diff --git a/examples/librispeech/README.md b/examples/librispeech/README.md index baa4f296d64b9b9d9bc2b39addf2597de69d1220..2718988f8402cbf2ffcabe4f4e95c23b301d7d53 100644 --- a/examples/librispeech/README.md +++ b/examples/librispeech/README.md @@ -1,3 +1,6 @@ # ASR + * s0 is for deepspeech2 offline * s1 is for transformer/conformer/U2 +* s2 is for transformer/conformer/U2 w/ kaldi feat +need install Kaldi diff --git a/examples/librispeech/s2/README.md b/examples/librispeech/s2/README.md new file mode 100644 index 0000000000000000000000000000000000000000..8f092dd8167dcb5db752121a462c50f274750957 --- /dev/null +++ b/examples/librispeech/s2/README.md @@ -0,0 +1,42 @@ +# LibriSpeech + +## Data +| Data Subset | Duration in Seconds | +| data/manifest.train | 0.83s ~ 29.735s | +| data/manifest.dev | 1.065 ~ 35.155s | +| data/manifest.test-clean | 1.285s ~ 34.955s | + +## Conformer +| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER | +| --- | --- | --- | --- | --- | --- | --- | --- | +| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | attention | - | - | +| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | ctc_greedy_search | | | +| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | ctc_prefix_beam_search | | | +| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean | attention_rescoring | | | + +### Test w/o length filter +| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER | +| --- | --- | --- | --- | --- | --- | --- | --- | +| conformer | 47.63 M | conf/conformer.yaml | spec_aug + shift | test-clean-all | attention | | | + + +## Chunk Conformer + +| Model | Params | Config | Augmentation| Test set | Decode method | Chunk Size & Left Chunks | Loss | WER | +| --- | --- | --- | --- | --- | --- | --- | --- | --- | +| conformer | 47.63 M | conf/chunk_conformer.yaml | spec_aug + shift | test-clean | attention | 16, -1 | | | +| conformer | 47.63 M | conf/chunk_conformer.yaml | spec_aug + shift | test-clean | ctc_greedy_search | 16, -1 | | | +| conformer | 47.63 M | conf/chunk_conformer.yaml | spec_aug + shift | test-clean | ctc_prefix_beam_search | 16, -1 | | - | +| conformer | 47.63 M | conf/chunk_conformer.yaml | spec_aug + shift | test-clean | attention_rescoring | 16, -1 | | - | + + +## Transformer +| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER | +| --- | --- | --- | --- | --- | --- | --- | --- | +| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean | attention | | | + +### Test w/o length filter +| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER | +| --- | --- | --- | --- | --- | --- | --- | --- | +| transformer | 32.52 M | conf/transformer.yaml | spec_aug + shift | test-clean-all | attention | | | + diff --git a/examples/librispeech/s2/conf/augmentation.json b/examples/librispeech/s2/conf/augmentation.json new file mode 100644 index 0000000000000000000000000000000000000000..c1078393d2f2f57fbcb3b48ce0975c2612c39dcb --- /dev/null +++ b/examples/librispeech/s2/conf/augmentation.json @@ -0,0 +1,34 @@ +[ + { + "type": "shift", + "params": { + "min_shift_ms": -5, + "max_shift_ms": 5 + }, + "prob": 1.0 + }, + { + "type": "speed", + "params": { + "min_speed_rate": 0.9, + "max_speed_rate": 1.1, + "num_rates": 3 + }, + "prob": 0.0 + }, + { + "type": "specaug", + "params": { + "F": 10, + "T": 50, + "n_freq_masks": 2, + "n_time_masks": 2, + "p": 1.0, + "W": 80, + "adaptive_number_ratio": 0, + "adaptive_size_ratio": 0, + "max_n_time_masks": 20 + }, + "prob": 1.0 + } +] diff --git a/examples/librispeech/s2/conf/chunk_conformer.yaml b/examples/librispeech/s2/conf/chunk_conformer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0de1aefee5c4397c74ed2b382ceb4471baadd9c5 --- /dev/null +++ b/examples/librispeech/s2/conf/chunk_conformer.yaml @@ -0,0 +1,120 @@ +# https://yaml.org/type/float.html +data: + train_manifest: data/manifest.train + dev_manifest: data/manifest.dev + test_manifest: data/manifest.test + min_input_len: 0.5 + max_input_len: 20.0 + min_output_len: 0.0 + max_output_len: 400.0 + min_output_input_ratio: 0.05 + max_output_input_ratio: 10.0 + +collator: + vocab_filepath: data/vocab.txt + unit_type: 'spm' + spm_model_prefix: 'data/bpe_unigram_5000' + mean_std_filepath: "" + augmentation_config: conf/augmentation.json + batch_size: 16 + raw_wav: True # use raw_wav or kaldi feature + specgram_type: fbank #linear, mfcc, fbank + feat_dim: 80 + delta_delta: False + dither: 1.0 + target_sample_rate: 16000 + max_freq: None + n_fft: None + stride_ms: 10.0 + window_ms: 25.0 + use_dB_normalization: True + target_dB: -20 + random_seed: 0 + keep_transcription_text: False + sortagrad: True + shuffle_method: batch_shuffle + num_workers: 2 + + +# network architecture +model: + cmvn_file: "data/mean_std.json" + cmvn_file_type: "json" + # encoder related + encoder: conformer + encoder_conf: + output_size: 256 # dimension of attention + attention_heads: 4 + linear_units: 2048 # the number of units of position-wise feed forward + num_blocks: 12 # the number of encoder blocks + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + attention_dropout_rate: 0.0 + input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 + normalize_before: True + use_cnn_module: True + cnn_module_kernel: 15 + activation_type: 'swish' + pos_enc_layer_type: 'rel_pos' + selfattention_layer_type: 'rel_selfattn' + causal: True + use_dynamic_chunk: true + cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster + use_dynamic_left_chunk: false + + # decoder related + decoder: transformer + decoder_conf: + attention_heads: 4 + linear_units: 2048 + num_blocks: 6 + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + self_attention_dropout_rate: 0.0 + src_attention_dropout_rate: 0.0 + + # hybrid CTC/attention + model_conf: + ctc_weight: 0.3 + lsm_weight: 0.1 # label smoothing option + length_normalized_loss: false + + +training: + n_epoch: 240 + accum_grad: 8 + global_grad_clip: 5.0 + optim: adam + optim_conf: + lr: 0.001 + weight_decay: 1e-06 + scheduler: warmuplr # pytorch v1.1.0+ required + scheduler_conf: + warmup_steps: 25000 + lr_decay: 1.0 + log_interval: 100 + checkpoint: + kbest_n: 50 + latest_n: 5 + + +decoding: + batch_size: 128 + error_rate_type: wer + decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring' + lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm + alpha: 2.5 + beta: 0.3 + beam_size: 10 + cutoff_prob: 1.0 + cutoff_top_n: 0 + num_proc_bsearch: 8 + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. + decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. + # <0: for decoding, use full chunk. + # >0: for decoding, use fixed chunk size as set. + # 0: used for training, it's prohibited here. + num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1. + simulate_streaming: true # simulate streaming inference. Defaults to False. + + diff --git a/examples/librispeech/s2/conf/chunk_transformer.yaml b/examples/librispeech/s2/conf/chunk_transformer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f782a0373680077eab678375b3677c5cfb3340f2 --- /dev/null +++ b/examples/librispeech/s2/conf/chunk_transformer.yaml @@ -0,0 +1,113 @@ +# https://yaml.org/type/float.html +data: + train_manifest: data/manifest.train + dev_manifest: data/manifest.dev + test_manifest: data/manifest.test + min_input_len: 0.5 # second + max_input_len: 20.0 # second + min_output_len: 0.0 # tokens + max_output_len: 400.0 # tokens + min_output_input_ratio: 0.05 + max_output_input_ratio: 10.0 + +collator: + vocab_filepath: data/vocab.txt + unit_type: 'spm' + spm_model_prefix: 'data/bpe_unigram_5000' + mean_std_filepath: "" + augmentation_config: conf/augmentation.json + batch_size: 64 + raw_wav: True # use raw_wav or kaldi feature + specgram_type: fbank #linear, mfcc, fbank + feat_dim: 80 + delta_delta: False + dither: 1.0 + target_sample_rate: 16000 + max_freq: None + n_fft: None + stride_ms: 10.0 + window_ms: 25.0 + use_dB_normalization: True + target_dB: -20 + random_seed: 0 + keep_transcription_text: False + sortagrad: True + shuffle_method: batch_shuffle + num_workers: 2 + + +# network architecture +model: + cmvn_file: "data/mean_std.json" + cmvn_file_type: "json" + # encoder related + encoder: transformer + encoder_conf: + output_size: 256 # dimension of attention + attention_heads: 4 + linear_units: 2048 # the number of units of position-wise feed forward + num_blocks: 12 # the number of encoder blocks + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + attention_dropout_rate: 0.0 + input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 + normalize_before: true + use_dynamic_chunk: true + use_dynamic_left_chunk: false + + # decoder related + decoder: transformer + decoder_conf: + attention_heads: 4 + linear_units: 2048 + num_blocks: 6 + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + self_attention_dropout_rate: 0.0 + src_attention_dropout_rate: 0.0 + + # hybrid CTC/attention + model_conf: + ctc_weight: 0.3 + lsm_weight: 0.1 # label smoothing option + length_normalized_loss: false + + +training: + n_epoch: 120 + accum_grad: 1 + global_grad_clip: 5.0 + optim: adam + optim_conf: + lr: 0.001 + weight_decay: 1e-06 + scheduler: warmuplr # pytorch v1.1.0+ required + scheduler_conf: + warmup_steps: 25000 + lr_decay: 1.0 + log_interval: 100 + checkpoint: + kbest_n: 50 + latest_n: 5 + + +decoding: + batch_size: 64 + error_rate_type: wer + decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring' + lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm + alpha: 2.5 + beta: 0.3 + beam_size: 10 + cutoff_prob: 1.0 + cutoff_top_n: 0 + num_proc_bsearch: 8 + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. + decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. + # <0: for decoding, use full chunk. + # >0: for decoding, use fixed chunk size as set. + # 0: used for training, it's prohibited here. + num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1. + simulate_streaming: true # simulate streaming inference. Defaults to False. + + diff --git a/examples/librispeech/s2/conf/conformer.yaml b/examples/librispeech/s2/conf/conformer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..955b6108b8b4861dbc85db97e07f821d3333600f --- /dev/null +++ b/examples/librispeech/s2/conf/conformer.yaml @@ -0,0 +1,116 @@ +# https://yaml.org/type/float.html +data: + train_manifest: data/manifest.train + dev_manifest: data/manifest.dev + test_manifest: data/manifest.test-clean + min_input_len: 0.5 # seconds + max_input_len: 20.0 # seconds + min_output_len: 0.0 # tokens + max_output_len: 400.0 # tokens + min_output_input_ratio: 0.05 + max_output_input_ratio: 10.0 + +collator: + vocab_filepath: data/vocab.txt + unit_type: 'spm' + spm_model_prefix: 'data/bpe_unigram_5000' + mean_std_filepath: "" + augmentation_config: conf/augmentation.json + batch_size: 16 + raw_wav: True # use raw_wav or kaldi feature + specgram_type: fbank #linear, mfcc, fbank + feat_dim: 80 + delta_delta: False + dither: 1.0 + target_sample_rate: 16000 + max_freq: None + n_fft: None + stride_ms: 10.0 + window_ms: 25.0 + use_dB_normalization: True + target_dB: -20 + random_seed: 0 + keep_transcription_text: False + sortagrad: True + shuffle_method: batch_shuffle + num_workers: 2 + + +# network architecture +model: + cmvn_file: "data/mean_std.json" + cmvn_file_type: "json" + # encoder related + encoder: conformer + encoder_conf: + output_size: 256 # dimension of attention + attention_heads: 4 + linear_units: 2048 # the number of units of position-wise feed forward + num_blocks: 12 # the number of encoder blocks + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + attention_dropout_rate: 0.0 + input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 + normalize_before: True + use_cnn_module: True + cnn_module_kernel: 15 + activation_type: 'swish' + pos_enc_layer_type: 'rel_pos' + selfattention_layer_type: 'rel_selfattn' + + # decoder related + decoder: transformer + decoder_conf: + attention_heads: 4 + linear_units: 2048 + num_blocks: 6 + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + self_attention_dropout_rate: 0.0 + src_attention_dropout_rate: 0.0 + + # hybrid CTC/attention + model_conf: + ctc_weight: 0.3 + lsm_weight: 0.1 # label smoothing option + length_normalized_loss: false + + +training: + n_epoch: 120 + accum_grad: 8 + global_grad_clip: 3.0 + optim: adam + optim_conf: + lr: 0.004 + weight_decay: 1e-06 + scheduler: warmuplr # pytorch v1.1.0+ required + scheduler_conf: + warmup_steps: 25000 + lr_decay: 1.0 + log_interval: 100 + checkpoint: + kbest_n: 50 + latest_n: 5 + + +decoding: + batch_size: 64 + error_rate_type: wer + decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring' + lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm + alpha: 2.5 + beta: 0.3 + beam_size: 10 + cutoff_prob: 1.0 + cutoff_top_n: 0 + num_proc_bsearch: 8 + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. + decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. + # <0: for decoding, use full chunk. + # >0: for decoding, use fixed chunk size as set. + # 0: used for training, it's prohibited here. + num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1. + simulate_streaming: False # simulate streaming inference. Defaults to False. + + diff --git a/examples/librispeech/s2/conf/transformer.yaml b/examples/librispeech/s2/conf/transformer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8a769dca47513f9451b1e4e9d922c778044ce309 --- /dev/null +++ b/examples/librispeech/s2/conf/transformer.yaml @@ -0,0 +1,111 @@ +# https://yaml.org/type/float.html +data: + train_manifest: data/manifest.train + dev_manifest: data/manifest.dev + test_manifest: data/manifest.test-clean + min_input_len: 0.5 # second + max_input_len: 20.0 # second + min_output_len: 0.0 # tokens + max_output_len: 400.0 # tokens + min_output_input_ratio: 0.05 + max_output_input_ratio: 10.0 + +collator: + vocab_filepath: data/vocab.txt + unit_type: 'spm' + spm_model_prefix: 'data/bpe_unigram_5000' + mean_std_filepath: "" + augmentation_config: conf/augmentation.json + batch_size: 64 + raw_wav: True # use raw_wav or kaldi feature + specgram_type: fbank #linear, mfcc, fbank + feat_dim: 80 + delta_delta: False + dither: 1.0 + target_sample_rate: 16000 + max_freq: None + n_fft: None + stride_ms: 10.0 + window_ms: 25.0 + use_dB_normalization: True + target_dB: -20 + random_seed: 0 + keep_transcription_text: False + sortagrad: True + shuffle_method: batch_shuffle + num_workers: 2 + + +# network architecture +model: + cmvn_file: "data/mean_std.json" + cmvn_file_type: "json" + # encoder related + encoder: transformer + encoder_conf: + output_size: 256 # dimension of attention + attention_heads: 4 + linear_units: 2048 # the number of units of position-wise feed forward + num_blocks: 12 # the number of encoder blocks + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + attention_dropout_rate: 0.0 + input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 + normalize_before: true + + # decoder related + decoder: transformer + decoder_conf: + attention_heads: 4 + linear_units: 2048 + num_blocks: 6 + dropout_rate: 0.1 + positional_dropout_rate: 0.1 + self_attention_dropout_rate: 0.0 + src_attention_dropout_rate: 0.0 + + # hybrid CTC/attention + model_conf: + ctc_weight: 0.3 + lsm_weight: 0.1 # label smoothing option + length_normalized_loss: false + + +training: + n_epoch: 120 + accum_grad: 2 + global_grad_clip: 5.0 + optim: adam + optim_conf: + lr: 0.004 + weight_decay: 1e-06 + scheduler: warmuplr # pytorch v1.1.0+ required + scheduler_conf: + warmup_steps: 25000 + lr_decay: 1.0 + log_interval: 100 + checkpoint: + kbest_n: 50 + latest_n: 5 + + +decoding: + batch_size: 64 + error_rate_type: wer + decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring' + lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm + alpha: 2.5 + beta: 0.3 + beam_size: 10 + cutoff_prob: 1.0 + cutoff_top_n: 0 + num_proc_bsearch: 8 + ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. + decoding_chunk_size: -1 # decoding chunk size. Defaults to -1. + # <0: for decoding, use full chunk. + # >0: for decoding, use fixed chunk size as set. + # 0: used for training, it's prohibited here. + num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1. + simulate_streaming: False # simulate streaming inference. Defaults to False. + + diff --git a/examples/librispeech/s2/local/align.sh b/examples/librispeech/s2/local/align.sh new file mode 100755 index 0000000000000000000000000000000000000000..ad6c84bc8cf398cddecfadbbb47b7ef9c60e9158 --- /dev/null +++ b/examples/librispeech/s2/local/align.sh @@ -0,0 +1,37 @@ +#!/bin/bash + +if [ $# != 2 ];then + echo "usage: ${0} config_path ckpt_path_prefix" + exit -1 +fi + +ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') +echo "using $ngpu gpus..." + +device=gpu +if [ ${ngpu} == 0 ];then + device=cpu +fi +config_path=$1 +ckpt_prefix=$2 + +batch_size=1 +output_dir=${ckpt_prefix} +mkdir -p ${output_dir} + +# align dump in `result_file` +# .tier, .TextGrid dump in `dir of result_file` +python3 -u ${BIN_DIR}/alignment.py \ +--device ${device} \ +--nproc 1 \ +--config ${config_path} \ +--result_file ${output_dir}/${type}.align \ +--checkpoint_path ${ckpt_prefix} \ +--opts decoding.batch_size ${batch_size} + +if [ $? -ne 0 ]; then + echo "Failed in ctc alignment!" + exit 1 +fi + +exit 0 diff --git a/examples/librispeech/s2/local/data.sh b/examples/librispeech/s2/local/data.sh new file mode 100755 index 0000000000000000000000000000000000000000..4ad476d3785ba8b9515d3e9eea37f3a568dc8256 --- /dev/null +++ b/examples/librispeech/s2/local/data.sh @@ -0,0 +1,111 @@ +#!/bin/bash + +stage=-1 +stop_stage=100 + +# bpemode (unigram or bpe) +nbpe=5000 +bpemode=unigram +bpeprefix="data/bpe_${bpemode}_${nbpe}" + +source ${MAIN_ROOT}/utils/parse_options.sh + + +mkdir -p data +TARGET_DIR=${MAIN_ROOT}/examples/dataset +mkdir -p ${TARGET_DIR} + +if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then + # download data, generate manifests + python3 ${TARGET_DIR}/librispeech/librispeech.py \ + --manifest_prefix="data/manifest" \ + --target_dir="${TARGET_DIR}/librispeech" \ + --full_download="True" + + if [ $? -ne 0 ]; then + echo "Prepare LibriSpeech failed. Terminated." + exit 1 + fi + + for set in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do + mv data/manifest.${set} data/manifest.${set}.raw + done + + rm -rf data/manifest.train.raw data/manifest.dev.raw data/manifest.test.raw + for set in train-clean-100 train-clean-360 train-other-500; do + cat data/manifest.${set}.raw >> data/manifest.train.raw + done + + for set in dev-clean dev-other; do + cat data/manifest.${set}.raw >> data/manifest.dev.raw + done + + for set in test-clean test-other; do + cat data/manifest.${set}.raw >> data/manifest.test.raw + done +fi + +if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then + # build vocabulary + python3 ${MAIN_ROOT}/utils/build_vocab.py \ + --unit_type "spm" \ + --spm_vocab_size=${nbpe} \ + --spm_mode ${bpemode} \ + --spm_model_prefix ${bpeprefix} \ + --vocab_path="data/vocab.txt" \ + --manifest_paths="data/manifest.train.raw" + + if [ $? -ne 0 ]; then + echo "Build vocabulary failed. Terminated." + exit 1 + fi +fi + + +if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then + # compute mean and stddev for normalizer + num_workers=$(nproc) + python3 ${MAIN_ROOT}/utils/compute_mean_std.py \ + --manifest_path="data/manifest.train.raw" \ + --num_samples=-1 \ + --specgram_type="fbank" \ + --feat_dim=80 \ + --delta_delta=false \ + --sample_rate=16000 \ + --stride_ms=10.0 \ + --window_ms=25.0 \ + --use_dB_normalization=False \ + --num_workers=${num_workers} \ + --output_path="data/mean_std.json" + + if [ $? -ne 0 ]; then + echo "Compute mean and stddev failed. Terminated." + exit 1 + fi +fi + + +if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then + # format manifest with tokenids, vocab size + for set in train dev test dev-clean dev-other test-clean test-other; do + { + python3 ${MAIN_ROOT}/utils/format_data.py \ + --feat_type "raw" \ + --cmvn_path "data/mean_std.json" \ + --unit_type "spm" \ + --spm_model_prefix ${bpeprefix} \ + --vocab_path="data/vocab.txt" \ + --manifest_path="data/manifest.${set}.raw" \ + --output_path="data/manifest.${set}" + + if [ $? -ne 0 ]; then + echo "Formt mnaifest failed. Terminated." + exit 1 + fi + }& + done + wait +fi + +echo "LibriSpeech Data preparation done." +exit 0 diff --git a/examples/librispeech/s2/local/download_lm_en.sh b/examples/librispeech/s2/local/download_lm_en.sh new file mode 100755 index 0000000000000000000000000000000000000000..dc1bdf665ac7783bc1e7344fbcbddc0b9744f44b --- /dev/null +++ b/examples/librispeech/s2/local/download_lm_en.sh @@ -0,0 +1,20 @@ +#!/bin/bash + +. ${MAIN_ROOT}/utils/utility.sh + +DIR=data/lm +mkdir -p ${DIR} + +URL=https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm +MD5="099a601759d467cd0a8523ff939819c5" +TARGET=${DIR}/common_crawl_00.prune01111.trie.klm + +echo "Download language model ..." +download $URL $MD5 $TARGET +if [ $? -ne 0 ]; then + echo "Fail to download the language model!" + exit 1 +fi + + +exit 0 diff --git a/examples/librispeech/s2/local/export.sh b/examples/librispeech/s2/local/export.sh new file mode 100755 index 0000000000000000000000000000000000000000..f99a15bade1c89f968e84a6c10d500466f884d5b --- /dev/null +++ b/examples/librispeech/s2/local/export.sh @@ -0,0 +1,34 @@ +#!/bin/bash + +if [ $# != 3 ];then + echo "usage: $0 config_path ckpt_prefix jit_model_path" + exit -1 +fi + +ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') +echo "using $ngpu gpus..." + +config_path=$1 +ckpt_path_prefix=$2 +jit_model_export_path=$3 + +device=gpu +if [ ${ngpu} == 0 ];then + device=cpu +fi + +python3 -u ${BIN_DIR}/export.py \ +--device ${device} \ +--nproc ${ngpu} \ +--config ${config_path} \ +--checkpoint_path ${ckpt_path_prefix} \ +--export_path ${jit_model_export_path} + + +if [ $? -ne 0 ]; then + echo "Failed in export!" + exit 1 +fi + + +exit 0 diff --git a/examples/librispeech/s2/local/test.sh b/examples/librispeech/s2/local/test.sh new file mode 100755 index 0000000000000000000000000000000000000000..3bd3f0bba7668b4b52be17b64bbf415d6dc627a3 --- /dev/null +++ b/examples/librispeech/s2/local/test.sh @@ -0,0 +1,72 @@ +#!/bin/bash + +if [ $# != 2 ];then + echo "usage: ${0} config_path ckpt_path_prefix" + exit -1 +fi + +ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') +echo "using $ngpu gpus..." + +device=gpu +if [ ${ngpu} == 0 ];then + device=cpu +fi + +config_path=$1 +ckpt_prefix=$2 + +chunk_mode=false +if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then + chunk_mode=true +fi +echo "chunk mode ${chunk_mode}" + + +# download language model +#bash local/download_lm_en.sh +#if [ $? -ne 0 ]; then +# exit 1 +#fi + +for type in attention ctc_greedy_search; do + echo "decoding ${type}" + if [ ${chunk_mode} == true ];then + # stream decoding only support batchsize=1 + batch_size=1 + else + batch_size=64 + fi + python3 -u ${BIN_DIR}/test.py \ + --device ${device} \ + --nproc 1 \ + --config ${config_path} \ + --result_file ${ckpt_prefix}.${type}.rsl \ + --checkpoint_path ${ckpt_prefix} \ + --opts decoding.decoding_method ${type} decoding.batch_size ${batch_size} + + if [ $? -ne 0 ]; then + echo "Failed in evaluation!" + exit 1 + fi +done + +for type in ctc_prefix_beam_search attention_rescoring; do + echo "decoding ${type}" + batch_size=1 + python3 -u ${BIN_DIR}/test.py \ + --device ${device} \ + --nproc 1 \ + --config ${config_path} \ + --result_file ${ckpt_prefix}.${type}.rsl \ + --checkpoint_path ${ckpt_prefix} \ + --opts decoding.decoding_method ${type} decoding.batch_size ${batch_size} + + if [ $? -ne 0 ]; then + echo "Failed in evaluation!" + exit 1 + fi +done + + +exit 0 diff --git a/examples/librispeech/s2/local/train.sh b/examples/librispeech/s2/local/train.sh new file mode 100755 index 0000000000000000000000000000000000000000..f3eb98daf6da6c818de1cd2fc2f56e96ff6a926c --- /dev/null +++ b/examples/librispeech/s2/local/train.sh @@ -0,0 +1,33 @@ +#!/bin/bash + +if [ $# != 2 ];then + echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name" + exit -1 +fi + +ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') +echo "using $ngpu gpus..." + +config_path=$1 +ckpt_name=$2 + +device=gpu +if [ ${ngpu} == 0 ];then + device=cpu +fi +echo "using ${device}..." + +mkdir -p exp + +python3 -u ${BIN_DIR}/train.py \ +--device ${device} \ +--nproc ${ngpu} \ +--config ${config_path} \ +--output exp/${ckpt_name} + +if [ $? -ne 0 ]; then + echo "Failed in training!" + exit 1 +fi + +exit 0 diff --git a/examples/librispeech/s2/path.sh b/examples/librispeech/s2/path.sh new file mode 100644 index 0000000000000000000000000000000000000000..22fb12559e0f9398ee13374188ce9aafb9aac4b5 --- /dev/null +++ b/examples/librispeech/s2/path.sh @@ -0,0 +1,14 @@ +export MAIN_ROOT=${PWD}/../../../ + +export PATH=${MAIN_ROOT}:${PWD}/utils:${PATH} +export LC_ALL=C + +# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C +export PYTHONIOENCODING=UTF-8 +export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH} + +export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/ + + +MODEL=u2 +export BIN_DIR=${MAIN_ROOT}/deepspeech/exps/${MODEL}/bin diff --git a/examples/librispeech/s2/run.sh b/examples/librispeech/s2/run.sh new file mode 100755 index 0000000000000000000000000000000000000000..b81e8dcfdba7fd913c163ce2bf0192e6db73d2a3 --- /dev/null +++ b/examples/librispeech/s2/run.sh @@ -0,0 +1,43 @@ +#!/bin/bash +set -e +source path.sh + +stage=0 +stop_stage=100 +conf_path=conf/transformer.yaml +avg_num=30 +source ${MAIN_ROOT}/utils/parse_options.sh || exit 1; + +avg_ckpt=avg_${avg_num} +ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}') +echo "checkpoint name ${ckpt}" + +if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then + # prepare data + bash ./local/data.sh || exit -1 +fi + +if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then + # train model, all `ckpt` under `exp` dir + CUDA_VISIBLE_DEVICES=4,5,6,7 ./local/train.sh ${conf_path} ${ckpt} +fi + +if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then + # avg n best model + avg.sh exp/${ckpt}/checkpoints ${avg_num} +fi + +if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then + # test ckpt avg_n + CUDA_VISIBLE_DEVICES=7 ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1 +fi + +if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then + # ctc alignment of test data + CUDA_VISIBLE_DEVICES=0 ./local/align.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1 +fi + +if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then + # export ckpt avg_n + CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit +fi diff --git a/examples/librispeech/s2/utils b/examples/librispeech/s2/utils new file mode 120000 index 0000000000000000000000000000000000000000..256f914abcaa47d966c44878b88a300437f110fb --- /dev/null +++ b/examples/librispeech/s2/utils @@ -0,0 +1 @@ +../../../utils/ \ No newline at end of file