#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # December 2007 # The reason for undertaken effort is basically following. Even though # Power 6 CPU operates at incredible 4.7GHz clock frequency, its PKI # performance was observed to be less than impressive, essentially as # fast as 1.8GHz PPC970, or 2.6 times(!) slower than one would hope. # Well, it's not surprising that IBM had to make some sacrifices to # boost the clock frequency that much, but no overall improvement? # Having observed how much difference did switching to FPU make on # UltraSPARC, playing same stunt on Power 6 appeared appropriate... # Unfortunately the resulting performance improvement is not as # impressive, ~30%, and in absolute terms is still very far from what # one would expect from 4.7GHz CPU. There is a chance that I'm doing # something wrong, but in the lack of assembler level micro-profiling # data or at least decent platform guide I can't tell... Or better # results might be achieved with VMX... Anyway, this module provides # *worse* performance on other PowerPC implementations, ~40-15% slower # on PPC970 depending on key length and ~40% slower on Power 5 for all # key lengths. As it's obviously inappropriate as "best all-round" # alternative, it has to be complemented with run-time CPU family # detection. Oh! It should also be noted that unlike other PowerPC # implementation IALU ppc-mont.pl module performs *suboptimaly* on # >=1024-bit key lengths on Power 6. It should also be noted that # *everything* said so far applies to 64-bit builds! As far as 32-bit # application executed on 64-bit CPU goes, this module is likely to # become preferred choice, because it's easy to adapt it for such # case and *is* faster than 32-bit ppc-mont.pl on *all* processors. # February 2008 # Micro-profiling assisted optimization results in ~15% improvement # over original ppc64-mont.pl version, or overall ~50% improvement # over ppc.pl module on Power 6. If compared to ppc-mont.pl on same # Power 6 CPU, this module is 5-150% faster depending on key length, # [hereafter] more for longer keys. But if compared to ppc-mont.pl # on 1.8GHz PPC970, it's only 5-55% faster. Still far from impressive # in absolute terms, but it's apparently the way Power 6 is... # December 2009 # Adapted for 32-bit build this module delivers 25-120%, more for # longer keys, performance improvement on 1.8GHz PPC970. However! # This implementation utilizes even 64-bit integer operations and # trouble is that most PPC operating systems don't preserve upper # halves of general purpose registers upong signal delivery. They do # preserve them upon context switch, but not signalling:-( This means # that asynchronous signals have to be blocked upon entry to this # subroutine. Signal masking (and complementary unmasking) has quite # an impact on performance, naturally larger for shorter keys. It's # so severe that shorter key performance can be as low as 1/3 of # expected one. This is why this routine can be engaged for longer # key operations only, see crypto/ppccap.c for further details. # Alternative is to break dependance on upper halves on GPRs... # MacOS X is an exception from this and doesn't require signal # masking, and that's where above improvement coefficients were # collected. $flavour = shift; if ($flavour =~ /32/) { $SIZE_T=4; $RZONE= 224; $FRAME= $SIZE_T*12+8*12; $fname= "bn_mul_mont_fpu64"; $STUX= "stwux"; # store indexed and update $PUSH= "stw"; $POP= "lwz"; } elsif ($flavour =~ /64/) { $SIZE_T=8; $RZONE= 288; $FRAME= $SIZE_T*12+8*12; $fname= "bn_mul_mont_fpu64"; # same as above, but 64-bit mnemonics... $STUX= "stdux"; # store indexed and update $PUSH= "std"; $POP= "ld"; } else { die "nonsense $flavour"; } $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $FRAME=($FRAME+63)&~63; $TRANSFER=16*8; $carry="r0"; $sp="r1"; $toc="r2"; $rp="r3"; $ovf="r3"; $ap="r4"; $bp="r5"; $np="r6"; $n0="r7"; $num="r8"; $rp="r9"; # $rp is reassigned $tp="r10"; $j="r11"; $i="r12"; # non-volatile registers $nap_d="r14"; # interleaved ap and np in double format $a0="r15"; # ap[0] $t0="r16"; # temporary registers $t1="r17"; $t2="r18"; $t3="r19"; $t4="r20"; $t5="r21"; $t6="r22"; $t7="r23"; # PPC offers enough register bank capacity to unroll inner loops twice # # ..A3A2A1A0 # dcba # ----------- # A0a # A0b # A0c # A0d # A1a # A1b # A1c # A1d # A2a # A2b # A2c # A2d # A3a # A3b # A3c # A3d # ..a # ..b # $ba="f0"; $bb="f1"; $bc="f2"; $bd="f3"; $na="f4"; $nb="f5"; $nc="f6"; $nd="f7"; $dota="f8"; $dotb="f9"; $A0="f10"; $A1="f11"; $A2="f12"; $A3="f13"; $N0="f14"; $N1="f15"; $N2="f16"; $N3="f17"; $T0a="f18"; $T0b="f19"; $T1a="f20"; $T1b="f21"; $T2a="f22"; $T2b="f23"; $T3a="f24"; $T3b="f25"; # sp----------->+-------------------------------+ # | saved sp | # +-------------------------------+ # | | # +-------------------------------+ # | 10 saved gpr, r14-r23 | # . . # . . # +12*size_t +-------------------------------+ # | 12 saved fpr, f14-f25 | # . . # . . # +12*8 +-------------------------------+ # | padding to 64 byte boundary | # . . # +X +-------------------------------+ # | 16 gpr<->fpr transfer zone | # . . # . . # +16*8 +-------------------------------+ # | __int64 tmp[-1] | # +-------------------------------+ # | __int64 tmp[num] | # . . # . . # . . # +(num+1)*8 +-------------------------------+ # | padding to 64 byte boundary | # . . # +X +-------------------------------+ # | double nap_d[4*num] | # . . # . . # . . # +-------------------------------+ $code=<<___; .machine "any" .text .globl .$fname .align 5 .$fname: cmpwi $num,`3*8/$SIZE_T` mr $rp,r3 ; $rp is reassigned li r3,0 ; possible "not handled" return code bltlr- andi. r0,$num,`16/$SIZE_T-1` ; $num has to be "even" bnelr- slwi $num,$num,`log($SIZE_T)/log(2)` ; num*=sizeof(BN_LONG) li $i,-4096 slwi $tp,$num,2 ; place for {an}p_{lh}[num], i.e. 4*num add $tp,$tp,$num ; place for tp[num+1] addi $tp,$tp,`$FRAME+$TRANSFER+8+64+$RZONE` subf $tp,$tp,$sp ; $sp-$tp and $tp,$tp,$i ; minimize TLB usage subf $tp,$sp,$tp ; $tp-$sp $STUX $sp,$sp,$tp ; alloca $PUSH r14,`2*$SIZE_T`($sp) $PUSH r15,`3*$SIZE_T`($sp) $PUSH r16,`4*$SIZE_T`($sp) $PUSH r17,`5*$SIZE_T`($sp) $PUSH r18,`6*$SIZE_T`($sp) $PUSH r19,`7*$SIZE_T`($sp) $PUSH r20,`8*$SIZE_T`($sp) $PUSH r21,`9*$SIZE_T`($sp) $PUSH r22,`10*$SIZE_T`($sp) $PUSH r23,`11*$SIZE_T`($sp) stfd f14,`12*$SIZE_T+0`($sp) stfd f15,`12*$SIZE_T+8`($sp) stfd f16,`12*$SIZE_T+16`($sp) stfd f17,`12*$SIZE_T+24`($sp) stfd f18,`12*$SIZE_T+32`($sp) stfd f19,`12*$SIZE_T+40`($sp) stfd f20,`12*$SIZE_T+48`($sp) stfd f21,`12*$SIZE_T+56`($sp) stfd f22,`12*$SIZE_T+64`($sp) stfd f23,`12*$SIZE_T+72`($sp) stfd f24,`12*$SIZE_T+80`($sp) stfd f25,`12*$SIZE_T+88`($sp) ___ $code.=<<___ if ($SIZE_T==8); ld $a0,0($ap) ; pull ap[0] value ld $n0,0($n0) ; pull n0[0] value ld $t3,0($bp) ; bp[0] ___ $code.=<<___ if ($SIZE_T==4); mr $t1,$n0 lwz $a0,0($ap) ; pull ap[0,1] value lwz $t0,4($ap) lwz $n0,0($t1) ; pull n0[0,1] value lwz $t1,4($t1) lwz $t3,0($bp) ; bp[0,1] lwz $t2,4($bp) insrdi $a0,$t0,32,0 insrdi $n0,$t1,32,0 insrdi $t3,$t2,32,0 ___ $code.=<<___; addi $tp,$sp,`$FRAME+$TRANSFER+8+64` li $i,-64 add $nap_d,$tp,$num and $nap_d,$nap_d,$i ; align to 64 bytes mulld $t7,$a0,$t3 ; ap[0]*bp[0] ; nap_d is off by 1, because it's used with stfdu/lfdu addi $nap_d,$nap_d,-8 srwi $j,$num,`3+1` ; counter register, num/2 mulld $t7,$t7,$n0 ; tp[0]*n0 addi $j,$j,-1 addi $tp,$sp,`$FRAME+$TRANSFER-8` li $carry,0 mtctr $j ; transfer bp[0] to FPU as 4x16-bit values extrdi $t0,$t3,16,48 extrdi $t1,$t3,16,32 extrdi $t2,$t3,16,16 extrdi $t3,$t3,16,0 std $t0,`$FRAME+0`($sp) std $t1,`$FRAME+8`($sp) std $t2,`$FRAME+16`($sp) std $t3,`$FRAME+24`($sp) ; transfer (ap[0]*bp[0])*n0 to FPU as 4x16-bit values extrdi $t4,$t7,16,48 extrdi $t5,$t7,16,32 extrdi $t6,$t7,16,16 extrdi $t7,$t7,16,0 std $t4,`$FRAME+32`($sp) std $t5,`$FRAME+40`($sp) std $t6,`$FRAME+48`($sp) std $t7,`$FRAME+56`($sp) ___ $code.=<<___ if ($SIZE_T==8); lwz $t0,4($ap) ; load a[j] as 32-bit word pair lwz $t1,0($ap) lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair lwz $t3,8($ap) lwz $t4,4($np) ; load n[j] as 32-bit word pair lwz $t5,0($np) lwz $t6,12($np) ; load n[j+1] as 32-bit word pair lwz $t7,8($np) ___ $code.=<<___ if ($SIZE_T==4); lwz $t0,0($ap) ; load a[j..j+3] as 32-bit word pairs lwz $t1,4($ap) lwz $t2,8($ap) lwz $t3,12($ap) lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs lwz $t5,4($np) lwz $t6,8($np) lwz $t7,12($np) ___ $code.=<<___; lfd $ba,`$FRAME+0`($sp) lfd $bb,`$FRAME+8`($sp) lfd $bc,`$FRAME+16`($sp) lfd $bd,`$FRAME+24`($sp) lfd $na,`$FRAME+32`($sp) lfd $nb,`$FRAME+40`($sp) lfd $nc,`$FRAME+48`($sp) lfd $nd,`$FRAME+56`($sp) std $t0,`$FRAME+64`($sp) std $t1,`$FRAME+72`($sp) std $t2,`$FRAME+80`($sp) std $t3,`$FRAME+88`($sp) std $t4,`$FRAME+96`($sp) std $t5,`$FRAME+104`($sp) std $t6,`$FRAME+112`($sp) std $t7,`$FRAME+120`($sp) fcfid $ba,$ba fcfid $bb,$bb fcfid $bc,$bc fcfid $bd,$bd fcfid $na,$na fcfid $nb,$nb fcfid $nc,$nc fcfid $nd,$nd lfd $A0,`$FRAME+64`($sp) lfd $A1,`$FRAME+72`($sp) lfd $A2,`$FRAME+80`($sp) lfd $A3,`$FRAME+88`($sp) lfd $N0,`$FRAME+96`($sp) lfd $N1,`$FRAME+104`($sp) lfd $N2,`$FRAME+112`($sp) lfd $N3,`$FRAME+120`($sp) fcfid $A0,$A0 fcfid $A1,$A1 fcfid $A2,$A2 fcfid $A3,$A3 fcfid $N0,$N0 fcfid $N1,$N1 fcfid $N2,$N2 fcfid $N3,$N3 addi $ap,$ap,16 addi $np,$np,16 fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb stfd $A0,8($nap_d) ; save a[j] in double format stfd $A1,16($nap_d) fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb stfd $A2,24($nap_d) ; save a[j+1] in double format stfd $A3,32($nap_d) fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb stfd $N0,40($nap_d) ; save n[j] in double format stfd $N1,48($nap_d) fmul $T0a,$A0,$ba fmul $T0b,$A0,$bb stfd $N2,56($nap_d) ; save n[j+1] in double format stfdu $N3,64($nap_d) fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b fmul $dota,$A3,$bc fmul $dotb,$A3,$bd fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb fctid $T0a,$T0a fctid $T0b,$T0b fctid $T1a,$T1a fctid $T1b,$T1b fctid $T2a,$T2a fctid $T2b,$T2b fctid $T3a,$T3a fctid $T3b,$T3b stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) .align 5 L1st: ___ $code.=<<___ if ($SIZE_T==8); lwz $t0,4($ap) ; load a[j] as 32-bit word pair lwz $t1,0($ap) lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair lwz $t3,8($ap) lwz $t4,4($np) ; load n[j] as 32-bit word pair lwz $t5,0($np) lwz $t6,12($np) ; load n[j+1] as 32-bit word pair lwz $t7,8($np) ___ $code.=<<___ if ($SIZE_T==4); lwz $t0,0($ap) ; load a[j..j+3] as 32-bit word pairs lwz $t1,4($ap) lwz $t2,8($ap) lwz $t3,12($ap) lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs lwz $t5,4($np) lwz $t6,8($np) lwz $t7,12($np) ___ $code.=<<___; std $t0,`$FRAME+64`($sp) std $t1,`$FRAME+72`($sp) std $t2,`$FRAME+80`($sp) std $t3,`$FRAME+88`($sp) std $t4,`$FRAME+96`($sp) std $t5,`$FRAME+104`($sp) std $t6,`$FRAME+112`($sp) std $t7,`$FRAME+120`($sp) ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) lfd $A0,`$FRAME+64`($sp) lfd $A1,`$FRAME+72`($sp) lfd $A2,`$FRAME+80`($sp) lfd $A3,`$FRAME+88`($sp) lfd $N0,`$FRAME+96`($sp) lfd $N1,`$FRAME+104`($sp) lfd $N2,`$FRAME+112`($sp) lfd $N3,`$FRAME+120`($sp) fcfid $A0,$A0 fcfid $A1,$A1 fcfid $A2,$A2 fcfid $A3,$A3 fcfid $N0,$N0 fcfid $N1,$N1 fcfid $N2,$N2 fcfid $N3,$N3 addi $ap,$ap,16 addi $np,$np,16 fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb stfd $A0,8($nap_d) ; save a[j] in double format stfd $A1,16($nap_d) fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb fmadd $T0a,$A0,$ba,$dota fmadd $T0b,$A0,$bb,$dotb stfd $A2,24($nap_d) ; save a[j+1] in double format stfd $A3,32($nap_d) fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b stfd $N0,40($nap_d) ; save n[j] in double format stfd $N1,48($nap_d) fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b add $t0,$t0,$carry ; can not overflow fmul $dota,$A3,$bc fmul $dotb,$A3,$bd stfd $N2,56($nap_d) ; save n[j+1] in double format stfdu $N3,64($nap_d) srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b insrdi $t0,$t1,16,32 fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b add $t2,$t2,$carry fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b srdi $carry,$t2,16 fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b insrdi $t0,$t2,16,16 add $t3,$t3,$carry srdi $carry,$t3,16 fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b insrdi $t0,$t3,16,0 ; 0..63 bits fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b add $t4,$t4,$carry fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b srdi $carry,$t4,16 fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb add $t5,$t5,$carry srdi $carry,$t5,16 insrdi $t4,$t5,16,32 fctid $T0a,$T0a fctid $T0b,$T0b add $t6,$t6,$carry fctid $T1a,$T1a fctid $T1b,$T1b srdi $carry,$t6,16 fctid $T2a,$T2a fctid $T2b,$T2b insrdi $t4,$t6,16,16 fctid $T3a,$T3a fctid $T3b,$T3b add $t7,$t7,$carry insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) std $t0,8($tp) ; tp[j-1] stdu $t4,16($tp) ; tp[j] bdnz- L1st fctid $dota,$dota fctid $dotb,$dotb ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) stfd $dota,`$FRAME+64`($sp) stfd $dotb,`$FRAME+72`($sp) add $t0,$t0,$carry ; can not overflow srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 insrdi $t0,$t1,16,32 add $t2,$t2,$carry srdi $carry,$t2,16 insrdi $t0,$t2,16,16 add $t3,$t3,$carry srdi $carry,$t3,16 insrdi $t0,$t3,16,0 ; 0..63 bits add $t4,$t4,$carry srdi $carry,$t4,16 add $t5,$t5,$carry srdi $carry,$t5,16 insrdi $t4,$t5,16,32 add $t6,$t6,$carry srdi $carry,$t6,16 insrdi $t4,$t6,16,16 add $t7,$t7,$carry insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits ld $t6,`$FRAME+64`($sp) ld $t7,`$FRAME+72`($sp) std $t0,8($tp) ; tp[j-1] stdu $t4,16($tp) ; tp[j] add $t6,$t6,$carry ; can not overflow srdi $carry,$t6,16 add $t7,$t7,$carry insrdi $t6,$t7,48,0 srdi $ovf,$t7,48 std $t6,8($tp) ; tp[num-1] slwi $t7,$num,2 subf $nap_d,$t7,$nap_d ; rewind pointer li $i,8 ; i=1 .align 5 Louter: ___ $code.=<<___ if ($SIZE_T==8); ldx $t3,$bp,$i ; bp[i] ___ $code.=<<___ if ($SIZE_T==4); add $t0,$bp,$i lwz $t3,0($t0) ; bp[i,i+1] lwz $t0,4($t0) insrdi $t3,$t0,32,0 ___ $code.=<<___; ld $t6,`$FRAME+$TRANSFER+8`($sp) ; tp[0] mulld $t7,$a0,$t3 ; ap[0]*bp[i] addi $tp,$sp,`$FRAME+$TRANSFER` add $t7,$t7,$t6 ; ap[0]*bp[i]+tp[0] li $carry,0 mulld $t7,$t7,$n0 ; tp[0]*n0 mtctr $j ; transfer bp[i] to FPU as 4x16-bit values extrdi $t0,$t3,16,48 extrdi $t1,$t3,16,32 extrdi $t2,$t3,16,16 extrdi $t3,$t3,16,0 std $t0,`$FRAME+0`($sp) std $t1,`$FRAME+8`($sp) std $t2,`$FRAME+16`($sp) std $t3,`$FRAME+24`($sp) ; transfer (ap[0]*bp[i]+tp[0])*n0 to FPU as 4x16-bit values extrdi $t4,$t7,16,48 extrdi $t5,$t7,16,32 extrdi $t6,$t7,16,16 extrdi $t7,$t7,16,0 std $t4,`$FRAME+32`($sp) std $t5,`$FRAME+40`($sp) std $t6,`$FRAME+48`($sp) std $t7,`$FRAME+56`($sp) lfd $A0,8($nap_d) ; load a[j] in double format lfd $A1,16($nap_d) lfd $A2,24($nap_d) ; load a[j+1] in double format lfd $A3,32($nap_d) lfd $N0,40($nap_d) ; load n[j] in double format lfd $N1,48($nap_d) lfd $N2,56($nap_d) ; load n[j+1] in double format lfdu $N3,64($nap_d) lfd $ba,`$FRAME+0`($sp) lfd $bb,`$FRAME+8`($sp) lfd $bc,`$FRAME+16`($sp) lfd $bd,`$FRAME+24`($sp) lfd $na,`$FRAME+32`($sp) lfd $nb,`$FRAME+40`($sp) lfd $nc,`$FRAME+48`($sp) lfd $nd,`$FRAME+56`($sp) fcfid $ba,$ba fcfid $bb,$bb fcfid $bc,$bc fcfid $bd,$bd fcfid $na,$na fcfid $nb,$nb fcfid $nc,$nc fcfid $nd,$nd fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb fmul $T0a,$A0,$ba fmul $T0b,$A0,$bb fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b fmul $dota,$A3,$bc fmul $dotb,$A3,$bd fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b lfd $A0,8($nap_d) ; load a[j] in double format lfd $A1,16($nap_d) fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b lfd $A2,24($nap_d) ; load a[j+1] in double format lfd $A3,32($nap_d) fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb fctid $T0a,$T0a fctid $T0b,$T0b fctid $T1a,$T1a fctid $T1b,$T1b fctid $T2a,$T2a fctid $T2b,$T2b fctid $T3a,$T3a fctid $T3b,$T3b stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) .align 5 Linner: fmul $T1a,$A1,$ba fmul $T1b,$A1,$bb fmul $T2a,$A2,$ba fmul $T2b,$A2,$bb lfd $N0,40($nap_d) ; load n[j] in double format lfd $N1,48($nap_d) fmul $T3a,$A3,$ba fmul $T3b,$A3,$bb fmadd $T0a,$A0,$ba,$dota fmadd $T0b,$A0,$bb,$dotb lfd $N2,56($nap_d) ; load n[j+1] in double format lfdu $N3,64($nap_d) fmadd $T1a,$A0,$bc,$T1a fmadd $T1b,$A0,$bd,$T1b fmadd $T2a,$A1,$bc,$T2a fmadd $T2b,$A1,$bd,$T2b lfd $A0,8($nap_d) ; load a[j] in double format lfd $A1,16($nap_d) fmadd $T3a,$A2,$bc,$T3a fmadd $T3b,$A2,$bd,$T3b fmul $dota,$A3,$bc fmul $dotb,$A3,$bd lfd $A2,24($nap_d) ; load a[j+1] in double format lfd $A3,32($nap_d) fmadd $T1a,$N1,$na,$T1a fmadd $T1b,$N1,$nb,$T1b ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) fmadd $T2a,$N2,$na,$T2a fmadd $T2b,$N2,$nb,$T2b ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) fmadd $T3a,$N3,$na,$T3a fmadd $T3b,$N3,$nb,$T3b add $t0,$t0,$carry ; can not overflow ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) fmadd $T0a,$N0,$na,$T0a fmadd $T0b,$N0,$nb,$T0b srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) fmadd $T1a,$N0,$nc,$T1a fmadd $T1b,$N0,$nd,$T1b insrdi $t0,$t1,16,32 ld $t1,8($tp) ; tp[j] fmadd $T2a,$N1,$nc,$T2a fmadd $T2b,$N1,$nd,$T2b add $t2,$t2,$carry fmadd $T3a,$N2,$nc,$T3a fmadd $T3b,$N2,$nd,$T3b srdi $carry,$t2,16 insrdi $t0,$t2,16,16 fmadd $dota,$N3,$nc,$dota fmadd $dotb,$N3,$nd,$dotb add $t3,$t3,$carry ldu $t2,16($tp) ; tp[j+1] srdi $carry,$t3,16 insrdi $t0,$t3,16,0 ; 0..63 bits add $t4,$t4,$carry fctid $T0a,$T0a fctid $T0b,$T0b srdi $carry,$t4,16 fctid $T1a,$T1a fctid $T1b,$T1b add $t5,$t5,$carry fctid $T2a,$T2a fctid $T2b,$T2b srdi $carry,$t5,16 insrdi $t4,$t5,16,32 fctid $T3a,$T3a fctid $T3b,$T3b add $t6,$t6,$carry srdi $carry,$t6,16 insrdi $t4,$t6,16,16 stfd $T0a,`$FRAME+0`($sp) stfd $T0b,`$FRAME+8`($sp) add $t7,$t7,$carry addc $t3,$t0,$t1 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t0,$t0,32,0 extrdi $t1,$t1,32,0 adde $t0,$t0,$t1 ___ $code.=<<___; stfd $T1a,`$FRAME+16`($sp) stfd $T1b,`$FRAME+24`($sp) insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits stfd $T2a,`$FRAME+32`($sp) stfd $T2b,`$FRAME+40`($sp) adde $t5,$t4,$t2 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t4,$t4,32,0 extrdi $t2,$t2,32,0 adde $t4,$t4,$t2 ___ $code.=<<___; stfd $T3a,`$FRAME+48`($sp) stfd $T3b,`$FRAME+56`($sp) addze $carry,$carry std $t3,-16($tp) ; tp[j-1] std $t5,-8($tp) ; tp[j] bdnz- Linner fctid $dota,$dota fctid $dotb,$dotb ld $t0,`$FRAME+0`($sp) ld $t1,`$FRAME+8`($sp) ld $t2,`$FRAME+16`($sp) ld $t3,`$FRAME+24`($sp) ld $t4,`$FRAME+32`($sp) ld $t5,`$FRAME+40`($sp) ld $t6,`$FRAME+48`($sp) ld $t7,`$FRAME+56`($sp) stfd $dota,`$FRAME+64`($sp) stfd $dotb,`$FRAME+72`($sp) add $t0,$t0,$carry ; can not overflow srdi $carry,$t0,16 add $t1,$t1,$carry srdi $carry,$t1,16 insrdi $t0,$t1,16,32 add $t2,$t2,$carry ld $t1,8($tp) ; tp[j] srdi $carry,$t2,16 insrdi $t0,$t2,16,16 add $t3,$t3,$carry ldu $t2,16($tp) ; tp[j+1] srdi $carry,$t3,16 insrdi $t0,$t3,16,0 ; 0..63 bits add $t4,$t4,$carry srdi $carry,$t4,16 add $t5,$t5,$carry srdi $carry,$t5,16 insrdi $t4,$t5,16,32 add $t6,$t6,$carry srdi $carry,$t6,16 insrdi $t4,$t6,16,16 add $t7,$t7,$carry insrdi $t4,$t7,16,0 ; 64..127 bits srdi $carry,$t7,16 ; upper 33 bits ld $t6,`$FRAME+64`($sp) ld $t7,`$FRAME+72`($sp) addc $t3,$t0,$t1 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t0,$t0,32,0 extrdi $t1,$t1,32,0 adde $t0,$t0,$t1 ___ $code.=<<___; adde $t5,$t4,$t2 ___ $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] extrdi $t4,$t4,32,0 extrdi $t2,$t2,32,0 adde $t4,$t4,$t2 ___ $code.=<<___; addze $carry,$carry std $t3,-16($tp) ; tp[j-1] std $t5,-8($tp) ; tp[j] add $carry,$carry,$ovf ; comsume upmost overflow add $t6,$t6,$carry ; can not overflow srdi $carry,$t6,16 add $t7,$t7,$carry insrdi $t6,$t7,48,0 srdi $ovf,$t7,48 std $t6,0($tp) ; tp[num-1] slwi $t7,$num,2 addi $i,$i,8 subf $nap_d,$t7,$nap_d ; rewind pointer cmpw $i,$num blt- Louter ___ $code.=<<___ if ($SIZE_T==8); subf $np,$num,$np ; rewind np addi $j,$j,1 ; restore counter subfc $i,$i,$i ; j=0 and "clear" XER[CA] addi $tp,$sp,`$FRAME+$TRANSFER+8` addi $t4,$sp,`$FRAME+$TRANSFER+16` addi $t5,$np,8 addi $t6,$rp,8 mtctr $j .align 4 Lsub: ldx $t0,$tp,$i ldx $t1,$np,$i ldx $t2,$t4,$i ldx $t3,$t5,$i subfe $t0,$t1,$t0 ; tp[j]-np[j] subfe $t2,$t3,$t2 ; tp[j+1]-np[j+1] stdx $t0,$rp,$i stdx $t2,$t6,$i addi $i,$i,16 bdnz- Lsub li $i,0 subfe $ovf,$i,$ovf ; handle upmost overflow bit and $ap,$tp,$ovf andc $np,$rp,$ovf or $ap,$ap,$np ; ap=borrow?tp:rp addi $t7,$ap,8 mtctr $j .align 4 Lcopy: ; copy or in-place refresh ldx $t0,$ap,$i ldx $t1,$t7,$i std $i,8($nap_d) ; zap nap_d std $i,16($nap_d) std $i,24($nap_d) std $i,32($nap_d) std $i,40($nap_d) std $i,48($nap_d) std $i,56($nap_d) stdu $i,64($nap_d) stdx $t0,$rp,$i stdx $t1,$t6,$i stdx $i,$tp,$i ; zap tp at once stdx $i,$t4,$i addi $i,$i,16 bdnz- Lcopy ___ $code.=<<___ if ($SIZE_T==4); subf $np,$num,$np ; rewind np addi $j,$j,1 ; restore counter subfc $i,$i,$i ; j=0 and "clear" XER[CA] addi $tp,$sp,`$FRAME+$TRANSFER` addi $np,$np,-4 addi $rp,$rp,-4 addi $ap,$sp,`$FRAME+$TRANSFER+4` mtctr $j .align 4 Lsub: ld $t0,8($tp) ; load tp[j..j+3] in 64-bit word order ldu $t2,16($tp) lwz $t4,4($np) ; load np[j..j+3] in 32-bit word order lwz $t5,8($np) lwz $t6,12($np) lwzu $t7,16($np) extrdi $t1,$t0,32,0 extrdi $t3,$t2,32,0 subfe $t4,$t4,$t0 ; tp[j]-np[j] stw $t0,4($ap) ; save tp[j..j+3] in 32-bit word order subfe $t5,$t5,$t1 ; tp[j+1]-np[j+1] stw $t1,8($ap) subfe $t6,$t6,$t2 ; tp[j+2]-np[j+2] stw $t2,12($ap) subfe $t7,$t7,$t3 ; tp[j+3]-np[j+3] stwu $t3,16($ap) stw $t4,4($rp) stw $t5,8($rp) stw $t6,12($rp) stwu $t7,16($rp) bdnz- Lsub li $i,0 subfe $ovf,$i,$ovf ; handle upmost overflow bit addi $tp,$sp,`$FRAME+$TRANSFER+4` subf $rp,$num,$rp ; rewind rp and $ap,$tp,$ovf andc $np,$rp,$ovf or $ap,$ap,$np ; ap=borrow?tp:rp addi $tp,$sp,`$FRAME+$TRANSFER` mtctr $j .align 4 Lcopy: ; copy or in-place refresh lwz $t0,4($ap) lwz $t1,8($ap) lwz $t2,12($ap) lwzu $t3,16($ap) std $i,8($nap_d) ; zap nap_d std $i,16($nap_d) std $i,24($nap_d) std $i,32($nap_d) std $i,40($nap_d) std $i,48($nap_d) std $i,56($nap_d) stdu $i,64($nap_d) stw $t0,4($rp) stw $t1,8($rp) stw $t2,12($rp) stwu $t3,16($rp) std $i,8($tp) ; zap tp at once stdu $i,16($tp) bdnz- Lcopy ___ $code.=<<___; $POP r14,`2*$SIZE_T`($sp) $POP r15,`3*$SIZE_T`($sp) $POP r16,`4*$SIZE_T`($sp) $POP r17,`5*$SIZE_T`($sp) $POP r18,`6*$SIZE_T`($sp) $POP r19,`7*$SIZE_T`($sp) $POP r20,`8*$SIZE_T`($sp) $POP r21,`9*$SIZE_T`($sp) $POP r22,`10*$SIZE_T`($sp) $POP r23,`11*$SIZE_T`($sp) lfd f14,`12*$SIZE_T+0`($sp) lfd f15,`12*$SIZE_T+8`($sp) lfd f16,`12*$SIZE_T+16`($sp) lfd f17,`12*$SIZE_T+24`($sp) lfd f18,`12*$SIZE_T+32`($sp) lfd f19,`12*$SIZE_T+40`($sp) lfd f20,`12*$SIZE_T+48`($sp) lfd f21,`12*$SIZE_T+56`($sp) lfd f22,`12*$SIZE_T+64`($sp) lfd f23,`12*$SIZE_T+72`($sp) lfd f24,`12*$SIZE_T+80`($sp) lfd f25,`12*$SIZE_T+88`($sp) $POP $sp,0($sp) li r3,1 ; signal "handled" blr .long 0 .asciz "Montgomery Multiplication for PPC64, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT;