import torch import tqdm import k_diffusion.sampling import numpy as np from modules import shared from modules.models.diffusion.uni_pc import uni_pc @torch.no_grad() def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0): alphas_cumprod = model.inner_model.inner_model.alphas_cumprod alphas = alphas_cumprod[timesteps] alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32) sqrt_one_minus_alphas = torch.sqrt(1 - alphas) sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy())) extra_args = {} if extra_args is None else extra_args s_in = x.new_ones((x.shape[0])) s_x = x.new_ones((x.shape[0], 1, 1, 1)) for i in tqdm.trange(len(timesteps) - 1, disable=disable): index = len(timesteps) - 1 - i e_t = model(x, timesteps[index].item() * s_in, **extra_args) a_t = alphas[index].item() * s_x a_prev = alphas_prev[index].item() * s_x sigma_t = sigmas[index].item() * s_x sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t noise = sigma_t * k_diffusion.sampling.torch.randn_like(x) x = a_prev.sqrt() * pred_x0 + dir_xt + noise if callback is not None: callback({'x': x, 'i': i, 'sigma': 0, 'sigma_hat': 0, 'denoised': pred_x0}) return x @torch.no_grad() def plms(model, x, timesteps, extra_args=None, callback=None, disable=None): alphas_cumprod = model.inner_model.inner_model.alphas_cumprod alphas = alphas_cumprod[timesteps] alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32) sqrt_one_minus_alphas = torch.sqrt(1 - alphas) extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) s_x = x.new_ones((x.shape[0], 1, 1, 1)) old_eps = [] def get_x_prev_and_pred_x0(e_t, index): # select parameters corresponding to the currently considered timestep a_t = alphas[index].item() * s_x a_prev = alphas_prev[index].item() * s_x sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() # direction pointing to x_t dir_xt = (1. - a_prev).sqrt() * e_t x_prev = a_prev.sqrt() * pred_x0 + dir_xt return x_prev, pred_x0 for i in tqdm.trange(len(timesteps) - 1, disable=disable): index = len(timesteps) - 1 - i ts = timesteps[index].item() * s_in t_next = timesteps[max(index - 1, 0)].item() * s_in e_t = model(x, ts, **extra_args) if len(old_eps) == 0: # Pseudo Improved Euler (2nd order) x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) e_t_next = model(x_prev, t_next, **extra_args) e_t_prime = (e_t + e_t_next) / 2 elif len(old_eps) == 1: # 2nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (3 * e_t - old_eps[-1]) / 2 elif len(old_eps) == 2: # 3nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 else: # 4nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) old_eps.append(e_t) if len(old_eps) >= 4: old_eps.pop(0) x = x_prev if callback is not None: callback({'x': x, 'i': i, 'sigma': 0, 'sigma_hat': 0, 'denoised': pred_x0}) return x class UniPCCFG(uni_pc.UniPC): def __init__(self, cfg_model, extra_args, callback, *args, **kwargs): super().__init__(None, *args, **kwargs) def after_update(x, model_x): callback({'x': x, 'i': self.index, 'sigma': 0, 'sigma_hat': 0, 'denoised': model_x}) self.index += 1 self.cfg_model = cfg_model self.extra_args = extra_args self.callback = callback self.index = 0 self.after_update = after_update def get_model_input_time(self, t_continuous): return (t_continuous - 1. / self.noise_schedule.total_N) * 1000. def model(self, x, t): t_input = self.get_model_input_time(t) res = self.cfg_model(x, t_input, **self.extra_args) return res def unipc(model, x, timesteps, extra_args=None, callback=None, disable=None, is_img2img=False): alphas_cumprod = model.inner_model.inner_model.alphas_cumprod ns = uni_pc.NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) t_start = timesteps[-1] / 1000 + 1 / 1000 if is_img2img else None # this is likely off by a bit - if someone wants to fix it please by all means unipc_sampler = UniPCCFG(model, extra_args, callback, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant) x = unipc_sampler.sample(x, steps=len(timesteps), t_start=t_start, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final) return x