# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Based on: # -------------------------------------------------------- # DARTS # Copyright (c) 2018, Hanxiao Liu. # Licensed under the Apache License, Version 2.0; # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid import paddle.fluid.layers.ops as ops from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter import math from paddle.fluid.initializer import init_on_cpu def cosine_decay(learning_rate, num_epoch, steps_one_epoch): """Applies cosine decay to the learning rate. lr = 0.5 * (math.cos(epoch * (math.pi / 120)) + 1) """ global_step = _decay_step_counter() with init_on_cpu(): decayed_lr = learning_rate * \ (ops.cos((global_step / steps_one_epoch) \ * math.pi / num_epoch) + 1)/2 return decayed_lr