/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include "ssl_locl.h" #include #include #include #include #include #include #include #include #include const char SSL_version_str[] = OPENSSL_VERSION_TEXT; SSL3_ENC_METHOD ssl3_undef_enc_method = { /* * evil casts, but these functions are only called if there's a library * bug */ (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function, (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function, ssl_undefined_function, (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *)) ssl_undefined_function, (int (*)(SSL *, int))ssl_undefined_function, (size_t (*)(SSL *, const char *, size_t, unsigned char *)) ssl_undefined_function, NULL, /* client_finished_label */ 0, /* client_finished_label_len */ NULL, /* server_finished_label */ 0, /* server_finished_label_len */ (int (*)(int))ssl_undefined_function, (int (*)(SSL *, unsigned char *, size_t, const char *, size_t, const unsigned char *, size_t, int use_context))ssl_undefined_function, }; struct ssl_async_args { SSL *s; void *buf; size_t num; enum { READFUNC, WRITEFUNC, OTHERFUNC } type; union { int (*func_read) (SSL *, void *, size_t, size_t *); int (*func_write) (SSL *, const void *, size_t, size_t *); int (*func_other) (SSL *); } f; }; static const struct { uint8_t mtype; uint8_t ord; int nid; } dane_mds[] = { { DANETLS_MATCHING_FULL, 0, NID_undef }, { DANETLS_MATCHING_2256, 1, NID_sha256 }, { DANETLS_MATCHING_2512, 2, NID_sha512 }, }; static int dane_ctx_enable(struct dane_ctx_st *dctx) { const EVP_MD **mdevp; uint8_t *mdord; uint8_t mdmax = DANETLS_MATCHING_LAST; int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ size_t i; if (dctx->mdevp != NULL) return 1; mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); mdord = OPENSSL_zalloc(n * sizeof(*mdord)); if (mdord == NULL || mdevp == NULL) { OPENSSL_free(mdord); OPENSSL_free(mdevp); SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE); return 0; } /* Install default entries */ for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { const EVP_MD *md; if (dane_mds[i].nid == NID_undef || (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) continue; mdevp[dane_mds[i].mtype] = md; mdord[dane_mds[i].mtype] = dane_mds[i].ord; } dctx->mdevp = mdevp; dctx->mdord = mdord; dctx->mdmax = mdmax; return 1; } static void dane_ctx_final(struct dane_ctx_st *dctx) { OPENSSL_free(dctx->mdevp); dctx->mdevp = NULL; OPENSSL_free(dctx->mdord); dctx->mdord = NULL; dctx->mdmax = 0; } static void tlsa_free(danetls_record *t) { if (t == NULL) return; OPENSSL_free(t->data); EVP_PKEY_free(t->spki); OPENSSL_free(t); } static void dane_final(SSL_DANE *dane) { sk_danetls_record_pop_free(dane->trecs, tlsa_free); dane->trecs = NULL; sk_X509_pop_free(dane->certs, X509_free); dane->certs = NULL; X509_free(dane->mcert); dane->mcert = NULL; dane->mtlsa = NULL; dane->mdpth = -1; dane->pdpth = -1; } /* * dane_copy - Copy dane configuration, sans verification state. */ static int ssl_dane_dup(SSL *to, SSL *from) { int num; int i; if (!DANETLS_ENABLED(&from->dane)) return 1; dane_final(&to->dane); to->dane.flags = from->dane.flags; to->dane.dctx = &to->ctx->dane; to->dane.trecs = sk_danetls_record_new_null(); if (to->dane.trecs == NULL) { SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE); return 0; } num = sk_danetls_record_num(from->dane.trecs); for (i = 0; i < num; ++i) { danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype, t->data, t->dlen) <= 0) return 0; } return 1; } static int dane_mtype_set(struct dane_ctx_st *dctx, const EVP_MD *md, uint8_t mtype, uint8_t ord) { int i; if (mtype == DANETLS_MATCHING_FULL && md != NULL) { SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); return 0; } if (mtype > dctx->mdmax) { const EVP_MD **mdevp; uint8_t *mdord; int n = ((int)mtype) + 1; mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); if (mdevp == NULL) { SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); return -1; } dctx->mdevp = mdevp; mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); if (mdord == NULL) { SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE); return -1; } dctx->mdord = mdord; /* Zero-fill any gaps */ for (i = dctx->mdmax + 1; i < mtype; ++i) { mdevp[i] = NULL; mdord[i] = 0; } dctx->mdmax = mtype; } dctx->mdevp[mtype] = md; /* Coerce ordinal of disabled matching types to 0 */ dctx->mdord[mtype] = (md == NULL) ? 0 : ord; return 1; } static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) { if (mtype > dane->dctx->mdmax) return NULL; return dane->dctx->mdevp[mtype]; } static int dane_tlsa_add(SSL_DANE *dane, uint8_t usage, uint8_t selector, uint8_t mtype, unsigned char *data, size_t dlen) { danetls_record *t; const EVP_MD *md = NULL; int ilen = (int)dlen; int i; int num; if (dane->trecs == NULL) { SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED); return -1; } if (ilen < 0 || dlen != (size_t)ilen) { SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); return 0; } if (usage > DANETLS_USAGE_LAST) { SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); return 0; } if (selector > DANETLS_SELECTOR_LAST) { SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR); return 0; } if (mtype != DANETLS_MATCHING_FULL) { md = tlsa_md_get(dane, mtype); if (md == NULL) { SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); return 0; } } if (md != NULL && dlen != (size_t)EVP_MD_size(md)) { SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); return 0; } if (!data) { SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA); return 0; } if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) { SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); return -1; } t->usage = usage; t->selector = selector; t->mtype = mtype; t->data = OPENSSL_malloc(dlen); if (t->data == NULL) { tlsa_free(t); SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); return -1; } memcpy(t->data, data, dlen); t->dlen = dlen; /* Validate and cache full certificate or public key */ if (mtype == DANETLS_MATCHING_FULL) { const unsigned char *p = data; X509 *cert = NULL; EVP_PKEY *pkey = NULL; switch (selector) { case DANETLS_SELECTOR_CERT: if (!d2i_X509(&cert, &p, ilen) || p < data || dlen != (size_t)(p - data)) { tlsa_free(t); SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); return 0; } if (X509_get0_pubkey(cert) == NULL) { tlsa_free(t); SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE); return 0; } if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { X509_free(cert); break; } /* * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA * records that contain full certificates of trust-anchors that are * not present in the wire chain. For usage PKIX-TA(0), we augment * the chain with untrusted Full(0) certificates from DNS, in case * they are missing from the chain. */ if ((dane->certs == NULL && (dane->certs = sk_X509_new_null()) == NULL) || !sk_X509_push(dane->certs, cert)) { SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); X509_free(cert); tlsa_free(t); return -1; } break; case DANETLS_SELECTOR_SPKI: if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || dlen != (size_t)(p - data)) { tlsa_free(t); SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); return 0; } /* * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA * records that contain full bare keys of trust-anchors that are * not present in the wire chain. */ if (usage == DANETLS_USAGE_DANE_TA) t->spki = pkey; else EVP_PKEY_free(pkey); break; } } /*- * Find the right insertion point for the new record. * * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that * they can be processed first, as they require no chain building, and no * expiration or hostname checks. Because DANE-EE(3) is numerically * largest, this is accomplished via descending sort by "usage". * * We also sort in descending order by matching ordinal to simplify * the implementation of digest agility in the verification code. * * The choice of order for the selector is not significant, so we * use the same descending order for consistency. */ num = sk_danetls_record_num(dane->trecs); for (i = 0; i < num; ++i) { danetls_record *rec = sk_danetls_record_value(dane->trecs, i); if (rec->usage > usage) continue; if (rec->usage < usage) break; if (rec->selector > selector) continue; if (rec->selector < selector) break; if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) continue; break; } if (!sk_danetls_record_insert(dane->trecs, t, i)) { tlsa_free(t); SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE); return -1; } dane->umask |= DANETLS_USAGE_BIT(usage); return 1; } static void clear_ciphers(SSL *s) { /* clear the current cipher */ ssl_clear_cipher_ctx(s); ssl_clear_hash_ctx(&s->read_hash); ssl_clear_hash_ctx(&s->write_hash); } int SSL_clear(SSL *s) { if (s->method == NULL) { SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED); return (0); } if (ssl_clear_bad_session(s)) { SSL_SESSION_free(s->session); s->session = NULL; } s->error = 0; s->hit = 0; s->shutdown = 0; if (s->renegotiate) { SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR); return 0; } ossl_statem_clear(s); s->version = s->method->version; s->client_version = s->version; s->rwstate = SSL_NOTHING; BUF_MEM_free(s->init_buf); s->init_buf = NULL; clear_ciphers(s); s->first_packet = 0; s->key_update = SSL_KEY_UPDATE_NONE; /* Reset DANE verification result state */ s->dane.mdpth = -1; s->dane.pdpth = -1; X509_free(s->dane.mcert); s->dane.mcert = NULL; s->dane.mtlsa = NULL; /* Clear the verification result peername */ X509_VERIFY_PARAM_move_peername(s->param, NULL); /* * Check to see if we were changed into a different method, if so, revert * back if we are not doing session-id reuse. */ if (!ossl_statem_get_in_handshake(s) && (s->session == NULL) && (s->method != s->ctx->method)) { s->method->ssl_free(s); s->method = s->ctx->method; if (!s->method->ssl_new(s)) return (0); } else s->method->ssl_clear(s); RECORD_LAYER_clear(&s->rlayer); return (1); } /** Used to change an SSL_CTXs default SSL method type */ int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) { STACK_OF(SSL_CIPHER) *sk; ctx->method = meth; sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list), &(ctx->cipher_list_by_id), SSL_DEFAULT_CIPHER_LIST, ctx->cert); if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); return (0); } return (1); } SSL *SSL_new(SSL_CTX *ctx) { SSL *s; if (ctx == NULL) { SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX); return (NULL); } if (ctx->method == NULL) { SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); return (NULL); } s = OPENSSL_zalloc(sizeof(*s)); if (s == NULL) goto err; s->lock = CRYPTO_THREAD_lock_new(); if (s->lock == NULL) { SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(s); return NULL; } RECORD_LAYER_init(&s->rlayer, s); s->options = ctx->options; s->dane.flags = ctx->dane.flags; s->min_proto_version = ctx->min_proto_version; s->max_proto_version = ctx->max_proto_version; s->mode = ctx->mode; s->max_cert_list = ctx->max_cert_list; s->references = 1; s->max_early_data = ctx->max_early_data; /* * Earlier library versions used to copy the pointer to the CERT, not * its contents; only when setting new parameters for the per-SSL * copy, ssl_cert_new would be called (and the direct reference to * the per-SSL_CTX settings would be lost, but those still were * indirectly accessed for various purposes, and for that reason they * used to be known as s->ctx->default_cert). Now we don't look at the * SSL_CTX's CERT after having duplicated it once. */ s->cert = ssl_cert_dup(ctx->cert); if (s->cert == NULL) goto err; RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); s->msg_callback = ctx->msg_callback; s->msg_callback_arg = ctx->msg_callback_arg; s->verify_mode = ctx->verify_mode; s->not_resumable_session_cb = ctx->not_resumable_session_cb; s->sid_ctx_length = ctx->sid_ctx_length; OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx); memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); s->verify_callback = ctx->default_verify_callback; s->generate_session_id = ctx->generate_session_id; s->param = X509_VERIFY_PARAM_new(); if (s->param == NULL) goto err; X509_VERIFY_PARAM_inherit(s->param, ctx->param); s->quiet_shutdown = ctx->quiet_shutdown; s->max_send_fragment = ctx->max_send_fragment; s->split_send_fragment = ctx->split_send_fragment; s->max_pipelines = ctx->max_pipelines; if (s->max_pipelines > 1) RECORD_LAYER_set_read_ahead(&s->rlayer, 1); if (ctx->default_read_buf_len > 0) SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len); SSL_CTX_up_ref(ctx); s->ctx = ctx; s->ext.debug_cb = 0; s->ext.debug_arg = NULL; s->ext.ticket_expected = 0; s->ext.status_type = ctx->ext.status_type; s->ext.status_expected = 0; s->ext.ocsp.ids = NULL; s->ext.ocsp.exts = NULL; s->ext.ocsp.resp = NULL; s->ext.ocsp.resp_len = 0; SSL_CTX_up_ref(ctx); s->session_ctx = ctx; #ifndef OPENSSL_NO_EC if (ctx->ext.ecpointformats) { s->ext.ecpointformats = OPENSSL_memdup(ctx->ext.ecpointformats, ctx->ext.ecpointformats_len); if (!s->ext.ecpointformats) goto err; s->ext.ecpointformats_len = ctx->ext.ecpointformats_len; } if (ctx->ext.supportedgroups) { s->ext.supportedgroups = OPENSSL_memdup(ctx->ext.supportedgroups, ctx->ext.supportedgroups_len); if (!s->ext.supportedgroups) goto err; s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG s->ext.npn = NULL; #endif if (s->ctx->ext.alpn) { s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len); if (s->ext.alpn == NULL) goto err; memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len); s->ext.alpn_len = s->ctx->ext.alpn_len; } s->verified_chain = NULL; s->verify_result = X509_V_OK; s->default_passwd_callback = ctx->default_passwd_callback; s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; s->method = ctx->method; s->key_update = SSL_KEY_UPDATE_NONE; if (!s->method->ssl_new(s)) goto err; s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1; if (!SSL_clear(s)) goto err; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data)) goto err; #ifndef OPENSSL_NO_PSK s->psk_client_callback = ctx->psk_client_callback; s->psk_server_callback = ctx->psk_server_callback; #endif s->job = NULL; #ifndef OPENSSL_NO_CT if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback, ctx->ct_validation_callback_arg)) goto err; #endif return s; err: SSL_free(s); SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE); return NULL; } int SSL_is_dtls(const SSL *s) { return SSL_IS_DTLS(s) ? 1 : 0; } int SSL_up_ref(SSL *s) { int i; if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0) return 0; REF_PRINT_COUNT("SSL", s); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, unsigned int sid_ctx_len) { if (sid_ctx_len > sizeof ctx->sid_ctx) { SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } ctx->sid_ctx_length = sid_ctx_len; memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, unsigned int sid_ctx_len) { if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } ssl->sid_ctx_length = sid_ctx_len; memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) { CRYPTO_THREAD_write_lock(ctx->lock); ctx->generate_session_id = cb; CRYPTO_THREAD_unlock(ctx->lock); return 1; } int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) { CRYPTO_THREAD_write_lock(ssl->lock); ssl->generate_session_id = cb; CRYPTO_THREAD_unlock(ssl->lock); return 1; } int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, unsigned int id_len) { /* * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how * we can "construct" a session to give us the desired check - ie. to * find if there's a session in the hash table that would conflict with * any new session built out of this id/id_len and the ssl_version in use * by this SSL. */ SSL_SESSION r, *p; if (id_len > sizeof r.session_id) return 0; r.ssl_version = ssl->version; r.session_id_length = id_len; memcpy(r.session_id, id, id_len); CRYPTO_THREAD_read_lock(ssl->session_ctx->lock); p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r); CRYPTO_THREAD_unlock(ssl->session_ctx->lock); return (p != NULL); } int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) { return X509_VERIFY_PARAM_set_purpose(s->param, purpose); } int SSL_set_purpose(SSL *s, int purpose) { return X509_VERIFY_PARAM_set_purpose(s->param, purpose); } int SSL_CTX_set_trust(SSL_CTX *s, int trust) { return X509_VERIFY_PARAM_set_trust(s->param, trust); } int SSL_set_trust(SSL *s, int trust) { return X509_VERIFY_PARAM_set_trust(s->param, trust); } int SSL_set1_host(SSL *s, const char *hostname) { return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0); } int SSL_add1_host(SSL *s, const char *hostname) { return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0); } void SSL_set_hostflags(SSL *s, unsigned int flags) { X509_VERIFY_PARAM_set_hostflags(s->param, flags); } const char *SSL_get0_peername(SSL *s) { return X509_VERIFY_PARAM_get0_peername(s->param); } int SSL_CTX_dane_enable(SSL_CTX *ctx) { return dane_ctx_enable(&ctx->dane); } unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) { unsigned long orig = ctx->dane.flags; ctx->dane.flags |= flags; return orig; } unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) { unsigned long orig = ctx->dane.flags; ctx->dane.flags &= ~flags; return orig; } int SSL_dane_enable(SSL *s, const char *basedomain) { SSL_DANE *dane = &s->dane; if (s->ctx->dane.mdmax == 0) { SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED); return 0; } if (dane->trecs != NULL) { SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED); return 0; } /* * Default SNI name. This rejects empty names, while set1_host below * accepts them and disables host name checks. To avoid side-effects with * invalid input, set the SNI name first. */ if (s->ext.hostname == NULL) { if (!SSL_set_tlsext_host_name(s, basedomain)) { SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); return -1; } } /* Primary RFC6125 reference identifier */ if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) { SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); return -1; } dane->mdpth = -1; dane->pdpth = -1; dane->dctx = &s->ctx->dane; dane->trecs = sk_danetls_record_new_null(); if (dane->trecs == NULL) { SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE); return -1; } return 1; } unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) { unsigned long orig = ssl->dane.flags; ssl->dane.flags |= flags; return orig; } unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) { unsigned long orig = ssl->dane.flags; ssl->dane.flags &= ~flags; return orig; } int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) { SSL_DANE *dane = &s->dane; if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) return -1; if (dane->mtlsa) { if (mcert) *mcert = dane->mcert; if (mspki) *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; } return dane->mdpth; } int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, uint8_t *mtype, unsigned const char **data, size_t *dlen) { SSL_DANE *dane = &s->dane; if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK) return -1; if (dane->mtlsa) { if (usage) *usage = dane->mtlsa->usage; if (selector) *selector = dane->mtlsa->selector; if (mtype) *mtype = dane->mtlsa->mtype; if (data) *data = dane->mtlsa->data; if (dlen) *dlen = dane->mtlsa->dlen; } return dane->mdpth; } SSL_DANE *SSL_get0_dane(SSL *s) { return &s->dane; } int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, uint8_t mtype, unsigned char *data, size_t dlen) { return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen); } int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, uint8_t ord) { return dane_mtype_set(&ctx->dane, md, mtype, ord); } int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) { return X509_VERIFY_PARAM_set1(ctx->param, vpm); } int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) { return X509_VERIFY_PARAM_set1(ssl->param, vpm); } X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { return ctx->param; } X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { return ssl->param; } void SSL_certs_clear(SSL *s) { ssl_cert_clear_certs(s->cert); } void SSL_free(SSL *s) { int i; if (s == NULL) return; CRYPTO_DOWN_REF(&s->references, &i, s->lock); REF_PRINT_COUNT("SSL", s); if (i > 0) return; REF_ASSERT_ISNT(i < 0); X509_VERIFY_PARAM_free(s->param); dane_final(&s->dane); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); ssl_free_wbio_buffer(s); BIO_free_all(s->wbio); BIO_free_all(s->rbio); BUF_MEM_free(s->init_buf); /* add extra stuff */ sk_SSL_CIPHER_free(s->cipher_list); sk_SSL_CIPHER_free(s->cipher_list_by_id); /* Make the next call work :-) */ if (s->session != NULL) { ssl_clear_bad_session(s); SSL_SESSION_free(s->session); } clear_ciphers(s); ssl_cert_free(s->cert); /* Free up if allocated */ OPENSSL_free(s->ext.hostname); SSL_CTX_free(s->session_ctx); #ifndef OPENSSL_NO_EC OPENSSL_free(s->ext.ecpointformats); OPENSSL_free(s->ext.supportedgroups); #endif /* OPENSSL_NO_EC */ sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); #ifndef OPENSSL_NO_OCSP sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); #endif #ifndef OPENSSL_NO_CT SCT_LIST_free(s->scts); OPENSSL_free(s->ext.scts); #endif OPENSSL_free(s->ext.ocsp.resp); OPENSSL_free(s->ext.alpn); OPENSSL_free(s->clienthello); sk_X509_NAME_pop_free(s->client_CA, X509_NAME_free); sk_X509_pop_free(s->verified_chain, X509_free); if (s->method != NULL) s->method->ssl_free(s); RECORD_LAYER_release(&s->rlayer); SSL_CTX_free(s->ctx); ASYNC_WAIT_CTX_free(s->waitctx); #if !defined(OPENSSL_NO_NEXTPROTONEG) OPENSSL_free(s->ext.npn); #endif #ifndef OPENSSL_NO_SRTP sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); #endif CRYPTO_THREAD_lock_free(s->lock); OPENSSL_free(s); } void SSL_set0_rbio(SSL *s, BIO *rbio) { BIO_free_all(s->rbio); s->rbio = rbio; } void SSL_set0_wbio(SSL *s, BIO *wbio) { /* * If the output buffering BIO is still in place, remove it */ if (s->bbio != NULL) s->wbio = BIO_pop(s->wbio); BIO_free_all(s->wbio); s->wbio = wbio; /* Re-attach |bbio| to the new |wbio|. */ if (s->bbio != NULL) s->wbio = BIO_push(s->bbio, s->wbio); } void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) { /* * For historical reasons, this function has many different cases in * ownership handling. */ /* If nothing has changed, do nothing */ if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) return; /* * If the two arguments are equal then one fewer reference is granted by the * caller than we want to take */ if (rbio != NULL && rbio == wbio) BIO_up_ref(rbio); /* * If only the wbio is changed only adopt one reference. */ if (rbio == SSL_get_rbio(s)) { SSL_set0_wbio(s, wbio); return; } /* * There is an asymmetry here for historical reasons. If only the rbio is * changed AND the rbio and wbio were originally different, then we only * adopt one reference. */ if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { SSL_set0_rbio(s, rbio); return; } /* Otherwise, adopt both references. */ SSL_set0_rbio(s, rbio); SSL_set0_wbio(s, wbio); } BIO *SSL_get_rbio(const SSL *s) { return s->rbio; } BIO *SSL_get_wbio(const SSL *s) { if (s->bbio != NULL) { /* * If |bbio| is active, the true caller-configured BIO is its * |next_bio|. */ return BIO_next(s->bbio); } return s->wbio; } int SSL_get_fd(const SSL *s) { return SSL_get_rfd(s); } int SSL_get_rfd(const SSL *s) { int ret = -1; BIO *b, *r; b = SSL_get_rbio(s); r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); if (r != NULL) BIO_get_fd(r, &ret); return (ret); } int SSL_get_wfd(const SSL *s) { int ret = -1; BIO *b, *r; b = SSL_get_wbio(s); r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); if (r != NULL) BIO_get_fd(r, &ret); return (ret); } #ifndef OPENSSL_NO_SOCK int SSL_set_fd(SSL *s, int fd) { int ret = 0; BIO *bio = NULL; bio = BIO_new(BIO_s_socket()); if (bio == NULL) { SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB); goto err; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set_bio(s, bio, bio); ret = 1; err: return (ret); } int SSL_set_wfd(SSL *s, int fd) { BIO *rbio = SSL_get_rbio(s); if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET || (int)BIO_get_fd(rbio, NULL) != fd) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_wbio(s, bio); } else { BIO_up_ref(rbio); SSL_set0_wbio(s, rbio); } return 1; } int SSL_set_rfd(SSL *s, int fd) { BIO *wbio = SSL_get_wbio(s); if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET || ((int)BIO_get_fd(wbio, NULL) != fd)) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_rbio(s, bio); } else { BIO_up_ref(wbio); SSL_set0_rbio(s, wbio); } return 1; } #endif /* return length of latest Finished message we sent, copy to 'buf' */ size_t SSL_get_finished(const SSL *s, void *buf, size_t count) { size_t ret = 0; if (s->s3 != NULL) { ret = s->s3->tmp.finish_md_len; if (count > ret) count = ret; memcpy(buf, s->s3->tmp.finish_md, count); } return ret; } /* return length of latest Finished message we expected, copy to 'buf' */ size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) { size_t ret = 0; if (s->s3 != NULL) { ret = s->s3->tmp.peer_finish_md_len; if (count > ret) count = ret; memcpy(buf, s->s3->tmp.peer_finish_md, count); } return ret; } int SSL_get_verify_mode(const SSL *s) { return (s->verify_mode); } int SSL_get_verify_depth(const SSL *s) { return X509_VERIFY_PARAM_get_depth(s->param); } int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { return (s->verify_callback); } int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { return (ctx->verify_mode); } int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) { return X509_VERIFY_PARAM_get_depth(ctx->param); } int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { return (ctx->default_verify_callback); } void SSL_set_verify(SSL *s, int mode, int (*callback) (int ok, X509_STORE_CTX *ctx)) { s->verify_mode = mode; if (callback != NULL) s->verify_callback = callback; } void SSL_set_verify_depth(SSL *s, int depth) { X509_VERIFY_PARAM_set_depth(s->param, depth); } void SSL_set_read_ahead(SSL *s, int yes) { RECORD_LAYER_set_read_ahead(&s->rlayer, yes); } int SSL_get_read_ahead(const SSL *s) { return RECORD_LAYER_get_read_ahead(&s->rlayer); } int SSL_pending(const SSL *s) { size_t pending = s->method->ssl_pending(s); /* * SSL_pending cannot work properly if read-ahead is enabled * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is * impossible to fix since SSL_pending cannot report errors that may be * observed while scanning the new data. (Note that SSL_pending() is * often used as a boolean value, so we'd better not return -1.) * * SSL_pending also cannot work properly if the value >INT_MAX. In that case * we just return INT_MAX. */ return pending < INT_MAX ? (int)pending : INT_MAX; } int SSL_has_pending(const SSL *s) { /* * Similar to SSL_pending() but returns a 1 to indicate that we have * unprocessed data available or 0 otherwise (as opposed to the number of * bytes available). Unlike SSL_pending() this will take into account * read_ahead data. A 1 return simply indicates that we have unprocessed * data. That data may not result in any application data, or we may fail * to parse the records for some reason. */ if (SSL_pending(s)) return 1; return RECORD_LAYER_read_pending(&s->rlayer); } X509 *SSL_get_peer_certificate(const SSL *s) { X509 *r; if ((s == NULL) || (s->session == NULL)) r = NULL; else r = s->session->peer; if (r == NULL) return (r); X509_up_ref(r); return (r); } STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) { STACK_OF(X509) *r; if ((s == NULL) || (s->session == NULL)) r = NULL; else r = s->session->peer_chain; /* * If we are a client, cert_chain includes the peer's own certificate; if * we are a server, it does not. */ return (r); } /* * Now in theory, since the calling process own 't' it should be safe to * modify. We need to be able to read f without being hassled */ int SSL_copy_session_id(SSL *t, const SSL *f) { int i; /* Do we need to to SSL locking? */ if (!SSL_set_session(t, SSL_get_session(f))) { return 0; } /* * what if we are setup for one protocol version but want to talk another */ if (t->method != f->method) { t->method->ssl_free(t); t->method = f->method; if (t->method->ssl_new(t) == 0) return 0; } CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock); ssl_cert_free(t->cert); t->cert = f->cert; if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) { return 0; } return 1; } /* Fix this so it checks all the valid key/cert options */ int SSL_CTX_check_private_key(const SSL_CTX *ctx) { if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); return (0); } if (ctx->cert->key->privatekey == NULL) { SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return (0); } return (X509_check_private_key (ctx->cert->key->x509, ctx->cert->key->privatekey)); } /* Fix this function so that it takes an optional type parameter */ int SSL_check_private_key(const SSL *ssl) { if (ssl == NULL) { SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER); return (0); } if (ssl->cert->key->x509 == NULL) { SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED); return (0); } if (ssl->cert->key->privatekey == NULL) { SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return (0); } return (X509_check_private_key(ssl->cert->key->x509, ssl->cert->key->privatekey)); } int SSL_waiting_for_async(SSL *s) { if (s->job) return 1; return 0; } int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) { ASYNC_WAIT_CTX *ctx = s->waitctx; if (ctx == NULL) return 0; return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); } int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, OSSL_ASYNC_FD *delfd, size_t *numdelfds) { ASYNC_WAIT_CTX *ctx = s->waitctx; if (ctx == NULL) return 0; return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, numdelfds); } int SSL_accept(SSL *s) { if (s->handshake_func == NULL) { /* Not properly initialized yet */ SSL_set_accept_state(s); } return SSL_do_handshake(s); } int SSL_connect(SSL *s) { if (s->handshake_func == NULL) { /* Not properly initialized yet */ SSL_set_connect_state(s); } return SSL_do_handshake(s); } long SSL_get_default_timeout(const SSL *s) { return (s->method->get_timeout()); } static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, int (*func) (void *)) { int ret; if (s->waitctx == NULL) { s->waitctx = ASYNC_WAIT_CTX_new(); if (s->waitctx == NULL) return -1; } switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args, sizeof(struct ssl_async_args))) { case ASYNC_ERR: s->rwstate = SSL_NOTHING; SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC); return -1; case ASYNC_PAUSE: s->rwstate = SSL_ASYNC_PAUSED; return -1; case ASYNC_NO_JOBS: s->rwstate = SSL_ASYNC_NO_JOBS; return -1; case ASYNC_FINISH: s->job = NULL; return ret; default: s->rwstate = SSL_NOTHING; SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR); /* Shouldn't happen */ return -1; } } static int ssl_io_intern(void *vargs) { struct ssl_async_args *args; SSL *s; void *buf; size_t num; args = (struct ssl_async_args *)vargs; s = args->s; buf = args->buf; num = args->num; switch (args->type) { case READFUNC: return args->f.func_read(s, buf, num, &s->asyncrw); case WRITEFUNC: return args->f.func_write(s, buf, num, &s->asyncrw); case OTHERFUNC: return args->f.func_other(s); } return -1; } int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) { if (s->handshake_func == NULL) { SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED); return -1; } if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { s->rwstate = SSL_NOTHING; return 0; } if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; int ret; args.s = s; args.buf = buf; args.num = num; args.type = READFUNC; args.f.func_read = s->method->ssl_read; ret = ssl_start_async_job(s, &args, ssl_io_intern); *readbytes = s->asyncrw; return ret; } else { return s->method->ssl_read(s, buf, num, readbytes); } } int SSL_read(SSL *s, void *buf, int num) { int ret; size_t readbytes; if (num < 0) { SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH); return -1; } ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); /* * The cast is safe here because ret should be <= INT_MAX because num is * <= INT_MAX */ if (ret > 0) ret = (int)readbytes; return ret; } int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) { int ret = ssl_read_internal(s, buf, num, readbytes); if (ret < 0) ret = 0; return ret; } int SSL_read_early(SSL *s, void *buf, size_t num, size_t *readbytes) { int ret; if (!s->server) { SSLerr(SSL_F_SSL_READ_EARLY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return SSL_READ_EARLY_ERROR; } /* * TODO(TLS1.3): Somehow we need to check that we're not receiving too much * data */ switch (s->early_data_state) { case SSL_EARLY_DATA_NONE: if (!SSL_in_before(s)) { SSLerr(SSL_F_SSL_READ_EARLY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return SSL_READ_EARLY_ERROR; } /* fall through */ case SSL_EARLY_DATA_ACCEPT_RETRY: s->early_data_state = SSL_EARLY_DATA_ACCEPTING; ret = SSL_accept(s); if (ret <= 0) { /* NBIO or error */ s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; return SSL_READ_EARLY_ERROR; } /* fall through */ case SSL_EARLY_DATA_READ_RETRY: if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { s->early_data_state = SSL_EARLY_DATA_READING; ret = SSL_read_ex(s, buf, num, readbytes); /* * Record layer will call ssl_end_of_early_data_seen() if we see * that alert - which updates the early_data_state to * SSL_EARLY_DATA_FINISHED_READING */ if (ret > 0 || (ret <= 0 && s->early_data_state != SSL_EARLY_DATA_FINISHED_READING)) { s->early_data_state = SSL_EARLY_DATA_READ_RETRY; return ret > 0 ? SSL_READ_EARLY_SUCCESS : SSL_READ_EARLY_ERROR; } } else { s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; } *readbytes = 0; ossl_statem_set_in_init(s, 1); return SSL_READ_EARLY_FINISH; default: SSLerr(SSL_F_SSL_READ_EARLY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return SSL_READ_EARLY_ERROR; } } int ssl_end_of_early_data_seen(SSL *s) { if (s->early_data_state == SSL_EARLY_DATA_READING) { s->early_data_state = SSL_EARLY_DATA_FINISHED_READING; return 1; } return 0; } static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) { if (s->handshake_func == NULL) { SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED); return -1; } if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { return 0; } if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; int ret; args.s = s; args.buf = buf; args.num = num; args.type = READFUNC; args.f.func_read = s->method->ssl_peek; ret = ssl_start_async_job(s, &args, ssl_io_intern); *readbytes = s->asyncrw; return ret; } else { return s->method->ssl_peek(s, buf, num, readbytes); } } int SSL_peek(SSL *s, void *buf, int num) { int ret; size_t readbytes; if (num < 0) { SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH); return -1; } ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); /* * The cast is safe here because ret should be <= INT_MAX because num is * <= INT_MAX */ if (ret > 0) ret = (int)readbytes; return ret; } int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) { int ret = ssl_peek_internal(s, buf, num, readbytes); if (ret < 0) ret = 0; return ret; } int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written) { if (s->handshake_func == NULL) { SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED); return -1; } if (s->shutdown & SSL_SENT_SHUTDOWN) { s->rwstate = SSL_NOTHING; SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN); return -1; } if (s->early_data_state == SSL_EARLY_DATA_WRITE_RETRY || s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY) return 0; if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { int ret; struct ssl_async_args args; args.s = s; args.buf = (void *)buf; args.num = num; args.type = WRITEFUNC; args.f.func_write = s->method->ssl_write; ret = ssl_start_async_job(s, &args, ssl_io_intern); *written = s->asyncrw; return ret; } else { return s->method->ssl_write(s, buf, num, written); } } int SSL_write(SSL *s, const void *buf, int num) { int ret; size_t written; if (num < 0) { SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH); return -1; } ret = ssl_write_internal(s, buf, (size_t)num, &written); /* * The cast is safe here because ret should be <= INT_MAX because num is * <= INT_MAX */ if (ret > 0) ret = (int)written; return ret; } int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) { int ret = ssl_write_internal(s, buf, num, written); if (ret < 0) ret = 0; return ret; } int SSL_write_early(SSL *s, const void *buf, size_t num, size_t *written) { int ret; if (s->server) { SSLerr(SSL_F_SSL_WRITE_EARLY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } /* * TODO(TLS1.3): Somehow we need to check that we're not sending too much * data */ switch (s->early_data_state) { case SSL_EARLY_DATA_NONE: if (!SSL_in_before(s)) { SSLerr(SSL_F_SSL_WRITE_EARLY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } /* fall through */ case SSL_EARLY_DATA_CONNECT_RETRY: s->early_data_state = SSL_EARLY_DATA_CONNECTING; ret = SSL_connect(s); if (ret <= 0) { /* NBIO or error */ s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; return 0; } /* fall through */ case SSL_EARLY_DATA_WRITE_RETRY: s->early_data_state = SSL_EARLY_DATA_WRITING; ret = SSL_write_ex(s, buf, num, written); s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; return ret; default: SSLerr(SSL_F_SSL_WRITE_EARLY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } } int SSL_write_early_finish(SSL *s) { int ret; if (s->early_data_state != SSL_EARLY_DATA_WRITE_RETRY) { SSLerr(SSL_F_SSL_WRITE_EARLY_FINISH, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } s->early_data_state = SSL_EARLY_DATA_WRITING; ret = ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_END_OF_EARLY_DATA); if (ret <= 0) { s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; return 0; } s->early_data_state = SSL_EARLY_DATA_FINISHED_WRITING; /* * We set the enc_write_ctx back to NULL because we may end up writing * in cleartext again if we get a HelloRetryRequest from the server. */ EVP_CIPHER_CTX_free(s->enc_write_ctx); s->enc_write_ctx = NULL; ossl_statem_set_in_init(s, 1); return 1; } int SSL_shutdown(SSL *s) { /* * Note that this function behaves differently from what one might * expect. Return values are 0 for no success (yet), 1 for success; but * calling it once is usually not enough, even if blocking I/O is used * (see ssl3_shutdown). */ if (s->handshake_func == NULL) { SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED); return -1; } if (!SSL_in_init(s)) { if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; args.s = s; args.type = OTHERFUNC; args.f.func_other = s->method->ssl_shutdown; return ssl_start_async_job(s, &args, ssl_io_intern); } else { return s->method->ssl_shutdown(s); } } else { SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT); return -1; } } int SSL_key_update(SSL *s, int updatetype) { /* * TODO(TLS1.3): How will applications know whether TLSv1.3 has been * negotiated, and that it is appropriate to call SSL_key_update() instead * of SSL_renegotiate(). */ if (!SSL_IS_TLS13(s)) { SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION); return 0; } if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED && updatetype != SSL_KEY_UPDATE_REQUESTED) { SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE); return 0; } if (!SSL_is_init_finished(s)) { SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT); return 0; } ossl_statem_set_in_init(s, 1); s->key_update = updatetype; return 1; } int SSL_get_key_update_type(SSL *s) { return s->key_update; } int SSL_renegotiate(SSL *s) { if (SSL_IS_TLS13(s)) { SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION); return 0; } if (s->renegotiate == 0) s->renegotiate = 1; s->new_session = 1; return (s->method->ssl_renegotiate(s)); } int SSL_renegotiate_abbreviated(SSL *s) { if (SSL_IS_TLS13(s)) return 0; if (s->renegotiate == 0) s->renegotiate = 1; s->new_session = 0; return (s->method->ssl_renegotiate(s)); } int SSL_renegotiate_pending(SSL *s) { /* * becomes true when negotiation is requested; false again once a * handshake has finished */ return (s->renegotiate != 0); } long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) { long l; switch (cmd) { case SSL_CTRL_GET_READ_AHEAD: return (RECORD_LAYER_get_read_ahead(&s->rlayer)); case SSL_CTRL_SET_READ_AHEAD: l = RECORD_LAYER_get_read_ahead(&s->rlayer); RECORD_LAYER_set_read_ahead(&s->rlayer, larg); return (l); case SSL_CTRL_SET_MSG_CALLBACK_ARG: s->msg_callback_arg = parg; return 1; case SSL_CTRL_MODE: return (s->mode |= larg); case SSL_CTRL_CLEAR_MODE: return (s->mode &= ~larg); case SSL_CTRL_GET_MAX_CERT_LIST: return (long)(s->max_cert_list); case SSL_CTRL_SET_MAX_CERT_LIST: if (larg < 0) return 0; l = (long)s->max_cert_list; s->max_cert_list = (size_t)larg; return l; case SSL_CTRL_SET_MAX_SEND_FRAGMENT: if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) return 0; s->max_send_fragment = larg; if (s->max_send_fragment < s->split_send_fragment) s->split_send_fragment = s->max_send_fragment; return 1; case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: if ((size_t)larg > s->max_send_fragment || larg == 0) return 0; s->split_send_fragment = larg; return 1; case SSL_CTRL_SET_MAX_PIPELINES: if (larg < 1 || larg > SSL_MAX_PIPELINES) return 0; s->max_pipelines = larg; if (larg > 1) RECORD_LAYER_set_read_ahead(&s->rlayer, 1); return 1; case SSL_CTRL_GET_RI_SUPPORT: if (s->s3) return s->s3->send_connection_binding; else return 0; case SSL_CTRL_CERT_FLAGS: return (s->cert->cert_flags |= larg); case SSL_CTRL_CLEAR_CERT_FLAGS: return (s->cert->cert_flags &= ~larg); case SSL_CTRL_GET_RAW_CIPHERLIST: if (parg) { if (s->s3->tmp.ciphers_raw == NULL) return 0; *(unsigned char **)parg = s->s3->tmp.ciphers_raw; return (int)s->s3->tmp.ciphers_rawlen; } else { return TLS_CIPHER_LEN; } case SSL_CTRL_GET_EXTMS_SUPPORT: if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s)) return -1; if (s->session->flags & SSL_SESS_FLAG_EXTMS) return 1; else return 0; case SSL_CTRL_SET_MIN_PROTO_VERSION: return ssl_set_version_bound(s->ctx->method->version, (int)larg, &s->min_proto_version); case SSL_CTRL_SET_MAX_PROTO_VERSION: return ssl_set_version_bound(s->ctx->method->version, (int)larg, &s->max_proto_version); default: return (s->method->ssl_ctrl(s, cmd, larg, parg)); } } long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) { switch (cmd) { case SSL_CTRL_SET_MSG_CALLBACK: s->msg_callback = (void (*) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg))(fp); return 1; default: return (s->method->ssl_callback_ctrl(s, cmd, fp)); } } LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) { return ctx->sessions; } long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) { long l; /* For some cases with ctx == NULL perform syntax checks */ if (ctx == NULL) { switch (cmd) { #ifndef OPENSSL_NO_EC case SSL_CTRL_SET_GROUPS_LIST: return tls1_set_groups_list(NULL, NULL, parg); #endif case SSL_CTRL_SET_SIGALGS_LIST: case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: return tls1_set_sigalgs_list(NULL, parg, 0); default: return 0; } } switch (cmd) { case SSL_CTRL_GET_READ_AHEAD: return (ctx->read_ahead); case SSL_CTRL_SET_READ_AHEAD: l = ctx->read_ahead; ctx->read_ahead = larg; return (l); case SSL_CTRL_SET_MSG_CALLBACK_ARG: ctx->msg_callback_arg = parg; return 1; case SSL_CTRL_GET_MAX_CERT_LIST: return (long)(ctx->max_cert_list); case SSL_CTRL_SET_MAX_CERT_LIST: if (larg < 0) return 0; l = (long)ctx->max_cert_list; ctx->max_cert_list = (size_t)larg; return l; case SSL_CTRL_SET_SESS_CACHE_SIZE: if (larg < 0) return 0; l = (long)ctx->session_cache_size; ctx->session_cache_size = (size_t)larg; return l; case SSL_CTRL_GET_SESS_CACHE_SIZE: return (long)(ctx->session_cache_size); case SSL_CTRL_SET_SESS_CACHE_MODE: l = ctx->session_cache_mode; ctx->session_cache_mode = larg; return (l); case SSL_CTRL_GET_SESS_CACHE_MODE: return (ctx->session_cache_mode); case SSL_CTRL_SESS_NUMBER: return (lh_SSL_SESSION_num_items(ctx->sessions)); case SSL_CTRL_SESS_CONNECT: return (ctx->stats.sess_connect); case SSL_CTRL_SESS_CONNECT_GOOD: return (ctx->stats.sess_connect_good); case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: return (ctx->stats.sess_connect_renegotiate); case SSL_CTRL_SESS_ACCEPT: return (ctx->stats.sess_accept); case SSL_CTRL_SESS_ACCEPT_GOOD: return (ctx->stats.sess_accept_good); case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: return (ctx->stats.sess_accept_renegotiate); case SSL_CTRL_SESS_HIT: return (ctx->stats.sess_hit); case SSL_CTRL_SESS_CB_HIT: return (ctx->stats.sess_cb_hit); case SSL_CTRL_SESS_MISSES: return (ctx->stats.sess_miss); case SSL_CTRL_SESS_TIMEOUTS: return (ctx->stats.sess_timeout); case SSL_CTRL_SESS_CACHE_FULL: return (ctx->stats.sess_cache_full); case SSL_CTRL_MODE: return (ctx->mode |= larg); case SSL_CTRL_CLEAR_MODE: return (ctx->mode &= ~larg); case SSL_CTRL_SET_MAX_SEND_FRAGMENT: if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) return 0; ctx->max_send_fragment = larg; if (ctx->max_send_fragment < ctx->split_send_fragment) ctx->split_send_fragment = ctx->max_send_fragment; return 1; case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: if ((size_t)larg > ctx->max_send_fragment || larg == 0) return 0; ctx->split_send_fragment = larg; return 1; case SSL_CTRL_SET_MAX_PIPELINES: if (larg < 1 || larg > SSL_MAX_PIPELINES) return 0; ctx->max_pipelines = larg; return 1; case SSL_CTRL_CERT_FLAGS: return (ctx->cert->cert_flags |= larg); case SSL_CTRL_CLEAR_CERT_FLAGS: return (ctx->cert->cert_flags &= ~larg); case SSL_CTRL_SET_MIN_PROTO_VERSION: return ssl_set_version_bound(ctx->method->version, (int)larg, &ctx->min_proto_version); case SSL_CTRL_SET_MAX_PROTO_VERSION: return ssl_set_version_bound(ctx->method->version, (int)larg, &ctx->max_proto_version); default: return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg)); } } long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) { switch (cmd) { case SSL_CTRL_SET_MSG_CALLBACK: ctx->msg_callback = (void (*) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg))(fp); return 1; default: return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp)); } } int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) { if (a->id > b->id) return 1; if (a->id < b->id) return -1; return 0; } int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, const SSL_CIPHER *const *bp) { if ((*ap)->id > (*bp)->id) return 1; if ((*ap)->id < (*bp)->id) return -1; return 0; } /** return a STACK of the ciphers available for the SSL and in order of * preference */ STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) { if (s != NULL) { if (s->cipher_list != NULL) { return (s->cipher_list); } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { return (s->ctx->cipher_list); } } return (NULL); } STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) { if ((s == NULL) || (s->session == NULL) || !s->server) return NULL; return s->session->ciphers; } STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) { STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; int i; ciphers = SSL_get_ciphers(s); if (!ciphers) return NULL; ssl_set_client_disabled(s); for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED)) { if (!sk) sk = sk_SSL_CIPHER_new_null(); if (!sk) return NULL; if (!sk_SSL_CIPHER_push(sk, c)) { sk_SSL_CIPHER_free(sk); return NULL; } } } return sk; } /** return a STACK of the ciphers available for the SSL and in order of * algorithm id */ STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) { if (s != NULL) { if (s->cipher_list_by_id != NULL) { return (s->cipher_list_by_id); } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) { return (s->ctx->cipher_list_by_id); } } return (NULL); } /** The old interface to get the same thing as SSL_get_ciphers() */ const char *SSL_get_cipher_list(const SSL *s, int n) { const SSL_CIPHER *c; STACK_OF(SSL_CIPHER) *sk; if (s == NULL) return (NULL); sk = SSL_get_ciphers(s); if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) return (NULL); c = sk_SSL_CIPHER_value(sk, n); if (c == NULL) return (NULL); return (c->name); } /** return a STACK of the ciphers available for the SSL_CTX and in order of * preference */ STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) { if (ctx != NULL) return ctx->cipher_list; return NULL; } /** specify the ciphers to be used by default by the SSL_CTX */ int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *sk; sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list, &ctx->cipher_list_by_id, str, ctx->cert); /* * ssl_create_cipher_list may return an empty stack if it was unable to * find a cipher matching the given rule string (for example if the rule * string specifies a cipher which has been disabled). This is not an * error as far as ssl_create_cipher_list is concerned, and hence * ctx->cipher_list and ctx->cipher_list_by_id has been updated. */ if (sk == NULL) return 0; else if (sk_SSL_CIPHER_num(sk) == 0) { SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } /** specify the ciphers to be used by the SSL */ int SSL_set_cipher_list(SSL *s, const char *str) { STACK_OF(SSL_CIPHER) *sk; sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list, &s->cipher_list_by_id, str, s->cert); /* see comment in SSL_CTX_set_cipher_list */ if (sk == NULL) return 0; else if (sk_SSL_CIPHER_num(sk) == 0) { SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len) { char *p; STACK_OF(SSL_CIPHER) *sk; const SSL_CIPHER *c; int i; if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2)) return (NULL); p = buf; sk = s->session->ciphers; if (sk_SSL_CIPHER_num(sk) == 0) return NULL; for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) { int n; c = sk_SSL_CIPHER_value(sk, i); n = strlen(c->name); if (n + 1 > len) { if (p != buf) --p; *p = '\0'; return buf; } memcpy(p, c->name, n + 1); p += n; *(p++) = ':'; len -= n + 1; } p[-1] = '\0'; return (buf); } /** return a servername extension value if provided in Client Hello, or NULL. * So far, only host_name types are defined (RFC 3546). */ const char *SSL_get_servername(const SSL *s, const int type) { if (type != TLSEXT_NAMETYPE_host_name) return NULL; return s->session && !s->ext.hostname ? s->session->ext.hostname : s->ext.hostname; } int SSL_get_servername_type(const SSL *s) { if (s->session && (!s->ext.hostname ? s->session-> ext.hostname : s->ext.hostname)) return TLSEXT_NAMETYPE_host_name; return -1; } /* * SSL_select_next_proto implements the standard protocol selection. It is * expected that this function is called from the callback set by * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a * vector of 8-bit, length prefixed byte strings. The length byte itself is * not included in the length. A byte string of length 0 is invalid. No byte * string may be truncated. The current, but experimental algorithm for * selecting the protocol is: 1) If the server doesn't support NPN then this * is indicated to the callback. In this case, the client application has to * abort the connection or have a default application level protocol. 2) If * the server supports NPN, but advertises an empty list then the client * selects the first protocol in its list, but indicates via the API that this * fallback case was enacted. 3) Otherwise, the client finds the first * protocol in the server's list that it supports and selects this protocol. * This is because it's assumed that the server has better information about * which protocol a client should use. 4) If the client doesn't support any * of the server's advertised protocols, then this is treated the same as * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. */ int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, const unsigned char *server, unsigned int server_len, const unsigned char *client, unsigned int client_len) { unsigned int i, j; const unsigned char *result; int status = OPENSSL_NPN_UNSUPPORTED; /* * For each protocol in server preference order, see if we support it. */ for (i = 0; i < server_len;) { for (j = 0; j < client_len;) { if (server[i] == client[j] && memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { /* We found a match */ result = &server[i]; status = OPENSSL_NPN_NEGOTIATED; goto found; } j += client[j]; j++; } i += server[i]; i++; } /* There's no overlap between our protocols and the server's list. */ result = client; status = OPENSSL_NPN_NO_OVERLAP; found: *out = (unsigned char *)result + 1; *outlen = result[0]; return status; } #ifndef OPENSSL_NO_NEXTPROTONEG /* * SSL_get0_next_proto_negotiated sets *data and *len to point to the * client's requested protocol for this connection and returns 0. If the * client didn't request any protocol, then *data is set to NULL. Note that * the client can request any protocol it chooses. The value returned from * this function need not be a member of the list of supported protocols * provided by the callback. */ void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, unsigned *len) { *data = s->ext.npn; if (!*data) { *len = 0; } else { *len = (unsigned int)s->ext.npn_len; } } /* * SSL_CTX_set_npn_advertised_cb sets a callback that is called when * a TLS server needs a list of supported protocols for Next Protocol * Negotiation. The returned list must be in wire format. The list is * returned by setting |out| to point to it and |outlen| to its length. This * memory will not be modified, but one should assume that the SSL* keeps a * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it * wishes to advertise. Otherwise, no such extension will be included in the * ServerHello. */ void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, SSL_CTX_npn_advertised_cb_func cb, void *arg) { ctx->ext.npn_advertised_cb = cb; ctx->ext.npn_advertised_cb_arg = arg; } /* * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a * client needs to select a protocol from the server's provided list. |out| * must be set to point to the selected protocol (which may be within |in|). * The length of the protocol name must be written into |outlen|. The * server's advertised protocols are provided in |in| and |inlen|. The * callback can assume that |in| is syntactically valid. The client must * select a protocol. It is fatal to the connection if this callback returns * a value other than SSL_TLSEXT_ERR_OK. */ void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, SSL_CTX_npn_select_cb_func cb, void *arg) { ctx->ext.npn_select_cb = cb; ctx->ext.npn_select_cb_arg = arg; } #endif /* * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit * length-prefixed strings). Returns 0 on success. */ int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, unsigned int protos_len) { OPENSSL_free(ctx->ext.alpn); ctx->ext.alpn = OPENSSL_memdup(protos, protos_len); if (ctx->ext.alpn == NULL) { SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); return 1; } ctx->ext.alpn_len = protos_len; return 0; } /* * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit * length-prefixed strings). Returns 0 on success. */ int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, unsigned int protos_len) { OPENSSL_free(ssl->ext.alpn); ssl->ext.alpn = OPENSSL_memdup(protos, protos_len); if (ssl->ext.alpn == NULL) { SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE); return 1; } ssl->ext.alpn_len = protos_len; return 0; } /* * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is * called during ClientHello processing in order to select an ALPN protocol * from the client's list of offered protocols. */ void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, SSL_CTX_alpn_select_cb_func cb, void *arg) { ctx->ext.alpn_select_cb = cb; ctx->ext.alpn_select_cb_arg = arg; } /* * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from * |ssl|. On return it sets |*data| to point to |*len| bytes of protocol name * (not including the leading length-prefix byte). If the server didn't * respond with a negotiated protocol then |*len| will be zero. */ void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, unsigned int *len) { *data = NULL; if (ssl->s3) *data = ssl->s3->alpn_selected; if (*data == NULL) *len = 0; else *len = (unsigned int)ssl->s3->alpn_selected_len; } int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *p, size_t plen, int use_context) { if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER) return -1; return s->method->ssl3_enc->export_keying_material(s, out, olen, label, llen, p, plen, use_context); } static unsigned long ssl_session_hash(const SSL_SESSION *a) { const unsigned char *session_id = a->session_id; unsigned long l; unsigned char tmp_storage[4]; if (a->session_id_length < sizeof(tmp_storage)) { memset(tmp_storage, 0, sizeof(tmp_storage)); memcpy(tmp_storage, a->session_id, a->session_id_length); session_id = tmp_storage; } l = (unsigned long) ((unsigned long)session_id[0]) | ((unsigned long)session_id[1] << 8L) | ((unsigned long)session_id[2] << 16L) | ((unsigned long)session_id[3] << 24L); return (l); } /* * NB: If this function (or indeed the hash function which uses a sort of * coarser function than this one) is changed, ensure * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on * being able to construct an SSL_SESSION that will collide with any existing * session with a matching session ID. */ static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) { if (a->ssl_version != b->ssl_version) return (1); if (a->session_id_length != b->session_id_length) return (1); return (memcmp(a->session_id, b->session_id, a->session_id_length)); } /* * These wrapper functions should remain rather than redeclaring * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each * variable. The reason is that the functions aren't static, they're exposed * via ssl.h. */ SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) { SSL_CTX *ret = NULL; if (meth == NULL) { SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED); return (NULL); } if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) return NULL; if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); goto err; } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) goto err; ret->method = meth; ret->min_proto_version = 0; ret->max_proto_version = 0; ret->session_cache_mode = SSL_SESS_CACHE_SERVER; ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; /* We take the system default. */ ret->session_timeout = meth->get_timeout(); ret->references = 1; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; ret->verify_mode = SSL_VERIFY_NONE; if ((ret->cert = ssl_cert_new()) == NULL) goto err; ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); if (ret->sessions == NULL) goto err; ret->cert_store = X509_STORE_new(); if (ret->cert_store == NULL) goto err; #ifndef OPENSSL_NO_CT ret->ctlog_store = CTLOG_STORE_new(); if (ret->ctlog_store == NULL) goto err; #endif if (!ssl_create_cipher_list(ret->method, &ret->cipher_list, &ret->cipher_list_by_id, SSL_DEFAULT_CIPHER_LIST, ret->cert) || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS); goto err2; } ret->param = X509_VERIFY_PARAM_new(); if (ret->param == NULL) goto err; if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) { SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES); goto err2; } if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) { SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES); goto err2; } if ((ret->client_CA = sk_X509_NAME_new_null()) == NULL) goto err; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) goto err; /* No compression for DTLS */ if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) ret->comp_methods = SSL_COMP_get_compression_methods(); ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; /* Setup RFC5077 ticket keys */ if ((RAND_bytes(ret->ext.tick_key_name, sizeof(ret->ext.tick_key_name)) <= 0) || (RAND_bytes(ret->ext.tick_hmac_key, sizeof(ret->ext.tick_hmac_key)) <= 0) || (RAND_bytes(ret->ext.tick_aes_key, sizeof(ret->ext.tick_aes_key)) <= 0)) ret->options |= SSL_OP_NO_TICKET; #ifndef OPENSSL_NO_SRP if (!SSL_CTX_SRP_CTX_init(ret)) goto err; #endif #ifndef OPENSSL_NO_ENGINE # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO # define eng_strx(x) #x # define eng_str(x) eng_strx(x) /* Use specific client engine automatically... ignore errors */ { ENGINE *eng; eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); if (!eng) { ERR_clear_error(); ENGINE_load_builtin_engines(); eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); } if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) ERR_clear_error(); } # endif #endif /* * Default is to connect to non-RI servers. When RI is more widely * deployed might change this. */ ret->options |= SSL_OP_LEGACY_SERVER_CONNECT; /* * Disable compression by default to prevent CRIME. Applications can * re-enable compression by configuring * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); * or by using the SSL_CONF library. */ ret->options |= SSL_OP_NO_COMPRESSION; ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; return ret; err: SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE); err2: SSL_CTX_free(ret); return NULL; } int SSL_CTX_up_ref(SSL_CTX *ctx) { int i; if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0) return 0; REF_PRINT_COUNT("SSL_CTX", ctx); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } void SSL_CTX_free(SSL_CTX *a) { int i; if (a == NULL) return; CRYPTO_DOWN_REF(&a->references, &i, a->lock); REF_PRINT_COUNT("SSL_CTX", a); if (i > 0) return; REF_ASSERT_ISNT(i < 0); X509_VERIFY_PARAM_free(a->param); dane_ctx_final(&a->dane); /* * Free internal session cache. However: the remove_cb() may reference * the ex_data of SSL_CTX, thus the ex_data store can only be removed * after the sessions were flushed. * As the ex_data handling routines might also touch the session cache, * the most secure solution seems to be: empty (flush) the cache, then * free ex_data, then finally free the cache. * (See ticket [openssl.org #212].) */ if (a->sessions != NULL) SSL_CTX_flush_sessions(a, 0); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); lh_SSL_SESSION_free(a->sessions); X509_STORE_free(a->cert_store); #ifndef OPENSSL_NO_CT CTLOG_STORE_free(a->ctlog_store); #endif sk_SSL_CIPHER_free(a->cipher_list); sk_SSL_CIPHER_free(a->cipher_list_by_id); ssl_cert_free(a->cert); sk_X509_NAME_pop_free(a->client_CA, X509_NAME_free); sk_X509_pop_free(a->extra_certs, X509_free); a->comp_methods = NULL; #ifndef OPENSSL_NO_SRTP sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); #endif #ifndef OPENSSL_NO_SRP SSL_CTX_SRP_CTX_free(a); #endif #ifndef OPENSSL_NO_ENGINE ENGINE_finish(a->client_cert_engine); #endif #ifndef OPENSSL_NO_EC OPENSSL_free(a->ext.ecpointformats); OPENSSL_free(a->ext.supportedgroups); #endif OPENSSL_free(a->ext.alpn); CRYPTO_THREAD_lock_free(a->lock); OPENSSL_free(a); } void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) { ctx->default_passwd_callback = cb; } void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) { ctx->default_passwd_callback_userdata = u; } pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) { return ctx->default_passwd_callback; } void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) { return ctx->default_passwd_callback_userdata; } void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) { s->default_passwd_callback = cb; } void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) { s->default_passwd_callback_userdata = u; } pem_password_cb *SSL_get_default_passwd_cb(SSL *s) { return s->default_passwd_callback; } void *SSL_get_default_passwd_cb_userdata(SSL *s) { return s->default_passwd_callback_userdata; } void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb) (X509_STORE_CTX *, void *), void *arg) { ctx->app_verify_callback = cb; ctx->app_verify_arg = arg; } void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, int (*cb) (int, X509_STORE_CTX *)) { ctx->verify_mode = mode; ctx->default_verify_callback = cb; } void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) { X509_VERIFY_PARAM_set_depth(ctx->param, depth); } void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(c->cert, cb, arg); } void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(s->cert, cb, arg); } void ssl_set_masks(SSL *s) { CERT *c = s->cert; uint32_t *pvalid = s->s3->tmp.valid_flags; int rsa_enc, rsa_sign, dh_tmp, dsa_sign; unsigned long mask_k, mask_a; #ifndef OPENSSL_NO_EC int have_ecc_cert, ecdsa_ok; #endif if (c == NULL) return; #ifndef OPENSSL_NO_DH dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); #else dh_tmp = 0; #endif rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; #ifndef OPENSSL_NO_EC have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; #endif mask_k = 0; mask_a = 0; #ifdef CIPHER_DEBUG fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n", dh_tmp, rsa_enc, rsa_sign, dsa_sign); #endif #ifndef OPENSSL_NO_GOST if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { mask_k |= SSL_kGOST; mask_a |= SSL_aGOST12; } if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { mask_k |= SSL_kGOST; mask_a |= SSL_aGOST12; } if (ssl_has_cert(s, SSL_PKEY_GOST01)) { mask_k |= SSL_kGOST; mask_a |= SSL_aGOST01; } #endif if (rsa_enc) mask_k |= SSL_kRSA; if (dh_tmp) mask_k |= SSL_kDHE; if (rsa_enc || rsa_sign) { mask_a |= SSL_aRSA; } if (dsa_sign) { mask_a |= SSL_aDSS; } mask_a |= SSL_aNULL; /* * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites * depending on the key usage extension. */ #ifndef OPENSSL_NO_EC if (have_ecc_cert) { uint32_t ex_kusage; ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) ecdsa_ok = 0; if (ecdsa_ok) mask_a |= SSL_aECDSA; } #endif #ifndef OPENSSL_NO_EC mask_k |= SSL_kECDHE; #endif #ifndef OPENSSL_NO_PSK mask_k |= SSL_kPSK; mask_a |= SSL_aPSK; if (mask_k & SSL_kRSA) mask_k |= SSL_kRSAPSK; if (mask_k & SSL_kDHE) mask_k |= SSL_kDHEPSK; if (mask_k & SSL_kECDHE) mask_k |= SSL_kECDHEPSK; #endif s->s3->tmp.mask_k = mask_k; s->s3->tmp.mask_a = mask_a; } #ifndef OPENSSL_NO_EC int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s) { if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) { /* key usage, if present, must allow signing */ if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, SSL_R_ECC_CERT_NOT_FOR_SIGNING); return 0; } } return 1; /* all checks are ok */ } #endif int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo, size_t *serverinfo_length) { CERT_PKEY *cpk = s->s3->tmp.cert; *serverinfo_length = 0; if (cpk == NULL || cpk->serverinfo == NULL) return 0; *serverinfo = cpk->serverinfo; *serverinfo_length = cpk->serverinfo_length; return 1; } void ssl_update_cache(SSL *s, int mode) { int i; /* * If the session_id_length is 0, we are not supposed to cache it, and it * would be rather hard to do anyway :-) */ if (s->session->session_id_length == 0) return; i = s->session_ctx->session_cache_mode; if ((i & mode) && (!s->hit) && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) || SSL_CTX_add_session(s->session_ctx, s->session)) && (s->session_ctx->new_session_cb != NULL)) { SSL_SESSION_up_ref(s->session); if (!s->session_ctx->new_session_cb(s, s->session)) SSL_SESSION_free(s->session); } /* auto flush every 255 connections */ if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { if ((((mode & SSL_SESS_CACHE_CLIENT) ? s->session_ctx->stats.sess_connect_good : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) { SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); } } } const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx) { return ctx->method; } const SSL_METHOD *SSL_get_ssl_method(SSL *s) { return (s->method); } int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) { int ret = 1; if (s->method != meth) { const SSL_METHOD *sm = s->method; int (*hf) (SSL *) = s->handshake_func; if (sm->version == meth->version) s->method = meth; else { sm->ssl_free(s); s->method = meth; ret = s->method->ssl_new(s); } if (hf == sm->ssl_connect) s->handshake_func = meth->ssl_connect; else if (hf == sm->ssl_accept) s->handshake_func = meth->ssl_accept; } return (ret); } int SSL_get_error(const SSL *s, int i) { int reason; unsigned long l; BIO *bio; if (i > 0) return (SSL_ERROR_NONE); /* * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, * where we do encode the error */ if ((l = ERR_peek_error()) != 0) { if (ERR_GET_LIB(l) == ERR_LIB_SYS) return (SSL_ERROR_SYSCALL); else return (SSL_ERROR_SSL); } if (SSL_want_read(s)) { bio = SSL_get_rbio(s); if (BIO_should_read(bio)) return (SSL_ERROR_WANT_READ); else if (BIO_should_write(bio)) /* * This one doesn't make too much sense ... We never try to write * to the rbio, and an application program where rbio and wbio * are separate couldn't even know what it should wait for. * However if we ever set s->rwstate incorrectly (so that we have * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and * wbio *are* the same, this test works around that bug; so it * might be safer to keep it. */ return (SSL_ERROR_WANT_WRITE); else if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) return (SSL_ERROR_WANT_CONNECT); else if (reason == BIO_RR_ACCEPT) return (SSL_ERROR_WANT_ACCEPT); else return (SSL_ERROR_SYSCALL); /* unknown */ } } if (SSL_want_write(s)) { /* * Access wbio directly - in order to use the buffered bio if * present */ bio = s->wbio; if (BIO_should_write(bio)) return (SSL_ERROR_WANT_WRITE); else if (BIO_should_read(bio)) /* * See above (SSL_want_read(s) with BIO_should_write(bio)) */ return (SSL_ERROR_WANT_READ); else if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) return (SSL_ERROR_WANT_CONNECT); else if (reason == BIO_RR_ACCEPT) return (SSL_ERROR_WANT_ACCEPT); else return (SSL_ERROR_SYSCALL); } } if (SSL_want_x509_lookup(s)) return (SSL_ERROR_WANT_X509_LOOKUP); if (SSL_want_async(s)) return SSL_ERROR_WANT_ASYNC; if (SSL_want_async_job(s)) return SSL_ERROR_WANT_ASYNC_JOB; if (SSL_want_early(s)) return SSL_ERROR_WANT_EARLY; if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) && (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) return (SSL_ERROR_ZERO_RETURN); return (SSL_ERROR_SYSCALL); } static int ssl_do_handshake_intern(void *vargs) { struct ssl_async_args *args; SSL *s; args = (struct ssl_async_args *)vargs; s = args->s; return s->handshake_func(s); } int SSL_do_handshake(SSL *s) { int ret = 1; if (s->handshake_func == NULL) { SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET); return -1; } if (s->early_data_state == SSL_EARLY_DATA_WRITE_RETRY || s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY) return -1; s->method->ssl_renegotiate_check(s, 0); if (SSL_in_init(s) || SSL_in_before(s)) { if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; args.s = s; ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); } else { ret = s->handshake_func(s); } } return ret; } void SSL_set_accept_state(SSL *s) { s->server = 1; s->shutdown = 0; ossl_statem_clear(s); s->handshake_func = s->method->ssl_accept; clear_ciphers(s); } void SSL_set_connect_state(SSL *s) { s->server = 0; s->shutdown = 0; ossl_statem_clear(s); s->handshake_func = s->method->ssl_connect; clear_ciphers(s); } int ssl_undefined_function(SSL *s) { SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return (0); } int ssl_undefined_void_function(void) { SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return (0); } int ssl_undefined_const_function(const SSL *s) { return (0); } const SSL_METHOD *ssl_bad_method(int ver) { SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return (NULL); } const char *ssl_protocol_to_string(int version) { switch(version) { case TLS1_3_VERSION: return "TLSv1.3"; case TLS1_2_VERSION: return "TLSv1.2"; case TLS1_1_VERSION: return "TLSv1.1"; case TLS1_VERSION: return "TLSv1"; case SSL3_VERSION: return "SSLv3"; case DTLS1_BAD_VER: return "DTLSv0.9"; case DTLS1_VERSION: return "DTLSv1"; case DTLS1_2_VERSION: return "DTLSv1.2"; default: return "unknown"; } } const char *SSL_get_version(const SSL *s) { return ssl_protocol_to_string(s->version); } SSL *SSL_dup(SSL *s) { STACK_OF(X509_NAME) *sk; X509_NAME *xn; SSL *ret; int i; /* If we're not quiescent, just up_ref! */ if (!SSL_in_init(s) || !SSL_in_before(s)) { CRYPTO_UP_REF(&s->references, &i, s->lock); return s; } /* * Otherwise, copy configuration state, and session if set. */ if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) return (NULL); if (s->session != NULL) { /* * Arranges to share the same session via up_ref. This "copies" * session-id, SSL_METHOD, sid_ctx, and 'cert' */ if (!SSL_copy_session_id(ret, s)) goto err; } else { /* * No session has been established yet, so we have to expect that * s->cert or ret->cert will be changed later -- they should not both * point to the same object, and thus we can't use * SSL_copy_session_id. */ if (!SSL_set_ssl_method(ret, s->method)) goto err; if (s->cert != NULL) { ssl_cert_free(ret->cert); ret->cert = ssl_cert_dup(s->cert); if (ret->cert == NULL) goto err; } if (!SSL_set_session_id_context(ret, s->sid_ctx, (int)s->sid_ctx_length)) goto err; } if (!ssl_dane_dup(ret, s)) goto err; ret->version = s->version; ret->options = s->options; ret->mode = s->mode; SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); ret->msg_callback = s->msg_callback; ret->msg_callback_arg = s->msg_callback_arg; SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); ret->generate_session_id = s->generate_session_id; SSL_set_info_callback(ret, SSL_get_info_callback(s)); /* copy app data, a little dangerous perhaps */ if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) goto err; /* setup rbio, and wbio */ if (s->rbio != NULL) { if (!BIO_dup_state(s->rbio, (char *)&ret->rbio)) goto err; } if (s->wbio != NULL) { if (s->wbio != s->rbio) { if (!BIO_dup_state(s->wbio, (char *)&ret->wbio)) goto err; } else { BIO_up_ref(ret->rbio); ret->wbio = ret->rbio; } } ret->server = s->server; if (s->handshake_func) { if (s->server) SSL_set_accept_state(ret); else SSL_set_connect_state(ret); } ret->shutdown = s->shutdown; ret->hit = s->hit; ret->default_passwd_callback = s->default_passwd_callback; ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata; X509_VERIFY_PARAM_inherit(ret->param, s->param); /* dup the cipher_list and cipher_list_by_id stacks */ if (s->cipher_list != NULL) { if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL) goto err; } if (s->cipher_list_by_id != NULL) if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id)) == NULL) goto err; /* Dup the client_CA list */ if (s->client_CA != NULL) { if ((sk = sk_X509_NAME_dup(s->client_CA)) == NULL) goto err; ret->client_CA = sk; for (i = 0; i < sk_X509_NAME_num(sk); i++) { xn = sk_X509_NAME_value(sk, i); if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) { X509_NAME_free(xn); goto err; } } } return ret; err: SSL_free(ret); return NULL; } void ssl_clear_cipher_ctx(SSL *s) { if (s->enc_read_ctx != NULL) { EVP_CIPHER_CTX_free(s->enc_read_ctx); s->enc_read_ctx = NULL; } if (s->enc_write_ctx != NULL) { EVP_CIPHER_CTX_free(s->enc_write_ctx); s->enc_write_ctx = NULL; } #ifndef OPENSSL_NO_COMP COMP_CTX_free(s->expand); s->expand = NULL; COMP_CTX_free(s->compress); s->compress = NULL; #endif } X509 *SSL_get_certificate(const SSL *s) { if (s->cert != NULL) return (s->cert->key->x509); else return (NULL); } EVP_PKEY *SSL_get_privatekey(const SSL *s) { if (s->cert != NULL) return (s->cert->key->privatekey); else return (NULL); } X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) { if (ctx->cert != NULL) return ctx->cert->key->x509; else return NULL; } EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) { if (ctx->cert != NULL) return ctx->cert->key->privatekey; else return NULL; } const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) { if ((s->session != NULL) && (s->session->cipher != NULL)) return (s->session->cipher); return (NULL); } const COMP_METHOD *SSL_get_current_compression(SSL *s) { #ifndef OPENSSL_NO_COMP return s->compress ? COMP_CTX_get_method(s->compress) : NULL; #else return NULL; #endif } const COMP_METHOD *SSL_get_current_expansion(SSL *s) { #ifndef OPENSSL_NO_COMP return s->expand ? COMP_CTX_get_method(s->expand) : NULL; #else return NULL; #endif } int ssl_init_wbio_buffer(SSL *s) { BIO *bbio; if (s->bbio != NULL) { /* Already buffered. */ return 1; } bbio = BIO_new(BIO_f_buffer()); if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { BIO_free(bbio); SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB); return 0; } s->bbio = bbio; s->wbio = BIO_push(bbio, s->wbio); return 1; } void ssl_free_wbio_buffer(SSL *s) { /* callers ensure s is never null */ if (s->bbio == NULL) return; s->wbio = BIO_pop(s->wbio); assert(s->wbio != NULL); BIO_free(s->bbio); s->bbio = NULL; } void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) { ctx->quiet_shutdown = mode; } int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) { return (ctx->quiet_shutdown); } void SSL_set_quiet_shutdown(SSL *s, int mode) { s->quiet_shutdown = mode; } int SSL_get_quiet_shutdown(const SSL *s) { return (s->quiet_shutdown); } void SSL_set_shutdown(SSL *s, int mode) { s->shutdown = mode; } int SSL_get_shutdown(const SSL *s) { return s->shutdown; } int SSL_version(const SSL *s) { return s->version; } int SSL_client_version(const SSL *s) { return s->client_version; } SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx; } SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) { CERT *new_cert; if (ssl->ctx == ctx) return ssl->ctx; if (ctx == NULL) ctx = ssl->session_ctx; new_cert = ssl_cert_dup(ctx->cert); if (new_cert == NULL) { return NULL; } ssl_cert_free(ssl->cert); ssl->cert = new_cert; /* * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), * so setter APIs must prevent invalid lengths from entering the system. */ OPENSSL_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)); /* * If the session ID context matches that of the parent SSL_CTX, * inherit it from the new SSL_CTX as well. If however the context does * not match (i.e., it was set per-ssl with SSL_set_session_id_context), * leave it unchanged. */ if ((ssl->ctx != NULL) && (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) && (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) { ssl->sid_ctx_length = ctx->sid_ctx_length; memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); } SSL_CTX_up_ref(ctx); SSL_CTX_free(ssl->ctx); /* decrement reference count */ ssl->ctx = ctx; return ssl->ctx; } int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) { return (X509_STORE_set_default_paths(ctx->cert_store)); } int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) { X509_LOOKUP *lookup; lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); if (lookup == NULL) return 0; X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); /* Clear any errors if the default directory does not exist */ ERR_clear_error(); return 1; } int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) { X509_LOOKUP *lookup; lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); if (lookup == NULL) return 0; X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT); /* Clear any errors if the default file does not exist */ ERR_clear_error(); return 1; } int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, const char *CApath) { return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath)); } void SSL_set_info_callback(SSL *ssl, void (*cb) (const SSL *ssl, int type, int val)) { ssl->info_callback = cb; } /* * One compiler (Diab DCC) doesn't like argument names in returned function * pointer. */ void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , int /* type */ , int /* val */ ) { return ssl->info_callback; } void SSL_set_verify_result(SSL *ssl, long arg) { ssl->verify_result = arg; } long SSL_get_verify_result(const SSL *ssl) { return (ssl->verify_result); } size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) { if (outlen == 0) return sizeof(ssl->s3->client_random); if (outlen > sizeof(ssl->s3->client_random)) outlen = sizeof(ssl->s3->client_random); memcpy(out, ssl->s3->client_random, outlen); return outlen; } size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) { if (outlen == 0) return sizeof(ssl->s3->server_random); if (outlen > sizeof(ssl->s3->server_random)) outlen = sizeof(ssl->s3->server_random); memcpy(out, ssl->s3->server_random, outlen); return outlen; } size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, unsigned char *out, size_t outlen) { if (outlen == 0) return session->master_key_length; if (outlen > session->master_key_length) outlen = session->master_key_length; memcpy(out, session->master_key, outlen); return outlen; } int SSL_set_ex_data(SSL *s, int idx, void *arg) { return (CRYPTO_set_ex_data(&s->ex_data, idx, arg)); } void *SSL_get_ex_data(const SSL *s, int idx) { return (CRYPTO_get_ex_data(&s->ex_data, idx)); } int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) { return (CRYPTO_set_ex_data(&s->ex_data, idx, arg)); } void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) { return (CRYPTO_get_ex_data(&s->ex_data, idx)); } X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) { return (ctx->cert_store); } void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) { X509_STORE_free(ctx->cert_store); ctx->cert_store = store; } void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) { if (store != NULL) X509_STORE_up_ref(store); SSL_CTX_set_cert_store(ctx, store); } int SSL_want(const SSL *s) { return (s->rwstate); } /** * \brief Set the callback for generating temporary DH keys. * \param ctx the SSL context. * \param dh the callback */ #ifndef OPENSSL_NO_DH void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, DH *(*dh) (SSL *ssl, int is_export, int keylength)) { SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); } void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export, int keylength)) { SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh); } #endif #ifndef OPENSSL_NO_PSK int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) { if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } OPENSSL_free(ctx->cert->psk_identity_hint); if (identity_hint != NULL) { ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); if (ctx->cert->psk_identity_hint == NULL) return 0; } else ctx->cert->psk_identity_hint = NULL; return 1; } int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) { if (s == NULL) return 0; if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } OPENSSL_free(s->cert->psk_identity_hint); if (identity_hint != NULL) { s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); if (s->cert->psk_identity_hint == NULL) return 0; } else s->cert->psk_identity_hint = NULL; return 1; } const char *SSL_get_psk_identity_hint(const SSL *s) { if (s == NULL || s->session == NULL) return NULL; return (s->session->psk_identity_hint); } const char *SSL_get_psk_identity(const SSL *s) { if (s == NULL || s->session == NULL) return NULL; return (s->session->psk_identity); } void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) { s->psk_client_callback = cb; } void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) { ctx->psk_client_callback = cb; } void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) { s->psk_server_callback = cb; } void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) { ctx->psk_server_callback = cb; } #endif void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); } void SSL_set_msg_callback(SSL *ssl, void (*cb) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); } void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, int (*cb) (SSL *ssl, int is_forward_secure)) { SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, (void (*)(void))cb); } void SSL_set_not_resumable_session_callback(SSL *ssl, int (*cb) (SSL *ssl, int is_forward_secure)) { SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, (void (*)(void))cb); } /* * Allocates new EVP_MD_CTX and sets pointer to it into given pointer * variable, freeing EVP_MD_CTX previously stored in that variable, if any. * If EVP_MD pointer is passed, initializes ctx with this md. * Returns the newly allocated ctx; */ EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md) { ssl_clear_hash_ctx(hash); *hash = EVP_MD_CTX_new(); if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) { EVP_MD_CTX_free(*hash); *hash = NULL; return NULL; } return *hash; } void ssl_clear_hash_ctx(EVP_MD_CTX **hash) { EVP_MD_CTX_free(*hash); *hash = NULL; } /* Retrieve handshake hashes */ int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen, size_t *hashlen) { EVP_MD_CTX *ctx = NULL; EVP_MD_CTX *hdgst = s->s3->handshake_dgst; int hashleni = EVP_MD_CTX_size(hdgst); int ret = 0; if (hashleni < 0 || (size_t)hashleni > outlen) goto err; ctx = EVP_MD_CTX_new(); if (ctx == NULL) goto err; if (!EVP_MD_CTX_copy_ex(ctx, hdgst) || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) goto err; *hashlen = hashleni; ret = 1; err: EVP_MD_CTX_free(ctx); return ret; } int SSL_session_reused(SSL *s) { return s->hit; } int SSL_is_server(SSL *s) { return s->server; } #if OPENSSL_API_COMPAT < 0x10100000L void SSL_set_debug(SSL *s, int debug) { /* Old function was do-nothing anyway... */ (void)s; (void)debug; } #endif void SSL_set_security_level(SSL *s, int level) { s->cert->sec_level = level; } int SSL_get_security_level(const SSL *s) { return s->cert->sec_level; } void SSL_set_security_callback(SSL *s, int (*cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex)) { s->cert->sec_cb = cb; } int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { return s->cert->sec_cb; } void SSL_set0_security_ex_data(SSL *s, void *ex) { s->cert->sec_ex = ex; } void *SSL_get0_security_ex_data(const SSL *s) { return s->cert->sec_ex; } void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) { ctx->cert->sec_level = level; } int SSL_CTX_get_security_level(const SSL_CTX *ctx) { return ctx->cert->sec_level; } void SSL_CTX_set_security_callback(SSL_CTX *ctx, int (*cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex)) { ctx->cert->sec_cb = cb; } int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { return ctx->cert->sec_cb; } void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) { ctx->cert->sec_ex = ex; } void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) { return ctx->cert->sec_ex; } /* * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that * can return unsigned long, instead of the generic long return value from the * control interface. */ unsigned long SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; } unsigned long SSL_get_options(const SSL *s) { return s->options; } unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op) { return ctx->options |= op; } unsigned long SSL_set_options(SSL *s, unsigned long op) { return s->options |= op; } unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op) { return ctx->options &= ~op; } unsigned long SSL_clear_options(SSL *s, unsigned long op) { return s->options &= ~op; } STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) { return s->verified_chain; } IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); #ifndef OPENSSL_NO_CT /* * Moves SCTs from the |src| stack to the |dst| stack. * The source of each SCT will be set to |origin|. * If |dst| points to a NULL pointer, a new stack will be created and owned by * the caller. * Returns the number of SCTs moved, or a negative integer if an error occurs. */ static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, sct_source_t origin) { int scts_moved = 0; SCT *sct = NULL; if (*dst == NULL) { *dst = sk_SCT_new_null(); if (*dst == NULL) { SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE); goto err; } } while ((sct = sk_SCT_pop(src)) != NULL) { if (SCT_set_source(sct, origin) != 1) goto err; if (sk_SCT_push(*dst, sct) <= 0) goto err; scts_moved += 1; } return scts_moved; err: if (sct != NULL) sk_SCT_push(src, sct); /* Put the SCT back */ return -1; } /* * Look for data collected during ServerHello and parse if found. * Returns the number of SCTs extracted. */ static int ct_extract_tls_extension_scts(SSL *s) { int scts_extracted = 0; if (s->ext.scts != NULL) { const unsigned char *p = s->ext.scts; STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); SCT_LIST_free(scts); } return scts_extracted; } /* * Checks for an OCSP response and then attempts to extract any SCTs found if it * contains an SCT X509 extension. They will be stored in |s->scts|. * Returns: * - The number of SCTs extracted, assuming an OCSP response exists. * - 0 if no OCSP response exists or it contains no SCTs. * - A negative integer if an error occurs. */ static int ct_extract_ocsp_response_scts(SSL *s) { # ifndef OPENSSL_NO_OCSP int scts_extracted = 0; const unsigned char *p; OCSP_BASICRESP *br = NULL; OCSP_RESPONSE *rsp = NULL; STACK_OF(SCT) *scts = NULL; int i; if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) goto err; p = s->ext.ocsp.resp; rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); if (rsp == NULL) goto err; br = OCSP_response_get1_basic(rsp); if (br == NULL) goto err; for (i = 0; i < OCSP_resp_count(br); ++i) { OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); if (single == NULL) continue; scts = OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); if (scts_extracted < 0) goto err; } err: SCT_LIST_free(scts); OCSP_BASICRESP_free(br); OCSP_RESPONSE_free(rsp); return scts_extracted; # else /* Behave as if no OCSP response exists */ return 0; # endif } /* * Attempts to extract SCTs from the peer certificate. * Return the number of SCTs extracted, or a negative integer if an error * occurs. */ static int ct_extract_x509v3_extension_scts(SSL *s) { int scts_extracted = 0; X509 *cert = s->session != NULL ? s->session->peer : NULL; if (cert != NULL) { STACK_OF(SCT) *scts = X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); SCT_LIST_free(scts); } return scts_extracted; } /* * Attempts to find all received SCTs by checking TLS extensions, the OCSP * response (if it exists) and X509v3 extensions in the certificate. * Returns NULL if an error occurs. */ const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) { if (!s->scts_parsed) { if (ct_extract_tls_extension_scts(s) < 0 || ct_extract_ocsp_response_scts(s) < 0 || ct_extract_x509v3_extension_scts(s) < 0) goto err; s->scts_parsed = 1; } return s->scts; err: return NULL; } static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx, const STACK_OF(SCT) *scts, void *unused_arg) { return 1; } static int ct_strict(const CT_POLICY_EVAL_CTX * ctx, const STACK_OF(SCT) *scts, void *unused_arg) { int count = scts != NULL ? sk_SCT_num(scts) : 0; int i; for (i = 0; i < count; ++i) { SCT *sct = sk_SCT_value(scts, i); int status = SCT_get_validation_status(sct); if (status == SCT_VALIDATION_STATUS_VALID) return 1; } SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS); return 0; } int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, void *arg) { /* * Since code exists that uses the custom extension handler for CT, look * for this and throw an error if they have already registered to use CT. */ if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, TLSEXT_TYPE_signed_certificate_timestamp)) { SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); return 0; } if (callback != NULL) { /* * If we are validating CT, then we MUST accept SCTs served via OCSP */ if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) return 0; } s->ct_validation_callback = callback; s->ct_validation_callback_arg = arg; return 1; } int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, ssl_ct_validation_cb callback, void *arg) { /* * Since code exists that uses the custom extension handler for CT, look for * this and throw an error if they have already registered to use CT. */ if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, TLSEXT_TYPE_signed_certificate_timestamp)) { SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); return 0; } ctx->ct_validation_callback = callback; ctx->ct_validation_callback_arg = arg; return 1; } int SSL_ct_is_enabled(const SSL *s) { return s->ct_validation_callback != NULL; } int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) { return ctx->ct_validation_callback != NULL; } int ssl_validate_ct(SSL *s) { int ret = 0; X509 *cert = s->session != NULL ? s->session->peer : NULL; X509 *issuer; SSL_DANE *dane = &s->dane; CT_POLICY_EVAL_CTX *ctx = NULL; const STACK_OF(SCT) *scts; /* * If no callback is set, the peer is anonymous, or its chain is invalid, * skip SCT validation - just return success. Applications that continue * handshakes without certificates, with unverified chains, or pinned leaf * certificates are outside the scope of the WebPKI and CT. * * The above exclusions notwithstanding the vast majority of peers will * have rather ordinary certificate chains validated by typical * applications that perform certificate verification and therefore will * process SCTs when enabled. */ if (s->ct_validation_callback == NULL || cert == NULL || s->verify_result != X509_V_OK || s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) return 1; /* * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 */ if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { switch (dane->mtlsa->usage) { case DANETLS_USAGE_DANE_TA: case DANETLS_USAGE_DANE_EE: return 1; } } ctx = CT_POLICY_EVAL_CTX_new(); if (ctx == NULL) { SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE); goto end; } issuer = sk_X509_value(s->verified_chain, 1); CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store); CT_POLICY_EVAL_CTX_set_time(ctx, SSL_SESSION_get_time(SSL_get0_session(s))); scts = SSL_get0_peer_scts(s); /* * This function returns success (> 0) only when all the SCTs are valid, 0 * when some are invalid, and < 0 on various internal errors (out of * memory, etc.). Having some, or even all, invalid SCTs is not sufficient * reason to abort the handshake, that decision is up to the callback. * Therefore, we error out only in the unexpected case that the return * value is negative. * * XXX: One might well argue that the return value of this function is an * unfortunate design choice. Its job is only to determine the validation * status of each of the provided SCTs. So long as it correctly separates * the wheat from the chaff it should return success. Failure in this case * ought to correspond to an inability to carry out its duties. */ if (SCT_LIST_validate(scts, ctx) < 0) { SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED); goto end; } ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); if (ret < 0) ret = 0; /* This function returns 0 on failure */ end: CT_POLICY_EVAL_CTX_free(ctx); /* * With SSL_VERIFY_NONE the session may be cached and re-used despite a * failure return code here. Also the application may wish the complete * the handshake, and then disconnect cleanly at a higher layer, after * checking the verification status of the completed connection. * * We therefore force a certificate verification failure which will be * visible via SSL_get_verify_result() and cached as part of any resumed * session. * * Note: the permissive callback is for information gathering only, always * returns success, and does not affect verification status. Only the * strict callback or a custom application-specified callback can trigger * connection failure or record a verification error. */ if (ret <= 0) s->verify_result = X509_V_ERR_NO_VALID_SCTS; return ret; } int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) { switch (validation_mode) { default: SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); return 0; case SSL_CT_VALIDATION_PERMISSIVE: return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); case SSL_CT_VALIDATION_STRICT: return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); } } int SSL_enable_ct(SSL *s, int validation_mode) { switch (validation_mode) { default: SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE); return 0; case SSL_CT_VALIDATION_PERMISSIVE: return SSL_set_ct_validation_callback(s, ct_permissive, NULL); case SSL_CT_VALIDATION_STRICT: return SSL_set_ct_validation_callback(s, ct_strict, NULL); } } int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) { return CTLOG_STORE_load_default_file(ctx->ctlog_store); } int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) { return CTLOG_STORE_load_file(ctx->ctlog_store, path); } void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs) { CTLOG_STORE_free(ctx->ctlog_store); ctx->ctlog_store = logs; } const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) { return ctx->ctlog_store; } #endif /* OPENSSL_NO_CT */ void SSL_CTX_set_early_cb(SSL_CTX *c, SSL_early_cb_fn cb, void *arg) { c->early_cb = cb; c->early_cb_arg = arg; } int SSL_early_isv2(SSL *s) { if (s->clienthello == NULL) return 0; return s->clienthello->isv2; } unsigned int SSL_early_get0_legacy_version(SSL *s) { if (s->clienthello == NULL) return 0; return s->clienthello->legacy_version; } size_t SSL_early_get0_random(SSL *s, const unsigned char **out) { if (s->clienthello == NULL) return 0; if (out != NULL) *out = s->clienthello->random; return SSL3_RANDOM_SIZE; } size_t SSL_early_get0_session_id(SSL *s, const unsigned char **out) { if (s->clienthello == NULL) return 0; if (out != NULL) *out = s->clienthello->session_id; return s->clienthello->session_id_len; } size_t SSL_early_get0_ciphers(SSL *s, const unsigned char **out) { if (s->clienthello == NULL) return 0; if (out != NULL) *out = PACKET_data(&s->clienthello->ciphersuites); return PACKET_remaining(&s->clienthello->ciphersuites); } size_t SSL_early_get0_compression_methods(SSL *s, const unsigned char **out) { if (s->clienthello == NULL) return 0; if (out != NULL) *out = s->clienthello->compressions; return s->clienthello->compressions_len; } int SSL_early_get0_ext(SSL *s, unsigned int type, const unsigned char **out, size_t *outlen) { size_t i; RAW_EXTENSION *r; if (s->clienthello == NULL) return 0; for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) { r = s->clienthello->pre_proc_exts + i; if (r->present && r->type == type) { if (out != NULL) *out = PACKET_data(&r->data); if (outlen != NULL) *outlen = PACKET_remaining(&r->data); return 1; } } return 0; } void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) { ctx->keylog_callback = cb; } SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) { return ctx->keylog_callback; } static int nss_keylog_int(const char *prefix, SSL *ssl, const uint8_t *parameter_1, size_t parameter_1_len, const uint8_t *parameter_2, size_t parameter_2_len) { char *out = NULL; char *cursor = NULL; size_t out_len = 0; size_t i; size_t prefix_len; if (ssl->ctx->keylog_callback == NULL) return 1; /* * Our output buffer will contain the following strings, rendered with * space characters in between, terminated by a NULL character: first the * prefix, then the first parameter, then the second parameter. The * meaning of each parameter depends on the specific key material being * logged. Note that the first and second parameters are encoded in * hexadecimal, so we need a buffer that is twice their lengths. */ prefix_len = strlen(prefix); out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3; if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) { SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE); return 0; } strcpy(cursor, prefix); cursor += prefix_len; *cursor++ = ' '; for (i = 0; i < parameter_1_len; i++) { sprintf(cursor, "%02x", parameter_1[i]); cursor += 2; } *cursor++ = ' '; for (i = 0; i < parameter_2_len; i++) { sprintf(cursor, "%02x", parameter_2[i]); cursor += 2; } *cursor = '\0'; ssl->ctx->keylog_callback(ssl, (const char *)out); OPENSSL_free(out); return 1; } int ssl_log_rsa_client_key_exchange(SSL *ssl, const uint8_t *encrypted_premaster, size_t encrypted_premaster_len, const uint8_t *premaster, size_t premaster_len) { if (encrypted_premaster_len < 8) { SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR); return 0; } /* We only want the first 8 bytes of the encrypted premaster as a tag. */ return nss_keylog_int("RSA", ssl, encrypted_premaster, 8, premaster, premaster_len); } int ssl_log_secret(SSL *ssl, const char *label, const uint8_t *secret, size_t secret_len) { return nss_keylog_int(label, ssl, ssl->s3->client_random, SSL3_RANDOM_SIZE, secret, secret_len); } #define SSLV2_CIPHER_LEN 3 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format, int *al) { int n; n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; if (PACKET_remaining(cipher_suites) == 0) { SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED); *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } if (PACKET_remaining(cipher_suites) % n != 0) { SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); *al = SSL_AD_DECODE_ERROR; return 0; } OPENSSL_free(s->s3->tmp.ciphers_raw); s->s3->tmp.ciphers_raw = NULL; s->s3->tmp.ciphers_rawlen = 0; if (sslv2format) { size_t numciphers = PACKET_remaining(cipher_suites) / n; PACKET sslv2ciphers = *cipher_suites; unsigned int leadbyte; unsigned char *raw; /* * We store the raw ciphers list in SSLv3+ format so we need to do some * preprocessing to convert the list first. If there are any SSLv2 only * ciphersuites with a non-zero leading byte then we are going to * slightly over allocate because we won't store those. But that isn't a * problem. */ raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); s->s3->tmp.ciphers_raw = raw; if (raw == NULL) { *al = SSL_AD_INTERNAL_ERROR; goto err; } for (s->s3->tmp.ciphers_rawlen = 0; PACKET_remaining(&sslv2ciphers) > 0; raw += TLS_CIPHER_LEN) { if (!PACKET_get_1(&sslv2ciphers, &leadbyte) || (leadbyte == 0 && !PACKET_copy_bytes(&sslv2ciphers, raw, TLS_CIPHER_LEN)) || (leadbyte != 0 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { *al = SSL_AD_INTERNAL_ERROR; OPENSSL_free(s->s3->tmp.ciphers_raw); s->s3->tmp.ciphers_raw = NULL; s->s3->tmp.ciphers_rawlen = 0; goto err; } if (leadbyte == 0) s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN; } } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw, &s->s3->tmp.ciphers_rawlen)) { *al = SSL_AD_INTERNAL_ERROR; goto err; } return 1; err: return 0; } int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, int isv2format, STACK_OF(SSL_CIPHER) **sk, STACK_OF(SSL_CIPHER) **scsvs) { int alert; PACKET pkt; if (!PACKET_buf_init(&pkt, bytes, len)) return 0; return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert); } int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites, STACK_OF(SSL_CIPHER) **skp, STACK_OF(SSL_CIPHER) **scsvs_out, int sslv2format, int *al) { const SSL_CIPHER *c; STACK_OF(SSL_CIPHER) *sk = NULL; STACK_OF(SSL_CIPHER) *scsvs = NULL; int n; /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ unsigned char cipher[SSLV2_CIPHER_LEN]; n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; if (PACKET_remaining(cipher_suites) == 0) { SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED); *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } if (PACKET_remaining(cipher_suites) % n != 0) { SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); *al = SSL_AD_DECODE_ERROR; return 0; } sk = sk_SSL_CIPHER_new_null(); scsvs = sk_SSL_CIPHER_new_null(); if (sk == NULL || scsvs == NULL) { SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); *al = SSL_AD_INTERNAL_ERROR; goto err; } while (PACKET_copy_bytes(cipher_suites, cipher, n)) { /* * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the * first byte set to zero, while true SSLv2 ciphers have a non-zero * first byte. We don't support any true SSLv2 ciphers, so skip them. */ if (sslv2format && cipher[0] != '\0') continue; /* For SSLv2-compat, ignore leading 0-byte. */ c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); if (c != NULL) { if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE); *al = SSL_AD_INTERNAL_ERROR; goto err; } } } if (PACKET_remaining(cipher_suites) > 0) { *al = SSL_AD_INTERNAL_ERROR; SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_INTERNAL_ERROR); goto err; } if (skp != NULL) *skp = sk; else sk_SSL_CIPHER_free(sk); if (scsvs_out != NULL) *scsvs_out = scsvs; else sk_SSL_CIPHER_free(scsvs); return 1; err: sk_SSL_CIPHER_free(sk); sk_SSL_CIPHER_free(scsvs); return 0; } int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) { ctx->max_early_data = max_early_data; return 1; } uint32_t SSL_CTX_get_max_early_data(SSL_CTX *ctx) { return ctx->max_early_data; } int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) { s->max_early_data = max_early_data; return 1; } uint32_t SSL_get_max_early_data(SSL_CTX *s) { return s->max_early_data; }