import torch import network from lyco_helpers import factorization from einops import rearrange from modules import devices class ModuleTypeOFT(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): return NetworkModuleOFT(net, weights) return None # adapted from kohya-ss' implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py # and KohakuBlueleaf's implementation https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.lin_module = None self.org_module: list[torch.Module] = [self.sd_module] # kohya-ss if "oft_blocks" in weights.w.keys(): self.is_kohya = True self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) self.alpha = weights.w["alpha"] self.dim = self.oft_blocks.shape[0] # lora dim #self.oft_blocks = rearrange(self.oft_blocks, 'k m ... -> (k m) ...') elif "oft_diag" in weights.w.keys(): self.is_kohya = False self.oft_blocks = weights.w["oft_diag"] # (num_blocks, block_size, block_size) # alpha is rank if alpha is 0 or None if self.alpha is None: pass self.dim = self.oft_blocks.shape[1] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n] else: raise ValueError("oft_blocks or oft_diag must be in weights dict") is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] is_conv = type(self.sd_module) in [torch.nn.Conv2d] is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] if is_linear: self.out_dim = self.sd_module.out_features elif is_other_linear: self.out_dim = self.sd_module.embed_dim elif is_conv: self.out_dim = self.sd_module.out_channels else: raise ValueError("sd_module must be Linear or Conv") if self.is_kohya: #self.num_blocks = self.dim #self.block_size = self.out_dim // self.num_blocks #self.block_size = self.dim #self.num_blocks = self.out_dim // self.block_size self.constraint = self.alpha * self.out_dim self.num_blocks, self.block_size = factorization(self.out_dim, self.dim) else: self.constraint = None self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) if is_other_linear: self.lin_module = self.create_module(weights.w, "oft_diag", none_ok=True) def create_module(self, weights, key, none_ok=False): weight = weights.get(key) if weight is None and none_ok: return None is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention] is_conv = type(self.sd_module) in [torch.nn.Conv2d] if is_linear: weight = weight.reshape(weight.shape[0], -1) module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif is_conv and key == "lora_down.weight" or key == "dyn_up": if len(weight.shape) == 2: weight = weight.reshape(weight.shape[0], -1, 1, 1) if weight.shape[2] != 1 or weight.shape[3] != 1: module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False) else: module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) elif is_conv and key == "lora_mid.weight": module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False) elif is_conv and key == "lora_up.weight" or key == "dyn_down": module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) else: raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}') with torch.no_grad(): if weight.shape != module.weight.shape: weight = weight.reshape(module.weight.shape) module.weight.copy_(weight) module.to(device=devices.cpu, dtype=devices.dtype) module.weight.requires_grad_(False) return module def merge_weight(self, R_weight, org_weight): R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype) if org_weight.dim() == 4: weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight) else: weight = torch.einsum("oi, op -> pi", org_weight, R_weight) return weight def get_weight(self, oft_blocks, multiplier=None): if self.constraint is not None: constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype) block_Q = oft_blocks - oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) if self.constraint is not None: new_norm_Q = torch.clamp(norm_Q, max=constraint) else: new_norm_Q = norm_Q block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) m_I = torch.eye(self.num_blocks, device=oft_blocks.device).unsqueeze(0).repeat(self.block_size, 1, 1) #m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse()) block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I R = torch.block_diag(*block_R_weighted) return R def calc_updown_kohya(self, orig_weight, multiplier): R = self.get_weight(self.oft_blocks, multiplier) merged_weight = self.merge_weight(R, orig_weight) updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight output_shape = orig_weight.shape orig_weight = orig_weight return self.finalize_updown(updown, orig_weight, output_shape) def calc_updown_kb(self, orig_weight, multiplier): is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] if not is_other_linear: #if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]: # orig_weight=orig_weight.permute(1, 0) oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) # without this line the results are significantly worse / less accurate oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device) merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) merged_weight = torch.einsum( 'k n m, k n ... -> k m ...', R, merged_weight ) merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') #if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]: # orig_weight=orig_weight.permute(1, 0) updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight output_shape = orig_weight.shape else: # FIXME: skip MultiheadAttention for now #up = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype) updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype) output_shape = (orig_weight.shape[1], orig_weight.shape[1]) return self.finalize_updown(updown, orig_weight, output_shape) def calc_updown(self, orig_weight): multiplier = self.multiplier() * self.calc_scale() #if self.is_kohya: # return self.calc_updown_kohya(orig_weight, multiplier) #else: return self.calc_updown_kb(orig_weight, multiplier) # override to remove the multiplier/scale factor; it's already multiplied in get_weight def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): #return super().finalize_updown(updown, orig_weight, output_shape, ex_bias) if self.bias is not None: updown = updown.reshape(self.bias.shape) updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) updown = updown.reshape(output_shape) if len(output_shape) == 4: updown = updown.reshape(output_shape) if orig_weight.size().numel() == updown.size().numel(): updown = updown.reshape(orig_weight.shape) if ex_bias is not None: ex_bias = ex_bias * self.multiplier() return updown, ex_bias