diff --git a/docs/source/released_model.md b/docs/source/released_model.md
index 82cd02d111aa768a3e3b9e5ba6a3cda05a57b4f7..367b7c4b88a8674c4f797edd711a6dfe739fa411 100644
--- a/docs/source/released_model.md
+++ b/docs/source/released_model.md
@@ -1,6 +1,7 @@
# Released Models
## Speech-to-Text Models
+
### Acoustic Model Released in paddle 2.X
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech | example link
:-------------:| :------------:| :-----: | -----: | :----------------- |:--------- | :---------- | :--------- | :-----------
@@ -9,8 +10,9 @@ Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER |
[Conformer Online Aishell ASR1 Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s1/aishell.chunk.release.tar.gz) | Aishell Dataset | Char-based | 283 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0594 |-| 151 h | [Conformer Online Aishell S1 Example](../../examples/aishell/s1)
[Conformer Offline Aishell ASR1 Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s1/aishell.release.tar.gz) | Aishell Dataset | Char-based | 284 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring | 0.0547 |-| 151 h | [Conformer Offline Aishell S1 Example](../../examples/aishell/s1)
[Conformer Librispeech ASR1 Model](https://deepspeech.bj.bcebos.com/release2.1/librispeech/s1/conformer.release.tar.gz) | Librispeech Dataset | subword-based | 287 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0325 | 960 h | [Conformer Librispeech S1 example](../../example/librispeech/s1)
-[Transformer Librispeech ASR1 Model](https://deepspeech.bj.bcebos.com/release2.2/librispeech/s1/librispeech.s1.transformer.all.wer5p62.release.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0456 | 960 h | [Transformer Librispeech S1 example](../../example/librispeech/s1)
-[Transformer Librispeech ASR2 Model](https://deepspeech.bj.bcebos.com/release2.2/librispeech/s2/libri_transformer_espnet_wer3p84.release.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention |-| 0.0384 | 960 h | [Transformer Librispeech S2 example](../../example/librispeech/s2)
+[Transformer Librispeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/transformer.model.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0410 | 960 h | [Transformer Librispeech S1 example](../../example/librispeech/s1)
+[Transformer Librispeech ASR2 Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/transformer.model.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: JoinCTC w/ LM |-| 0.024 | 960 h | [Transformer Librispeech S2 example](../../example/librispeech/s2)
+
### Acoustic Model Transformed from paddle 1.8
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech
@@ -20,14 +22,15 @@ Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER |
[Ds2 Offline Baidu en8k model](https://deepspeech.bj.bcebos.com/eng_models/baidu_en8k_v1.8_to_v2.x.tar.gz)|Baidu Internal English Dataset| Word-based| 273 MB| 2 Conv + 3 bidirectional GRU layers |-| 0.0541 | 8628 h|
### Language Model Released
-
Language Model | Training Data | Token-based | Size | Descriptions
:-------------:| :------------:| :-----: | -----: | :-----------------
[English LM](https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
About 1.85 billion n-grams;
'trie' binary with '-a 22 -q 8 -b 8'
[Mandarin LM Small](https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
About 0.13 billion n-grams;
'probing' binary with default settings
[Mandarin LM Large](https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
About 3.7 billion n-grams;
'probing' binary with default settings
+
## Text-to-Speech Models
+
### Acoustic Models
Model Type | Dataset| Example Link | Pretrained Models|Static Models|Siize(static)
:-------------:| :------------:| :-----: | :-----:| :-----:| :-----:
@@ -40,7 +43,6 @@ FastSpeech2| LJSpeech |[fastspeech2-ljspeech](https://github.com/PaddlePaddle/Pa
FastSpeech2| VCTK |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/tts3)|[fastspeech2_nosil_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_vctk_ckpt_0.5.zip)|||
### Vocoders
-
Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size(static)
:-------------:| :------------:| :-----: | :-----:| :-----:| :-----:
WaveFlow| LJSpeech |[waveflow-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc0)|[waveflow_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/waveflow/waveflow_ljspeech_ckpt_0.3.zip)|||
diff --git a/docs/topic/ctc/ctc_loss.ipynb b/docs/topic/ctc/ctc_loss.ipynb
index c0da1f3230cec8961e6b2ff6d7fb431c3cec6bb9..081a6388519d2087b432b51d073e7d492f4b097a 100644
--- a/docs/topic/ctc/ctc_loss.ipynb
+++ b/docs/topic/ctc/ctc_loss.ipynb
@@ -343,6 +343,16 @@
" $$"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "41637c03",
+ "metadata": {},
+ "source": [
+ "## Source Code\n",
+ "本人在 [warp-ctc](https://github.com/zh794390558/warp-ctc) 上加了注释,并调整 index 的索引方式,便于理解代码。\n",
+ "对比上面的公式推导和lattice图可以快速理解 ctc 实现。"
+ ]
+ },
{
"cell_type": "markdown",
"id": "coordinated-music",
@@ -372,7 +382,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -386,7 +396,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.1"
+ "version": "3.7.0"
},
"toc": {
"base_numbering": 1,
diff --git a/examples/librispeech/asr1/RESULTS.md b/examples/librispeech/asr1/RESULTS.md
index 2ea55fc90f7345a27fd46a850a8d8ddf24be30e9..19300adea6fb3bdf2743956209aa64268f2f1b3c 100644
--- a/examples/librispeech/asr1/RESULTS.md
+++ b/examples/librispeech/asr1/RESULTS.md
@@ -21,7 +21,7 @@
## Transformer
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
-| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention | 6.733129533131917 | 0.047874 |
-| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.733129533131917 | 0.053922 |
-| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.733129533131917 | 0.053427 |
-| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention_rescoring | 6.733129533131917 | 0.041369 |
+| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention | 6.725063021977743 | 0.047417 |
+| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.725063021977743 | 0.053922 |
+| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.725063021977743 | 0.053180 |
+| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention_rescoring | 6.725063021977743 | 0.041026 |
\ No newline at end of file