diff --git a/deepspeech/exps/u2_kaldi/bin/test.py b/deepspeech/exps/u2_kaldi/bin/test.py index 457672c033864b55932b4941816e78ec09f60f0e..c5064ec558f52ee9f8de6c46352c319fc9ffb7d0 100644 --- a/deepspeech/exps/u2_kaldi/bin/test.py +++ b/deepspeech/exps/u2_kaldi/bin/test.py @@ -13,6 +13,7 @@ # limitations under the License. """Evaluation for U2 model.""" import cProfile +from yacs.config import CfgNode from deepspeech.training.cli import default_argument_parser from deepspeech.utils.dynamic_import import dynamic_import diff --git a/deepspeech/models/u2_st.py b/deepspeech/models/u2_st.py index 99420a89cd6ca8da02c19a5dd5aa46e89437721a..b725cc359ebf1d285eb4d1305d3583aa363fa839 100644 --- a/deepspeech/models/u2_st.py +++ b/deepspeech/models/u2_st.py @@ -417,32 +417,32 @@ class U2STBaseModel(nn.Layer): best_hyps = best_hyps[:, 1:] return best_hyps - @jit.export + @jit.to_static def subsampling_rate(self) -> int: """ Export interface for c++ call, return subsampling_rate of the model """ return self.encoder.embed.subsampling_rate - @jit.export + @jit.to_static def right_context(self) -> int: """ Export interface for c++ call, return right_context of the model """ return self.encoder.embed.right_context - @jit.export + @jit.to_static def sos_symbol(self) -> int: """ Export interface for c++ call, return sos symbol id of the model """ return self.sos - @jit.export + @jit.to_static def eos_symbol(self) -> int: """ Export interface for c++ call, return eos symbol id of the model """ return self.eos - @jit.export + @jit.to_static def forward_encoder_chunk( self, xs: paddle.Tensor, @@ -472,7 +472,7 @@ class U2STBaseModel(nn.Layer): xs, offset, required_cache_size, subsampling_cache, elayers_output_cache, conformer_cnn_cache) - @jit.export + @jit.to_static def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor: """ Export interface for c++ call, apply linear transform and log softmax before ctc @@ -483,7 +483,7 @@ class U2STBaseModel(nn.Layer): """ return self.ctc.log_softmax(xs) - @jit.export + @jit.to_static def forward_attention_decoder( self, hyps: paddle.Tensor,