): Whether to use layer_norm before the first block.
normalize_before : bool concat_after (bool): Whether to concat attention layer's input and output.
Whether to use layer_norm before the first block.
concat_after : bool
Whether to concat attention layer's input and output.
if True, additional linear will be applied. if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x))) i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x) if False, no additional linear will be applied. i.e. x -> x + att(x)
stochastic_depth_rate : float stochastic_depth_rate (float): Proability to skip this layer.
Proability to skip this layer.
During training, the layer may skip residual computation and return input During training, the layer may skip residual computation and return input
as-is with given probability. as-is with given probability.
""" """
...@@ -93,22 +84,17 @@ class EncoderLayer(nn.Layer): ...@@ -93,22 +84,17 @@ class EncoderLayer(nn.Layer):
def forward(self, x_input, mask, cache=None): def forward(self, x_input, mask, cache=None):
"""Compute encoded features. """Compute encoded features.
Parameters
---------- Args:
x_input : Union[Tuple, paddle.Tensor] x_input(Union[Tuple, Tensor]): Input tensor w/ or w/o pos emb.
Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size). - w/o pos emb: Tensor (#batch, time, size).
mask : paddle.Tensor mask(Tensor): Mask tensor for the input (#batch, time).
Mask tensor for the input (#batch, time). cache (Tensor):
cache paddle.Tensor
Cache tensor of the input (#batch, time - 1, size). Returns:
Returns Tensor: Output tensor (#batch, time, size).
---------- Tensor: Mask tensor (#batch, time).
paddle.Tensor
Output tensor (#batch, time, size).
paddle.Tensor
Mask tensor (#batch, time).
""" """
if isinstance(x_input, tuple): if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1] x, pos_emb = x_input[0], x_input[1]
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册