reader_cifar.py 7.3 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2019 PaddlePaddle Authors. All Rig hts Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
"""
CIFAR-10 dataset.
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test images.
"""

from PIL import Image
from PIL import ImageOps
import numpy as np

J
jerrywgz 已提交
34 35 36 37
try:
    import cPickle as pickle
except:
    import pickle
J
jerrywgz 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51
import random
import utils
import paddle.fluid as fluid
import time
import os
import functools
import paddle.reader

__all__ = ['train10', 'test10']

image_size = 32
image_depth = 3
half_length = 8

J
jerrywgz 已提交
52
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
J
jerrywgz 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]


def generate_reshape_label(label, batch_size, CIFAR_CLASSES=10):
    reshape_label = np.zeros((batch_size, 1), dtype='int32')
    reshape_non_label = np.zeros(
        (batch_size * (CIFAR_CLASSES - 1), 1), dtype='int32')
    num = 0
    for i in range(batch_size):
        label_i = label[i]
        reshape_label[i] = label_i + i * CIFAR_CLASSES
        for j in range(CIFAR_CLASSES):
            if label_i != j:
                reshape_non_label[num] = \
                          j + i * CIFAR_CLASSES
                num += 1
    return reshape_label, reshape_non_label


def generate_bernoulli_number(batch_size, CIFAR_CLASSES=10):
    rcc_iters = 50
    rad_var = np.zeros((rcc_iters, batch_size, CIFAR_CLASSES - 1))
    for i in range(rcc_iters):
        bernoulli_num = np.random.binomial(size=batch_size, n=1, p=0.5)
        bernoulli_map = np.array([])
        ones = np.ones((CIFAR_CLASSES - 1, 1))
        for batch_id in range(batch_size):
            num = bernoulli_num[batch_id]
            var_id = 2 * ones * num - 1
            bernoulli_map = np.append(bernoulli_map, var_id)
        rad_var[i] = bernoulli_map.reshape((batch_size, CIFAR_CLASSES - 1))
    return rad_var.astype('float32')


def preprocess(sample, is_training, args):
J
jerrywgz 已提交
88

J
jerrywgz 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    image_array = sample.reshape(3, image_size, image_size)
    rgb_array = np.transpose(image_array, (1, 2, 0))
    img = Image.fromarray(rgb_array, 'RGB')

    if is_training:
        # pad and ramdom crop
        img = ImageOps.expand(img, (4, 4, 4, 4), fill=0)  # pad to 40 * 40 * 3
        left_top = np.random.randint(9, size=2)  # rand 0 - 8
        img = img.crop((left_top[0], left_top[1], left_top[0] + image_size,
                        left_top[1] + image_size))
        if np.random.randint(2):
            img = img.transpose(Image.FLIP_LEFT_RIGHT)

    img = np.array(img).astype(np.float32)

    # per_image_standardization
    img_float = img / 255.0
    img = (img_float - CIFAR_MEAN) / CIFAR_STD

    if is_training and args.cutout:
        center = np.random.randint(image_size, size=2)
        offset_width = max(0, center[0] - half_length)
        offset_height = max(0, center[1] - half_length)
        target_width = min(center[0] + half_length, image_size)
        target_height = min(center[1] + half_length, image_size)

        for i in range(offset_height, target_height):
            for j in range(offset_width, target_width):
                img[i][j][:] = 0.0

    img = np.transpose(img, (2, 0, 1))
    return img


def reader_creator_filepath(filename, sub_name, is_training, args):
    files = os.listdir(filename)
    names = [each_item for each_item in files if sub_name in each_item]
    names.sort()
    datasets = []
    for name in names:
        print("Reading file " + name)
J
jerrywgz 已提交
130
        batch = pickle.load(open(filename + name, 'rb'))
J
jerrywgz 已提交
131 132 133 134 135
        data = batch['data']
        labels = batch.get('labels', batch.get('fine_labels', None))
        assert labels is not None
        dataset = zip(data, labels)
        datasets.extend(dataset)
J
jerrywgz 已提交
136 137 138

    if is_training:
        random.shuffle(datasets)
J
jerrywgz 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    def read_batch(datasets, args):
        for sample, label in datasets:
            im = preprocess(sample, is_training, args)
            yield im, [int(label)]

    def reader():
        batch_data = []
        batch_label = []
        for data, label in read_batch(datasets, args):
            batch_data.append(data)
            batch_label.append(label)
            if len(batch_data) == args.batch_size:
                batch_data = np.array(batch_data, dtype='float32')
                batch_label = np.array(batch_label, dtype='int64')
                if is_training:
                    flatten_label, flatten_non_label = \
                      generate_reshape_label(batch_label, args.batch_size)
                    rad_var = generate_bernoulli_number(args.batch_size)
                    mixed_x, y_a, y_b, lam = utils.mixup_data(
                        batch_data, batch_label, args.batch_size,
                        args.mix_alpha)
                    batch_out = [[mixed_x, y_a, y_b, lam, flatten_label, \
                                flatten_non_label, rad_var]]
                    yield batch_out
                else:
                    batch_out = [[batch_data, batch_label]]
                    yield batch_out
                batch_data = []
                batch_label = []
J
jerrywgz 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        if len(batch_data) != 0:
            batch_data = np.array(batch_data, dtype='float32')
            batch_label = np.array(batch_label, dtype='int64')
            if is_training:
                flatten_label, flatten_non_label = \
                  generate_reshape_label(batch_label, len(batch_data))
                rad_var = generate_bernoulli_number(len(batch_data))
                mixed_x, y_a, y_b, lam = utils.mixup_data(
                    batch_data, batch_label, len(batch_data), args.mix_alpha)
                batch_out = [[mixed_x, y_a, y_b, lam, flatten_label, \
                            flatten_non_label, rad_var]]
                yield batch_out
            else:
                batch_out = [[batch_data, batch_label]]
                yield batch_out
            batch_data = []
            batch_label = []
J
jerrywgz 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    return reader


def train10(args):
    """
    CIFAR-10 training set creator.
    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 9].
    :return: Training reader creator
    :rtype: callable
    """

    return reader_creator_filepath(args.data, 'data_batch', True, args)


def test10(args):
    """
    CIFAR-10 test set creator.
    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 9].
    :return: Test reader creator.
    :rtype: callable
    """
    return reader_creator_filepath(args.data, 'test_batch', False, args)