diff --git a/docs/source/released_model.md b/docs/source/released_model.md
index cec6b76d6e9a4aff84c3600192270582ff6f27d5..f6e7ad296dd20fa6473e47596bda2041b5022401 100644
--- a/docs/source/released_model.md
+++ b/docs/source/released_model.md
@@ -1,11 +1,10 @@
-
# Released Models
## Speech-to-Text Models
### Speech Recognition Model
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech | Example Link
-:-------------:| :------------:| :-----: | -----: | :----------------- |:--------- | :---------- | :--------- | :-----------
+:-------------:| :------------:| :-----: | -----: | :-----: |:-----:| :-----: | :-----: | :-----:
[Ds2 Online Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/aishell_ds2_online_cer8.00_release.tar.gz) | Aishell Dataset | Char-based | 345 MB | 2 Conv + 5 LSTM layers with only forward direction | 0.080 |-| 151 h | [D2 Online Aishell ASR0](../../examples/aishell/asr0)
[Ds2 Offline Aishell ASR0 Model](https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/ds2.model.tar.gz)| Aishell Dataset | Char-based | 306 MB | 2 Conv + 3 bidirectional GRU layers| 0.064 |-| 151 h | [Ds2 Offline Aishell ASR0](../../examples/aishell/asr0)
[Conformer Online Aishell ASR1 Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s1/aishell.chunk.release.tar.gz) | Aishell Dataset | Char-based | 283 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0594 |-| 151 h | [Conformer Online Aishell ASR1](../../examples/aishell/asr1)
@@ -17,22 +16,21 @@ Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER |
### Language Model based on NGram
Language Model | Training Data | Token-based | Size | Descriptions
-:-------------:| :------------:| :-----: | -----: | :-----------------
+:------------:| :------------:|:------------: | :------------: | :------------:
[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
About 1.85 billion n-grams;
'trie' binary with '-a 22 -q 8 -b 8'
[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
About 0.13 billion n-grams;
'probing' binary with default settings
[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
About 3.7 billion n-grams;
'probing' binary with default settings
### Speech Translation Models
-| Model | Training Data | Token-based | Size | Descriptions | BLEU | Example Link |
-| ------------------------------------------------------------ | ------------- | ----------- | ---- | ------------------------------------------------------------ | ----- | ------------------------------------------------------------ |
-| [Transformer FAT-ST MTL En-Zh](https://paddlespeech.bj.bcebos.com/s2t/ted_en_zh/st1/fat_st_ted-en-zh.tar.gz) | Ted-En-Zh | Spm | | Encoder:Transformer, Decoder:Transformer,
Decoding method: Attention | 20.80 | [Transformer Ted-En-Zh ST1](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/ted_en_zh/st1) |
-
+| Model | Training Data | Token-based | Size | Descriptions | BLEU | Example Link |
+| :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: |
+| [Transformer FAT-ST MTL En-Zh](https://paddlespeech.bj.bcebos.com/s2t/ted_en_zh/st1/fat_st_ted-en-zh.tar.gz) | Ted-En-Zh| Spm| | Encoder:Transformer, Decoder:Transformer,
Decoding method: Attention | 20.80 | [Transformer Ted-En-Zh ST1](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/ted_en_zh/st1) |
## Text-to-Speech Models
### Acoustic Models
-Model Type | Dataset| Example Link | Pretrained Models|Static Models|Siize(static)
+Model Type | Dataset| Example Link | Pretrained Models|Static Models|Size (static)
:-------------:| :------------:| :-----: | :-----:| :-----:| :-----:
Tacotron2|LJSpeech|[tacotron2-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts0)|[tacotron2_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.3.zip)|||
TransformerTTS| LJSpeech| [transformer-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts1)|[transformer_tts_ljspeech_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/transformer_tts/transformer_tts_ljspeech_ckpt_0.4.zip)|||
@@ -44,8 +42,8 @@ FastSpeech2| LJSpeech |[fastspeech2-ljspeech](https://github.com/PaddlePaddle/Pa
FastSpeech2| VCTK |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/tts3)|[fastspeech2_nosil_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_vctk_ckpt_0.5.zip)|||
### Vocoders
-Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size(static)
-:-------------:| :------------:| :-----: | :-----:| :-----:| :-----:
+Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size (static)
+:-----:| :-----:| :-----: | :-----:| :-----:| :-----:
WaveFlow| LJSpeech |[waveflow-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc0)|[waveflow_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/waveflow/waveflow_ljspeech_ckpt_0.3.zip)|||
Parallel WaveGAN| CSMSC |[PWGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc1)|[pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip)|[pwg_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_static_0.4.zip)|5.1MB|
Parallel WaveGAN| LJSpeech |[PWGAN-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc1)|[pwg_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_ljspeech_ckpt_0.5.zip)|||
@@ -69,10 +67,15 @@ Model Type | Dataset| Example Link | Pretrained Models
PANN | Audioset| [audioset_tagging_cnn](https://github.com/qiuqiangkong/audioset_tagging_cnn) | [panns_cnn6.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams),[panns_cnn10.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams),[panns_cnn14.pdparams](https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams)
PANN | ESC-50 |[pann-esc50]("./examples/esc50/cls0")|[panns_cnn6.tar.gz](https://paddlespeech.bj.bcebos.com/cls/panns_cnn6.tar.gz), [panns_cnn10](https://paddlespeech.bj.bcebos.com/cls/panns_cnn10.tar.gz), [panns_cnn14.tar.gz](https://paddlespeech.bj.bcebos.com/cls/panns_cnn14.tar.gz)
+## Punctuation Restoration Models
+Model Type | Dataset| Example Link | Pretrained Models
+:-------------:| :------------:| :-----: | :-----:
+Ernie Linear | IWLST2012_zh |[iwslt2012_punc0](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/iwslt2012/punc0)|[ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/text/ernie_linear_p3_iwslt2012_zh_ckpt_0.1.1.zip)
+
## Speech Recognition Model from paddle 1.8
-| Acoustic Model |Training Data| Token-based | Size | Descriptions | CER | WER | Hours of speech |
-| :--------------: | :--------------: | :--------------: | :--------------: | :--------------: | :--------------: | :--------------: | :--------------: |
+| Acoustic Model |Training Data| Token-based | Size | Descriptions | CER | WER | Hours of speech |
+| :-----:| :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: |
| [Ds2 Offline Aishell model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model_v1.8_to_v2.x.tar.gz) | Aishell Dataset | Char-based | 234 MB | 2 Conv + 3 bidirectional GRU layers | 0.0804 | — | 151 h |
-| [Ds2 Offline Librispeech model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_v1.8_to_v2.x.tar.gz) | Librispeech Dataset | Word-based | 307 MB | 2 Conv + 3 bidirectional sharing weight RNN layers | — | 0.0685 | 960 h |
-| [Ds2 Offline Baidu en8k model](https://deepspeech.bj.bcebos.com/eng_models/baidu_en8k_v1.8_to_v2.x.tar.gz) | Baidu Internal English Dataset | Word-based | 273 MB | 2 Conv + 3 bidirectional GRU layers |— | 0.0541 | 8628 h |
+| [Ds2 Offline Librispeech model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_v1.8_to_v2.x.tar.gz) | Librispeech Dataset | Word-based | 307 MB | 2 Conv + 3 bidirectional sharing weight RNN layers | — | 0.0685 | 960 h |
+| [Ds2 Offline Baidu en8k model](https://deepspeech.bj.bcebos.com/eng_models/baidu_en8k_v1.8_to_v2.x.tar.gz) | Baidu Internal English Dataset | Word-based | 273 MB | 2 Conv + 3 bidirectional GRU layers |— | 0.0541 | 8628 h|