diff --git a/paddlespeech/audio/sox_effects/sox_effects.py b/paddlespeech/audio/sox_effects/sox_effects.py index 17d2d95af5d835d264107392e3385211aac022bf..a984d2925b529a0c014113871d35e98a561cfd64 100644 --- a/paddlespeech/audio/sox_effects/sox_effects.py +++ b/paddlespeech/audio/sox_effects/sox_effects.py @@ -63,8 +63,6 @@ def apply_effects_tensor( .. devices:: CPU - .. properties:: TorchScript - Note: This function only works on CPU Tensors. This function works in the way very similar to ``sox`` command, however there are slight @@ -74,7 +72,7 @@ def apply_effects_tensor( need to give ``rate`` effect with desired sampling rate.). Args: - tensor (torch.Tensor): Input 2D CPU Tensor. + tensor (paddle.Tensor): Input 2D CPU Tensor. sample_rate (int): Sample rate effects (List[List[str]]): List of effects. channels_first (bool, optional): Indicates if the input Tensor's dimension is @@ -98,9 +96,9 @@ def apply_effects_tensor( >>> # Generate pseudo wave: >>> # normalized, channels first, 2ch, sampling rate 16000, 1 second >>> sample_rate = 16000 - >>> waveform = 2 * torch.rand([2, sample_rate * 1]) - 1 + >>> waveform = 2 * paddle.rand([2, sample_rate * 1]) - 1 >>> waveform.shape - torch.Size([2, 16000]) + paddle.Size([2, 16000]) >>> waveform tensor([[ 0.3138, 0.7620, -0.9019, ..., -0.7495, -0.4935, 0.5442], [-0.0832, 0.0061, 0.8233, ..., -0.5176, -0.9140, -0.2434]]) @@ -113,7 +111,7 @@ def apply_effects_tensor( >>> # The new waveform is sampling rate 8000, 1 second. >>> # normalization and channel order are preserved >>> waveform.shape - torch.Size([2, 8000]) + paddle.Size([2, 8000]) >>> waveform tensor([[ 0.5054, -0.5518, -0.4800, ..., -0.0076, 0.0096, -0.0110], [ 0.1331, 0.0436, -0.3783, ..., -0.0035, 0.0012, 0.0008]]) @@ -122,17 +120,17 @@ def apply_effects_tensor( Example - Torchscript-able transform >>> - >>> # Use `apply_effects_tensor` in `torch.nn.Module` and dump it to file, + >>> # Use `apply_effects_tensor` in `paddle.nn.Module` and dump it to file, >>> # then run sox effect via Torchscript runtime. >>> - >>> class SoxEffectTransform(torch.nn.Module): + >>> class SoxEffectTransform(paddle.nn.Module): ... effects: List[List[str]] ... ... def __init__(self, effects: List[List[str]]): ... super().__init__() ... self.effects = effects ... - ... def forward(self, tensor: torch.Tensor, sample_rate: int): + ... def forward(self, tensor: paddle.Tensor, sample_rate: int): ... return sox_effects.apply_effects_tensor( ... tensor, sample_rate, self.effects) ... @@ -146,8 +144,8 @@ def apply_effects_tensor( >>> >>> # Dump it to file and load >>> path = 'sox_effect.zip' - >>> torch.jit.script(trans).save(path) - >>> transform = torch.jit.load(path) + >>> paddle.jit.script(trans).save(path) + >>> transform = paddle.jit.load(path) >>> >>>> # Run transform >>> waveform, input_sample_rate = paddleaudio.load("input.wav") @@ -186,7 +184,7 @@ def apply_effects_file( Args: path (path-like object or file-like object): Source of audio data. When the function is not compiled by TorchScript, - (e.g. ``torch.jit.script``), the following types are accepted: + (e.g. ``paddle.jit.script``), the following types are accepted: * ``path-like``: file path * ``file-like``: Object with ``read(size: int) -> bytes`` method, @@ -232,7 +230,7 @@ def apply_effects_file( >>> >>> # Check the result >>> waveform.shape - torch.Size([2, 8000]) + paddle.Size([2, 8000]) >>> waveform tensor([[ 5.1151e-03, 1.8073e-02, 2.2188e-02, ..., 1.0431e-07, -1.4761e-07, 1.8114e-07], @@ -244,7 +242,7 @@ def apply_effects_file( Example - Apply random speed perturbation to dataset >>> >>> # Load data from file, apply random speed perturbation - >>> class RandomPerturbationFile(torch.utils.data.Dataset): + >>> class RandomPerturbationFile(paddle.utils.data.Dataset): ... \"\"\"Given flist, apply random speed perturbation ... ... Suppose all the input files are at least one second long. @@ -272,7 +270,7 @@ def apply_effects_file( ... return len(self.flist) ... >>> dataset = RandomPerturbationFile(file_list, sample_rate=8000) - >>> loader = torch.utils.data.DataLoader(dataset, batch_size=32) + >>> loader = paddle.utils.data.DataLoader(dataset, batch_size=32) >>> for batch in loader: >>> pass """ diff --git a/tests/unit/audio/backends/sox_io/sox_effect_test.py b/tests/unit/audio/backends/sox_io/sox_effect_test.py index 63c632ad152b2994ec44dfc961403dd666ebd9a7..d9c70bc5ef68c537e29d5c4adf302c9f36bc62c9 100644 --- a/tests/unit/audio/backends/sox_io/sox_effect_test.py +++ b/tests/unit/audio/backends/sox_io/sox_effect_test.py @@ -1,3 +1,4 @@ +#code is from: https://github.com/pytorch/audio/blob/main/test/torchaudio_unittest/sox_effect/sox_effect_test.py import io import itertools import tarfile