From 43659b9882dfde6aa11ece88189a26a86479cc04 Mon Sep 17 00:00:00 2001 From: KP <109694228@qq.com> Date: Tue, 19 Apr 2022 18:31:05 +0800 Subject: [PATCH] Add KWS example. --- examples/hey_snips/README.md | 24 +++++------------------- examples/hey_snips/RESULTS.md | 8 -------- examples/hey_snips/kws0/README.md | 22 ++++++++++++++++++++++ 3 files changed, 27 insertions(+), 27 deletions(-) delete mode 100644 examples/hey_snips/RESULTS.md create mode 100644 examples/hey_snips/kws0/README.md diff --git a/examples/hey_snips/README.md b/examples/hey_snips/README.md index be8d142b..ba263906 100644 --- a/examples/hey_snips/README.md +++ b/examples/hey_snips/README.md @@ -1,22 +1,8 @@ -# MDTC Keyword Spotting with HeySnips Dataset -## Dataset +## Metrics -Before running scripts, you **MUST** follow this instruction to download the dataset: https://github.com/sonos/keyword-spotting-research-datasets +We mesure FRRs with fixing false alarms in one hour: -After you download and decompress the dataset archive, you should **REPLACE** the value of `data_dir` in `conf/*.yaml` to complete dataset config. - -## Get Started - -In this section, we will train the [MDTC](https://arxiv.org/pdf/2102.13552.pdf) model and evaluate on "Hey Snips" dataset. - -```sh -CUDA_VISIBLE_DEVICES=0,1 ./run.sh conf/mdtc.yaml -``` - -This script contains training and scoring steps. You can just set the `CUDA_VISIBLE_DEVICES` environment var to run on single gpu or multi-gpus. - -The vars `stage` and `stop_stage` in `./run.sh` controls the running steps: -- stage 1: Training from scratch. -- stage 2: Evaluating model on test dataset and computing detection error tradeoff(DET) of all trigger thresholds. -- stage 3: Plotting the DET cruve for visualizaiton. +|Model|False Alarm| False Reject Rate| +|--|--|--| +|MDTC| 1| 0.003559 | diff --git a/examples/hey_snips/RESULTS.md b/examples/hey_snips/RESULTS.md deleted file mode 100644 index ba263906..00000000 --- a/examples/hey_snips/RESULTS.md +++ /dev/null @@ -1,8 +0,0 @@ - -## Metrics - -We mesure FRRs with fixing false alarms in one hour: - -|Model|False Alarm| False Reject Rate| -|--|--|--| -|MDTC| 1| 0.003559 | diff --git a/examples/hey_snips/kws0/README.md b/examples/hey_snips/kws0/README.md new file mode 100644 index 00000000..be8d142b --- /dev/null +++ b/examples/hey_snips/kws0/README.md @@ -0,0 +1,22 @@ +# MDTC Keyword Spotting with HeySnips Dataset + +## Dataset + +Before running scripts, you **MUST** follow this instruction to download the dataset: https://github.com/sonos/keyword-spotting-research-datasets + +After you download and decompress the dataset archive, you should **REPLACE** the value of `data_dir` in `conf/*.yaml` to complete dataset config. + +## Get Started + +In this section, we will train the [MDTC](https://arxiv.org/pdf/2102.13552.pdf) model and evaluate on "Hey Snips" dataset. + +```sh +CUDA_VISIBLE_DEVICES=0,1 ./run.sh conf/mdtc.yaml +``` + +This script contains training and scoring steps. You can just set the `CUDA_VISIBLE_DEVICES` environment var to run on single gpu or multi-gpus. + +The vars `stage` and `stop_stage` in `./run.sh` controls the running steps: +- stage 1: Training from scratch. +- stage 2: Evaluating model on test dataset and computing detection error tradeoff(DET) of all trigger thresholds. +- stage 3: Plotting the DET cruve for visualizaiton. -- GitLab