diff --git a/examples/librispeech/asr0/README.md b/examples/librispeech/asr0/README.md index ae9ca409e1b820585575f76f785cb9ac15e85326..575abbc2890727fa3363995cf1270c3fa7e0a2b0 100644 --- a/examples/librispeech/asr0/README.md +++ b/examples/librispeech/asr0/README.md @@ -208,7 +208,7 @@ This stage is to transform the dynamic graph model to static graph model. ```bash if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # export ckpt avg_n - CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/ ${avg_ckpt}.jit ${model_type} + CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type} fi ``` @@ -226,9 +226,9 @@ source path.sh Similer to stage 3, static graph model can also be tested. ```bash - if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then - # export ckpt avg_n - CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/ ${avg_ckpt}.jit ${model_type} + if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then + # test export ckpt avg_n + CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1 fi ``` @@ -247,7 +247,7 @@ In some situations, you want to use the trained model to do the inference for th ```bash if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # test a single .wav file - CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} + CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} fi ```