/* * Copyright 2015-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include #include #include "internal/numbers.h" /* Remove spaces from beginning and end of a string */ static void remove_space(char **pval) { unsigned char *p = (unsigned char *)*pval, *beginning; while (isspace(*p)) p++; *pval = (char *)(beginning = p); p = p + strlen(*pval) - 1; /* Remove trailing space */ while (p >= beginning && isspace(*p)) *p-- = 0; } /* * Given a line of the form: * name = value # comment * extract name and value. NB: modifies passed buffer. */ static int parse_line(char **pkw, char **pval, char *linebuf) { char *p; p = linebuf + strlen(linebuf) - 1; if (*p != '\n') { fprintf(stderr, "FATAL: missing EOL\n"); exit(1); } /* Look for # */ p = strchr(linebuf, '#'); if (p) *p = '\0'; /* Look for = sign */ p = strchr(linebuf, '='); /* If no '=' exit */ if (!p) return 0; *p++ = '\0'; *pkw = linebuf; *pval = p; /* Remove spaces from keyword and value */ remove_space(pkw); remove_space(pval); return 1; } /* * Unescape some escape sequences in string literals. * Return the result in a newly allocated buffer. * Currently only supports '\n'. * If the input length is 0, returns a valid 1-byte buffer, but sets * the length to 0. */ static unsigned char* unescape(const char *input, size_t input_len, size_t *out_len) { unsigned char *ret, *p; size_t i; if (input_len == 0) { *out_len = 0; return OPENSSL_zalloc(1); } /* Escaping is non-expanding; over-allocate original size for simplicity. */ ret = p = OPENSSL_malloc(input_len); if (ret == NULL) return NULL; for (i = 0; i < input_len; i++) { if (input[i] == '\\') { if (i == input_len - 1 || input[i+1] != 'n') goto err; *p++ = '\n'; i++; } else { *p++ = input[i]; } } *out_len = p - ret; return ret; err: OPENSSL_free(ret); return NULL; } /* For a hex string "value" convert to a binary allocated buffer */ static int test_bin(const char *value, unsigned char **buf, size_t *buflen) { long len; *buflen = 0; if (!*value) { /* * Don't return NULL for zero length buffer. * This is needed for some tests with empty keys: HMAC_Init_ex() expects * a non-NULL key buffer even if the key length is 0, in order to detect * key reset. */ *buf = OPENSSL_malloc(1); if (!*buf) return 0; **buf = 0; *buflen = 0; return 1; } /* Check for string literal */ if (value[0] == '"') { size_t vlen; value++; vlen = strlen(value); if (value[vlen - 1] != '"') return 0; vlen--; *buf = unescape(value, vlen, buflen); if (*buf == NULL) return 0; return 1; } *buf = OPENSSL_hexstr2buf(value, &len); if (!*buf) { fprintf(stderr, "Value=%s\n", value); ERR_print_errors_fp(stderr); return -1; } /* Size of input buffer means we'll never overflow */ *buflen = len; return 1; } #ifndef OPENSSL_NO_SCRYPT /* Currently only used by scrypt tests */ /* Parse unsigned decimal 64 bit integer value */ static int test_uint64(const char *value, uint64_t *pr) { const char *p = value; if (!*p) { fprintf(stderr, "Invalid empty integer value\n"); return -1; } *pr = 0; while (*p) { if (*pr > UINT64_MAX/10) { fprintf(stderr, "Integer string overflow value=%s\n", value); return -1; } *pr *= 10; if (*p < '0' || *p > '9') { fprintf(stderr, "Invalid integer string value=%s\n", value); return -1; } *pr += *p - '0'; p++; } return 1; } #endif /* Structure holding test information */ struct evp_test { /* file being read */ BIO *in; /* temp memory BIO for reading in keys */ BIO *key; /* List of public and private keys */ struct key_list *private; struct key_list *public; /* method for this test */ const struct evp_test_method *meth; /* current line being processed */ unsigned int line; /* start line of current test */ unsigned int start_line; /* Error string for test */ const char *err, *aux_err; /* Expected error value of test */ char *expected_err; /* Expected error function string */ char *func; /* Expected error reason string */ char *reason; /* Number of tests */ int ntests; /* Error count */ int errors; /* Number of tests skipped */ int nskip; /* If output mismatch expected and got value */ unsigned char *out_received; size_t out_received_len; unsigned char *out_expected; size_t out_expected_len; /* test specific data */ void *data; /* Current test should be skipped */ int skip; }; struct key_list { char *name; EVP_PKEY *key; struct key_list *next; }; /* Test method structure */ struct evp_test_method { /* Name of test as it appears in file */ const char *name; /* Initialise test for "alg" */ int (*init) (struct evp_test * t, const char *alg); /* Clean up method */ void (*cleanup) (struct evp_test * t); /* Test specific name value pair processing */ int (*parse) (struct evp_test * t, const char *name, const char *value); /* Run the test itself */ int (*run_test) (struct evp_test * t); }; static const struct evp_test_method digest_test_method, cipher_test_method; static const struct evp_test_method mac_test_method; static const struct evp_test_method psign_test_method, pverify_test_method; static const struct evp_test_method pdecrypt_test_method; static const struct evp_test_method pverify_recover_test_method; static const struct evp_test_method pderive_test_method; static const struct evp_test_method pbe_test_method; static const struct evp_test_method encode_test_method; static const struct evp_test_method kdf_test_method; static const struct evp_test_method *evp_test_list[] = { &digest_test_method, &cipher_test_method, &mac_test_method, &psign_test_method, &pverify_test_method, &pdecrypt_test_method, &pverify_recover_test_method, &pderive_test_method, &pbe_test_method, &encode_test_method, &kdf_test_method, NULL }; static const struct evp_test_method *evp_find_test(const char *name) { const struct evp_test_method **tt; for (tt = evp_test_list; *tt; tt++) { if (strcmp(name, (*tt)->name) == 0) return *tt; } return NULL; } static void hex_print(const char *name, const unsigned char *buf, size_t len) { size_t i; fprintf(stderr, "%s ", name); for (i = 0; i < len; i++) fprintf(stderr, "%02X", buf[i]); fputs("\n", stderr); } static void free_expected(struct evp_test *t) { OPENSSL_free(t->expected_err); t->expected_err = NULL; OPENSSL_free(t->func); t->func = NULL; OPENSSL_free(t->reason); t->reason = NULL; OPENSSL_free(t->out_expected); OPENSSL_free(t->out_received); t->out_expected = NULL; t->out_received = NULL; t->out_expected_len = 0; t->out_received_len = 0; /* Literals. */ t->err = NULL; } static void print_expected(struct evp_test *t) { if (t->out_expected == NULL && t->out_received == NULL) return; hex_print("Expected:", t->out_expected, t->out_expected_len); hex_print("Got: ", t->out_received, t->out_received_len); free_expected(t); } static int check_test_error(struct evp_test *t) { unsigned long err; const char *func; const char *reason; if (!t->err && !t->expected_err) return 1; if (t->err && !t->expected_err) { if (t->aux_err != NULL) { fprintf(stderr, "Test line %d(%s): unexpected error %s\n", t->start_line, t->aux_err, t->err); } else { fprintf(stderr, "Test line %d: unexpected error %s\n", t->start_line, t->err); } print_expected(t); return 0; } if (!t->err && t->expected_err) { fprintf(stderr, "Test line %d: succeeded expecting %s\n", t->start_line, t->expected_err); return 0; } if (strcmp(t->err, t->expected_err) != 0) { fprintf(stderr, "Test line %d: expecting %s got %s\n", t->start_line, t->expected_err, t->err); return 0; } if (t->func == NULL && t->reason == NULL) return 1; if (t->func == NULL || t->reason == NULL) { fprintf(stderr, "Test line %d: missing function or reason code\n", t->start_line); return 0; } err = ERR_peek_error(); if (err == 0) { fprintf(stderr, "Test line %d, expected error \"%s:%s\" not set\n", t->start_line, t->func, t->reason); return 0; } func = ERR_func_error_string(err); reason = ERR_reason_error_string(err); if (func == NULL && reason == NULL) { fprintf(stderr, "Test line %d: expected error \"%s:%s\", no strings available. Skipping...\n", t->start_line, t->func, t->reason); return 1; } if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0) return 1; fprintf(stderr, "Test line %d: expected error \"%s:%s\", got \"%s:%s\"\n", t->start_line, t->func, t->reason, func, reason); return 0; } /* Setup a new test, run any existing test */ static int setup_test(struct evp_test *t, const struct evp_test_method *tmeth) { /* If we already have a test set up run it */ if (t->meth) { t->ntests++; if (t->skip) { t->nskip++; } else { /* run the test */ if (t->err == NULL && t->meth->run_test(t) != 1) { fprintf(stderr, "%s test error line %d\n", t->meth->name, t->start_line); return 0; } if (!check_test_error(t)) { if (t->err) ERR_print_errors_fp(stderr); t->errors++; } } /* clean it up */ ERR_clear_error(); if (t->data != NULL) { t->meth->cleanup(t); OPENSSL_free(t->data); t->data = NULL; } OPENSSL_free(t->expected_err); t->expected_err = NULL; free_expected(t); } t->meth = tmeth; return 1; } static int find_key(EVP_PKEY **ppk, const char *name, struct key_list *lst) { for (; lst; lst = lst->next) { if (strcmp(lst->name, name) == 0) { if (ppk) *ppk = lst->key; return 1; } } return 0; } static void free_key_list(struct key_list *lst) { while (lst != NULL) { struct key_list *ltmp; EVP_PKEY_free(lst->key); OPENSSL_free(lst->name); ltmp = lst->next; OPENSSL_free(lst); lst = ltmp; } } static int check_unsupported() { long err = ERR_peek_error(); if (ERR_GET_LIB(err) == ERR_LIB_EVP && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) { ERR_clear_error(); return 1; } return 0; } static int read_key(struct evp_test *t) { char tmpbuf[80]; if (t->key == NULL) t->key = BIO_new(BIO_s_mem()); else if (BIO_reset(t->key) <= 0) return 0; if (t->key == NULL) { fprintf(stderr, "Error allocating key memory BIO\n"); return 0; } /* Read to PEM end line and place content in memory BIO */ while (BIO_gets(t->in, tmpbuf, sizeof(tmpbuf))) { t->line++; if (BIO_puts(t->key, tmpbuf) <= 0) { fprintf(stderr, "Error writing to key memory BIO\n"); return 0; } if (strncmp(tmpbuf, "-----END", 8) == 0) return 1; } fprintf(stderr, "Can't find key end\n"); return 0; } static int process_test(struct evp_test *t, char *buf, int verbose) { char *keyword = NULL, *value = NULL; int rv = 0, add_key = 0; struct key_list **lst = NULL, *key = NULL; EVP_PKEY *pk = NULL; const struct evp_test_method *tmeth = NULL; if (verbose) fputs(buf, stdout); if (!parse_line(&keyword, &value, buf)) return 1; if (strcmp(keyword, "PrivateKey") == 0) { if (!read_key(t)) return 0; pk = PEM_read_bio_PrivateKey(t->key, NULL, 0, NULL); if (pk == NULL && !check_unsupported()) { fprintf(stderr, "Error reading private key %s\n", value); ERR_print_errors_fp(stderr); return 0; } lst = &t->private; add_key = 1; } if (strcmp(keyword, "PublicKey") == 0) { if (!read_key(t)) return 0; pk = PEM_read_bio_PUBKEY(t->key, NULL, 0, NULL); if (pk == NULL && !check_unsupported()) { fprintf(stderr, "Error reading public key %s\n", value); ERR_print_errors_fp(stderr); return 0; } lst = &t->public; add_key = 1; } /* If we have a key add to list */ if (add_key) { if (find_key(NULL, value, *lst)) { fprintf(stderr, "Duplicate key %s\n", value); return 0; } key = OPENSSL_malloc(sizeof(*key)); if (!key) return 0; key->name = OPENSSL_strdup(value); key->key = pk; key->next = *lst; *lst = key; return 1; } /* See if keyword corresponds to a test start */ tmeth = evp_find_test(keyword); if (tmeth) { if (!setup_test(t, tmeth)) return 0; t->start_line = t->line; t->skip = 0; if (!tmeth->init(t, value)) { fprintf(stderr, "Unknown %s: %s\n", keyword, value); return 0; } return 1; } else if (t->skip) { return 1; } else if (strcmp(keyword, "Result") == 0) { if (t->expected_err) { fprintf(stderr, "Line %d: multiple result lines\n", t->line); return 0; } t->expected_err = OPENSSL_strdup(value); if (t->expected_err == NULL) return 0; } else if (strcmp(keyword, "Function") == 0) { if (t->func != NULL) { fprintf(stderr, "Line %d: multiple function lines\n", t->line); return 0; } t->func = OPENSSL_strdup(value); if (t->func == NULL) return 0; } else if (strcmp(keyword, "Reason") == 0) { if (t->reason != NULL) { fprintf(stderr, "Line %d: multiple reason lines\n", t->line); return 0; } t->reason = OPENSSL_strdup(value); if (t->reason == NULL) return 0; } else { /* Must be test specific line: try to parse it */ if (t->meth) rv = t->meth->parse(t, keyword, value); if (rv == 0) fprintf(stderr, "line %d: unexpected keyword %s\n", t->line, keyword); if (rv < 0) fprintf(stderr, "line %d: error processing keyword %s\n", t->line, keyword); if (rv <= 0) return 0; } return 1; } static int check_var_length_output(struct evp_test *t, const unsigned char *expected, size_t expected_len, const unsigned char *received, size_t received_len) { if (expected_len == received_len && memcmp(expected, received, expected_len) == 0) { return 0; } /* The result printing code expects a non-NULL buffer. */ t->out_expected = OPENSSL_memdup(expected, expected_len ? expected_len : 1); t->out_expected_len = expected_len; t->out_received = OPENSSL_memdup(received, received_len ? received_len : 1); t->out_received_len = received_len; if (t->out_expected == NULL || t->out_received == NULL) { fprintf(stderr, "Memory allocation error!\n"); exit(1); } return 1; } static int check_output(struct evp_test *t, const unsigned char *expected, const unsigned char *received, size_t len) { return check_var_length_output(t, expected, len, received, len); } int main(int argc, char **argv) { BIO *in = NULL; char buf[10240]; struct evp_test t; if (argc != 2) { fprintf(stderr, "usage: evp_test testfile.txt\n"); return 1; } CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON); memset(&t, 0, sizeof(t)); t.start_line = -1; in = BIO_new_file(argv[1], "r"); if (in == NULL) { fprintf(stderr, "Can't open %s for reading\n", argv[1]); return 1; } t.in = in; t.err = NULL; while (BIO_gets(in, buf, sizeof(buf))) { t.line++; if (!process_test(&t, buf, 0)) exit(1); } /* Run any final test we have */ if (!setup_test(&t, NULL)) exit(1); fprintf(stderr, "%d tests completed with %d errors, %d skipped\n", t.ntests, t.errors, t.nskip); free_key_list(t.public); free_key_list(t.private); BIO_free(t.key); BIO_free(in); #ifndef OPENSSL_NO_CRYPTO_MDEBUG if (CRYPTO_mem_leaks_fp(stderr) <= 0) return 1; #endif if (t.errors) return 1; return 0; } static void test_free(void *d) { OPENSSL_free(d); } /* Message digest tests */ struct digest_data { /* Digest this test is for */ const EVP_MD *digest; /* Input to digest */ unsigned char *input; size_t input_len; /* Repeat count for input */ size_t nrpt; /* Expected output */ unsigned char *output; size_t output_len; }; static int digest_test_init(struct evp_test *t, const char *alg) { const EVP_MD *digest; struct digest_data *mdat; digest = EVP_get_digestbyname(alg); if (!digest) { /* If alg has an OID assume disabled algorithm */ if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { t->skip = 1; return 1; } return 0; } mdat = OPENSSL_malloc(sizeof(*mdat)); mdat->digest = digest; mdat->input = NULL; mdat->output = NULL; mdat->nrpt = 1; t->data = mdat; return 1; } static void digest_test_cleanup(struct evp_test *t) { struct digest_data *mdat = t->data; test_free(mdat->input); test_free(mdat->output); } static int digest_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct digest_data *mdata = t->data; if (strcmp(keyword, "Input") == 0) return test_bin(value, &mdata->input, &mdata->input_len); if (strcmp(keyword, "Output") == 0) return test_bin(value, &mdata->output, &mdata->output_len); if (strcmp(keyword, "Count") == 0) { long nrpt = atoi(value); if (nrpt <= 0) return 0; mdata->nrpt = (size_t)nrpt; return 1; } return 0; } static int digest_test_run(struct evp_test *t) { struct digest_data *mdata = t->data; size_t i; const char *err = "INTERNAL_ERROR"; EVP_MD_CTX *mctx; unsigned char md[EVP_MAX_MD_SIZE]; unsigned int md_len; mctx = EVP_MD_CTX_new(); if (!mctx) goto err; err = "DIGESTINIT_ERROR"; if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL)) goto err; err = "DIGESTUPDATE_ERROR"; for (i = 0; i < mdata->nrpt; i++) { if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len)) goto err; } err = "DIGESTFINAL_ERROR"; if (!EVP_DigestFinal(mctx, md, &md_len)) goto err; err = "DIGEST_LENGTH_MISMATCH"; if (md_len != mdata->output_len) goto err; err = "DIGEST_MISMATCH"; if (check_output(t, mdata->output, md, md_len)) goto err; err = NULL; err: EVP_MD_CTX_free(mctx); t->err = err; return 1; } static const struct evp_test_method digest_test_method = { "Digest", digest_test_init, digest_test_cleanup, digest_test_parse, digest_test_run }; /* Cipher tests */ struct cipher_data { const EVP_CIPHER *cipher; int enc; /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */ int aead; unsigned char *key; size_t key_len; unsigned char *iv; size_t iv_len; unsigned char *plaintext; size_t plaintext_len; unsigned char *ciphertext; size_t ciphertext_len; /* GCM, CCM only */ unsigned char *aad; size_t aad_len; unsigned char *tag; size_t tag_len; }; static int cipher_test_init(struct evp_test *t, const char *alg) { const EVP_CIPHER *cipher; struct cipher_data *cdat = t->data; cipher = EVP_get_cipherbyname(alg); if (!cipher) { /* If alg has an OID assume disabled algorithm */ if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { t->skip = 1; return 1; } return 0; } cdat = OPENSSL_malloc(sizeof(*cdat)); cdat->cipher = cipher; cdat->enc = -1; cdat->key = NULL; cdat->iv = NULL; cdat->ciphertext = NULL; cdat->plaintext = NULL; cdat->aad = NULL; cdat->tag = NULL; t->data = cdat; if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE || EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE || EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE) cdat->aead = EVP_CIPHER_mode(cipher); else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) cdat->aead = -1; else cdat->aead = 0; return 1; } static void cipher_test_cleanup(struct evp_test *t) { struct cipher_data *cdat = t->data; test_free(cdat->key); test_free(cdat->iv); test_free(cdat->ciphertext); test_free(cdat->plaintext); test_free(cdat->aad); test_free(cdat->tag); } static int cipher_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct cipher_data *cdat = t->data; if (strcmp(keyword, "Key") == 0) return test_bin(value, &cdat->key, &cdat->key_len); if (strcmp(keyword, "IV") == 0) return test_bin(value, &cdat->iv, &cdat->iv_len); if (strcmp(keyword, "Plaintext") == 0) return test_bin(value, &cdat->plaintext, &cdat->plaintext_len); if (strcmp(keyword, "Ciphertext") == 0) return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len); if (cdat->aead) { if (strcmp(keyword, "AAD") == 0) return test_bin(value, &cdat->aad, &cdat->aad_len); if (strcmp(keyword, "Tag") == 0) return test_bin(value, &cdat->tag, &cdat->tag_len); } if (strcmp(keyword, "Operation") == 0) { if (strcmp(value, "ENCRYPT") == 0) cdat->enc = 1; else if (strcmp(value, "DECRYPT") == 0) cdat->enc = 0; else return 0; return 1; } return 0; } static int cipher_test_enc(struct evp_test *t, int enc, size_t out_misalign, size_t inp_misalign, int frag) { struct cipher_data *cdat = t->data; unsigned char *in, *out, *tmp = NULL; size_t in_len, out_len, donelen = 0; int tmplen, chunklen, tmpflen; EVP_CIPHER_CTX *ctx = NULL; const char *err; err = "INTERNAL_ERROR"; ctx = EVP_CIPHER_CTX_new(); if (!ctx) goto err; EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); if (enc) { in = cdat->plaintext; in_len = cdat->plaintext_len; out = cdat->ciphertext; out_len = cdat->ciphertext_len; } else { in = cdat->ciphertext; in_len = cdat->ciphertext_len; out = cdat->plaintext; out_len = cdat->plaintext_len; } if (inp_misalign == (size_t)-1) { /* * Exercise in-place encryption */ tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH); if (!tmp) goto err; in = memcpy(tmp + out_misalign, in, in_len); } else { inp_misalign += 16 - ((out_misalign + in_len) & 15); /* * 'tmp' will store both output and copy of input. We make the copy * of input to specifically aligned part of 'tmp'. So we just * figured out how much padding would ensure the required alignment, * now we allocate extended buffer and finally copy the input just * past inp_misalign in expression below. Output will be written * past out_misalign... */ tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + inp_misalign + in_len); if (!tmp) goto err; in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + inp_misalign, in, in_len); } err = "CIPHERINIT_ERROR"; if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc)) goto err; err = "INVALID_IV_LENGTH"; if (cdat->iv) { if (cdat->aead) { if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, cdat->iv_len, 0)) goto err; } else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) goto err; } if (cdat->aead) { unsigned char *tag; /* * If encrypting or OCB just set tag length initially, otherwise * set tag length and value. */ if (enc || cdat->aead == EVP_CIPH_OCB_MODE) { err = "TAG_LENGTH_SET_ERROR"; tag = NULL; } else { err = "TAG_SET_ERROR"; tag = cdat->tag; } if (tag || cdat->aead != EVP_CIPH_GCM_MODE) { if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, cdat->tag_len, tag)) goto err; } } err = "INVALID_KEY_LENGTH"; if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len)) goto err; err = "KEY_SET_ERROR"; if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1)) goto err; if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) { if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, cdat->tag_len, cdat->tag)) { err = "TAG_SET_ERROR"; goto err; } } if (cdat->aead == EVP_CIPH_CCM_MODE) { if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) { err = "CCM_PLAINTEXT_LENGTH_SET_ERROR"; goto err; } } if (cdat->aad) { err = "AAD_SET_ERROR"; if (!frag) { if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad, cdat->aad_len)) goto err; } else { /* * Supply the AAD in chunks less than the block size where possible */ if (cdat->aad_len > 0) { if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad, 1)) goto err; donelen++; } if (cdat->aad_len > 2) { if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad + donelen, cdat->aad_len - 2)) goto err; donelen += cdat->aad_len - 2; } if (cdat->aad_len > 1 && !EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad + donelen, 1)) goto err; } } EVP_CIPHER_CTX_set_padding(ctx, 0); err = "CIPHERUPDATE_ERROR"; tmplen = 0; if (!frag) { /* We supply the data all in one go */ if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len)) goto err; } else { /* Supply the data in chunks less than the block size where possible */ if (in_len > 0) { if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1)) goto err; tmplen += chunklen; in++; in_len--; } if (in_len > 1) { if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, in, in_len - 1)) goto err; tmplen += chunklen; in += in_len - 1; in_len = 1; } if (in_len > 0 ) { if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, in, 1)) goto err; tmplen += chunklen; } } err = "CIPHERFINAL_ERROR"; if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) goto err; err = "LENGTH_MISMATCH"; if (out_len != (size_t)(tmplen + tmpflen)) goto err; err = "VALUE_MISMATCH"; if (check_output(t, out, tmp + out_misalign, out_len)) goto err; if (enc && cdat->aead) { unsigned char rtag[16]; if (cdat->tag_len > sizeof(rtag)) { err = "TAG_LENGTH_INTERNAL_ERROR"; goto err; } if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, cdat->tag_len, rtag)) { err = "TAG_RETRIEVE_ERROR"; goto err; } if (check_output(t, cdat->tag, rtag, cdat->tag_len)) { err = "TAG_VALUE_MISMATCH"; goto err; } } err = NULL; err: OPENSSL_free(tmp); EVP_CIPHER_CTX_free(ctx); t->err = err; return err ? 0 : 1; } static int cipher_test_run(struct evp_test *t) { struct cipher_data *cdat = t->data; int rv, frag = 0; size_t out_misalign, inp_misalign; if (!cdat->key) { t->err = "NO_KEY"; return 0; } if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) { /* IV is optional and usually omitted in wrap mode */ if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) { t->err = "NO_IV"; return 0; } } if (cdat->aead && !cdat->tag) { t->err = "NO_TAG"; return 0; } for (out_misalign = 0; out_misalign <= 1;) { static char aux_err[64]; t->aux_err = aux_err; for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) { if (inp_misalign == (size_t)-1) { /* kludge: inp_misalign == -1 means "exercise in-place" */ BIO_snprintf(aux_err, sizeof(aux_err), "%s in-place, %sfragmented", out_misalign ? "misaligned" : "aligned", frag ? "" : "not "); } else { BIO_snprintf(aux_err, sizeof(aux_err), "%s output and %s input, %sfragmented", out_misalign ? "misaligned" : "aligned", inp_misalign ? "misaligned" : "aligned", frag ? "" : "not "); } if (cdat->enc) { rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag); /* Not fatal errors: return */ if (rv != 1) { if (rv < 0) return 0; return 1; } } if (cdat->enc != 1) { rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag); /* Not fatal errors: return */ if (rv != 1) { if (rv < 0) return 0; return 1; } } } if (out_misalign == 1 && frag == 0) { /* * XTS, CCM and Wrap modes have special requirements about input * lengths so we don't fragment for those */ if (cdat->aead == EVP_CIPH_CCM_MODE || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE) break; out_misalign = 0; frag++; } else { out_misalign++; } } t->aux_err = NULL; return 1; } static const struct evp_test_method cipher_test_method = { "Cipher", cipher_test_init, cipher_test_cleanup, cipher_test_parse, cipher_test_run }; struct mac_data { /* MAC type */ int type; /* Algorithm string for this MAC */ char *alg; /* MAC key */ unsigned char *key; size_t key_len; /* Input to MAC */ unsigned char *input; size_t input_len; /* Expected output */ unsigned char *output; size_t output_len; }; static int mac_test_init(struct evp_test *t, const char *alg) { int type; struct mac_data *mdat; if (strcmp(alg, "HMAC") == 0) { type = EVP_PKEY_HMAC; } else if (strcmp(alg, "CMAC") == 0) { #ifndef OPENSSL_NO_CMAC type = EVP_PKEY_CMAC; #else t->skip = 1; return 1; #endif } else if (strcmp(alg, "Poly1305") == 0) { #ifndef OPENSSL_NO_POLY1305 type = EVP_PKEY_POLY1305; #else t->skip = 1; return 1; #endif } else if (strcmp(alg, "SipHash") == 0) { #ifndef OPENSSL_NO_SIPHASH type = EVP_PKEY_SIPHASH; #else t->skip = 1; return 1; #endif } else return 0; mdat = OPENSSL_malloc(sizeof(*mdat)); mdat->type = type; mdat->alg = NULL; mdat->key = NULL; mdat->input = NULL; mdat->output = NULL; t->data = mdat; return 1; } static void mac_test_cleanup(struct evp_test *t) { struct mac_data *mdat = t->data; test_free(mdat->alg); test_free(mdat->key); test_free(mdat->input); test_free(mdat->output); } static int mac_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct mac_data *mdata = t->data; if (strcmp(keyword, "Key") == 0) return test_bin(value, &mdata->key, &mdata->key_len); if (strcmp(keyword, "Algorithm") == 0) { mdata->alg = OPENSSL_strdup(value); if (!mdata->alg) return 0; return 1; } if (strcmp(keyword, "Input") == 0) return test_bin(value, &mdata->input, &mdata->input_len); if (strcmp(keyword, "Output") == 0) return test_bin(value, &mdata->output, &mdata->output_len); return 0; } static int mac_test_run(struct evp_test *t) { struct mac_data *mdata = t->data; const char *err = "INTERNAL_ERROR"; EVP_MD_CTX *mctx = NULL; EVP_PKEY_CTX *pctx = NULL, *genctx = NULL; EVP_PKEY *key = NULL; const EVP_MD *md = NULL; unsigned char *mac = NULL; size_t mac_len; #ifdef OPENSSL_NO_DES if (mdata->alg != NULL && strstr(mdata->alg, "DES") != NULL) { /* Skip DES */ err = NULL; goto err; } #endif err = "MAC_PKEY_CTX_ERROR"; genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL); if (!genctx) goto err; err = "MAC_KEYGEN_INIT_ERROR"; if (EVP_PKEY_keygen_init(genctx) <= 0) goto err; if (mdata->type == EVP_PKEY_CMAC) { err = "MAC_ALGORITHM_SET_ERROR"; if (EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0) goto err; } err = "MAC_KEY_SET_ERROR"; if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0) goto err; err = "MAC_KEY_GENERATE_ERROR"; if (EVP_PKEY_keygen(genctx, &key) <= 0) goto err; if (mdata->type == EVP_PKEY_HMAC) { err = "MAC_ALGORITHM_SET_ERROR"; md = EVP_get_digestbyname(mdata->alg); if (!md) goto err; } mctx = EVP_MD_CTX_new(); if (!mctx) goto err; err = "DIGESTSIGNINIT_ERROR"; if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) goto err; err = "DIGESTSIGNUPDATE_ERROR"; if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len)) goto err; err = "DIGESTSIGNFINAL_LENGTH_ERROR"; if (!EVP_DigestSignFinal(mctx, NULL, &mac_len)) goto err; mac = OPENSSL_malloc(mac_len); if (!mac) { fprintf(stderr, "Error allocating mac buffer!\n"); exit(1); } if (!EVP_DigestSignFinal(mctx, mac, &mac_len)) goto err; err = "MAC_LENGTH_MISMATCH"; if (mac_len != mdata->output_len) goto err; err = "MAC_MISMATCH"; if (check_output(t, mdata->output, mac, mac_len)) goto err; err = NULL; err: EVP_MD_CTX_free(mctx); OPENSSL_free(mac); EVP_PKEY_CTX_free(genctx); EVP_PKEY_free(key); t->err = err; return 1; } static const struct evp_test_method mac_test_method = { "MAC", mac_test_init, mac_test_cleanup, mac_test_parse, mac_test_run }; /* * Public key operations. These are all very similar and can share * a lot of common code. */ struct pkey_data { /* Context for this operation */ EVP_PKEY_CTX *ctx; /* Key operation to perform */ int (*keyop) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen); /* Input to MAC */ unsigned char *input; size_t input_len; /* Expected output */ unsigned char *output; size_t output_len; }; /* * Perform public key operation setup: lookup key, allocated ctx and call * the appropriate initialisation function */ static int pkey_test_init(struct evp_test *t, const char *name, int use_public, int (*keyopinit) (EVP_PKEY_CTX *ctx), int (*keyop) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen) ) { struct pkey_data *kdata; EVP_PKEY *pkey = NULL; int rv = 0; if (use_public) rv = find_key(&pkey, name, t->public); if (!rv) rv = find_key(&pkey, name, t->private); if (!rv || pkey == NULL) { t->skip = 1; return 1; } kdata = OPENSSL_malloc(sizeof(*kdata)); if (!kdata) { EVP_PKEY_free(pkey); return 0; } kdata->ctx = NULL; kdata->input = NULL; kdata->output = NULL; kdata->keyop = keyop; t->data = kdata; kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL); if (!kdata->ctx) return 0; if (keyopinit(kdata->ctx) <= 0) t->err = "KEYOP_INIT_ERROR"; return 1; } static void pkey_test_cleanup(struct evp_test *t) { struct pkey_data *kdata = t->data; OPENSSL_free(kdata->input); OPENSSL_free(kdata->output); EVP_PKEY_CTX_free(kdata->ctx); } static int pkey_test_ctrl(struct evp_test *t, EVP_PKEY_CTX *pctx, const char *value) { int rv; char *p, *tmpval; tmpval = OPENSSL_strdup(value); if (tmpval == NULL) return 0; p = strchr(tmpval, ':'); if (p != NULL) *p++ = 0; rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); if (rv == -2) { t->err = "PKEY_CTRL_INVALID"; rv = 1; } else if (p != NULL && rv <= 0) { /* If p has an OID and lookup fails assume disabled algorithm */ int nid = OBJ_sn2nid(p); if (nid == NID_undef) nid = OBJ_ln2nid(p); if ((nid != NID_undef) && EVP_get_digestbynid(nid) == NULL && EVP_get_cipherbynid(nid) == NULL) { t->skip = 1; rv = 1; } else { t->err = "PKEY_CTRL_ERROR"; rv = 1; } } OPENSSL_free(tmpval); return rv > 0; } static int pkey_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct pkey_data *kdata = t->data; if (strcmp(keyword, "Input") == 0) return test_bin(value, &kdata->input, &kdata->input_len); if (strcmp(keyword, "Output") == 0) return test_bin(value, &kdata->output, &kdata->output_len); if (strcmp(keyword, "Ctrl") == 0) return pkey_test_ctrl(t, kdata->ctx, value); return 0; } static int pkey_test_run(struct evp_test *t) { struct pkey_data *kdata = t->data; unsigned char *out = NULL; size_t out_len; const char *err = "KEYOP_LENGTH_ERROR"; if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input, kdata->input_len) <= 0) goto err; out = OPENSSL_malloc(out_len); if (!out) { fprintf(stderr, "Error allocating output buffer!\n"); exit(1); } err = "KEYOP_ERROR"; if (kdata->keyop (kdata->ctx, out, &out_len, kdata->input, kdata->input_len) <= 0) goto err; err = "KEYOP_LENGTH_MISMATCH"; if (out_len != kdata->output_len) goto err; err = "KEYOP_MISMATCH"; if (check_output(t, kdata->output, out, out_len)) goto err; err = NULL; err: OPENSSL_free(out); t->err = err; return 1; } static int sign_test_init(struct evp_test *t, const char *name) { return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign); } static const struct evp_test_method psign_test_method = { "Sign", sign_test_init, pkey_test_cleanup, pkey_test_parse, pkey_test_run }; static int verify_recover_test_init(struct evp_test *t, const char *name) { return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init, EVP_PKEY_verify_recover); } static const struct evp_test_method pverify_recover_test_method = { "VerifyRecover", verify_recover_test_init, pkey_test_cleanup, pkey_test_parse, pkey_test_run }; static int decrypt_test_init(struct evp_test *t, const char *name) { return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init, EVP_PKEY_decrypt); } static const struct evp_test_method pdecrypt_test_method = { "Decrypt", decrypt_test_init, pkey_test_cleanup, pkey_test_parse, pkey_test_run }; static int verify_test_init(struct evp_test *t, const char *name) { return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0); } static int verify_test_run(struct evp_test *t) { struct pkey_data *kdata = t->data; if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len, kdata->input, kdata->input_len) <= 0) t->err = "VERIFY_ERROR"; return 1; } static const struct evp_test_method pverify_test_method = { "Verify", verify_test_init, pkey_test_cleanup, pkey_test_parse, verify_test_run }; static int pderive_test_init(struct evp_test *t, const char *name) { return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0); } static int pderive_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct pkey_data *kdata = t->data; if (strcmp(keyword, "PeerKey") == 0) { EVP_PKEY *peer; if (find_key(&peer, value, t->public) == 0) return 0; if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0) return 0; return 1; } if (strcmp(keyword, "SharedSecret") == 0) return test_bin(value, &kdata->output, &kdata->output_len); if (strcmp(keyword, "Ctrl") == 0) return pkey_test_ctrl(t, kdata->ctx, value); return 0; } static int pderive_test_run(struct evp_test *t) { struct pkey_data *kdata = t->data; unsigned char *out = NULL; size_t out_len; const char *err = "INTERNAL_ERROR"; out_len = kdata->output_len; out = OPENSSL_malloc(out_len); if (!out) { fprintf(stderr, "Error allocating output buffer!\n"); exit(1); } err = "DERIVE_ERROR"; if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0) goto err; err = "SHARED_SECRET_LENGTH_MISMATCH"; if (out_len != kdata->output_len) goto err; err = "SHARED_SECRET_MISMATCH"; if (check_output(t, kdata->output, out, out_len)) goto err; err = NULL; err: OPENSSL_free(out); t->err = err; return 1; } static const struct evp_test_method pderive_test_method = { "Derive", pderive_test_init, pkey_test_cleanup, pderive_test_parse, pderive_test_run }; /* PBE tests */ #define PBE_TYPE_SCRYPT 1 #define PBE_TYPE_PBKDF2 2 #define PBE_TYPE_PKCS12 3 struct pbe_data { int pbe_type; /* scrypt parameters */ uint64_t N, r, p, maxmem; /* PKCS#12 parameters */ int id, iter; const EVP_MD *md; /* password */ unsigned char *pass; size_t pass_len; /* salt */ unsigned char *salt; size_t salt_len; /* Expected output */ unsigned char *key; size_t key_len; }; #ifndef OPENSSL_NO_SCRYPT static int scrypt_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct pbe_data *pdata = t->data; if (strcmp(keyword, "N") == 0) return test_uint64(value, &pdata->N); if (strcmp(keyword, "p") == 0) return test_uint64(value, &pdata->p); if (strcmp(keyword, "r") == 0) return test_uint64(value, &pdata->r); if (strcmp(keyword, "maxmem") == 0) return test_uint64(value, &pdata->maxmem); return 0; } #endif static int pbkdf2_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct pbe_data *pdata = t->data; if (strcmp(keyword, "iter") == 0) { pdata->iter = atoi(value); if (pdata->iter <= 0) return 0; return 1; } if (strcmp(keyword, "MD") == 0) { pdata->md = EVP_get_digestbyname(value); if (pdata->md == NULL) return 0; return 1; } return 0; } static int pkcs12_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct pbe_data *pdata = t->data; if (strcmp(keyword, "id") == 0) { pdata->id = atoi(value); if (pdata->id <= 0) return 0; return 1; } return pbkdf2_test_parse(t, keyword, value); } static int pbe_test_init(struct evp_test *t, const char *alg) { struct pbe_data *pdat; int pbe_type = 0; if (strcmp(alg, "scrypt") == 0) { #ifndef OPENSSL_NO_SCRYPT pbe_type = PBE_TYPE_SCRYPT; #else t->skip = 1; return 1; #endif } else if (strcmp(alg, "pbkdf2") == 0) { pbe_type = PBE_TYPE_PBKDF2; } else if (strcmp(alg, "pkcs12") == 0) { pbe_type = PBE_TYPE_PKCS12; } else { fprintf(stderr, "Unknown pbe algorithm %s\n", alg); } pdat = OPENSSL_malloc(sizeof(*pdat)); pdat->pbe_type = pbe_type; pdat->pass = NULL; pdat->salt = NULL; pdat->N = 0; pdat->r = 0; pdat->p = 0; pdat->maxmem = 0; pdat->id = 0; pdat->iter = 0; pdat->md = NULL; t->data = pdat; return 1; } static void pbe_test_cleanup(struct evp_test *t) { struct pbe_data *pdat = t->data; test_free(pdat->pass); test_free(pdat->salt); test_free(pdat->key); } static int pbe_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct pbe_data *pdata = t->data; if (strcmp(keyword, "Password") == 0) return test_bin(value, &pdata->pass, &pdata->pass_len); if (strcmp(keyword, "Salt") == 0) return test_bin(value, &pdata->salt, &pdata->salt_len); if (strcmp(keyword, "Key") == 0) return test_bin(value, &pdata->key, &pdata->key_len); if (pdata->pbe_type == PBE_TYPE_PBKDF2) return pbkdf2_test_parse(t, keyword, value); else if (pdata->pbe_type == PBE_TYPE_PKCS12) return pkcs12_test_parse(t, keyword, value); #ifndef OPENSSL_NO_SCRYPT else if (pdata->pbe_type == PBE_TYPE_SCRYPT) return scrypt_test_parse(t, keyword, value); #endif return 0; } static int pbe_test_run(struct evp_test *t) { struct pbe_data *pdata = t->data; const char *err = "INTERNAL_ERROR"; unsigned char *key; key = OPENSSL_malloc(pdata->key_len); if (!key) goto err; if (pdata->pbe_type == PBE_TYPE_PBKDF2) { err = "PBKDF2_ERROR"; if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len, pdata->salt, pdata->salt_len, pdata->iter, pdata->md, pdata->key_len, key) == 0) goto err; #ifndef OPENSSL_NO_SCRYPT } else if (pdata->pbe_type == PBE_TYPE_SCRYPT) { err = "SCRYPT_ERROR"; if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len, pdata->salt, pdata->salt_len, pdata->N, pdata->r, pdata->p, pdata->maxmem, key, pdata->key_len) == 0) goto err; #endif } else if (pdata->pbe_type == PBE_TYPE_PKCS12) { err = "PKCS12_ERROR"; if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len, pdata->salt, pdata->salt_len, pdata->id, pdata->iter, pdata->key_len, key, pdata->md) == 0) goto err; } err = "KEY_MISMATCH"; if (check_output(t, pdata->key, key, pdata->key_len)) goto err; err = NULL; err: OPENSSL_free(key); t->err = err; return 1; } static const struct evp_test_method pbe_test_method = { "PBE", pbe_test_init, pbe_test_cleanup, pbe_test_parse, pbe_test_run }; /* Base64 tests */ typedef enum { BASE64_CANONICAL_ENCODING = 0, BASE64_VALID_ENCODING = 1, BASE64_INVALID_ENCODING = 2 } base64_encoding_type; struct encode_data { /* Input to encoding */ unsigned char *input; size_t input_len; /* Expected output */ unsigned char *output; size_t output_len; base64_encoding_type encoding; }; static int encode_test_init(struct evp_test *t, const char *encoding) { struct encode_data *edata = OPENSSL_zalloc(sizeof(*edata)); if (strcmp(encoding, "canonical") == 0) { edata->encoding = BASE64_CANONICAL_ENCODING; } else if (strcmp(encoding, "valid") == 0) { edata->encoding = BASE64_VALID_ENCODING; } else if (strcmp(encoding, "invalid") == 0) { edata->encoding = BASE64_INVALID_ENCODING; t->expected_err = OPENSSL_strdup("DECODE_ERROR"); if (t->expected_err == NULL) return 0; } else { fprintf(stderr, "Bad encoding: %s. Should be one of " "{canonical, valid, invalid}\n", encoding); return 0; } t->data = edata; return 1; } static void encode_test_cleanup(struct evp_test *t) { struct encode_data *edata = t->data; test_free(edata->input); test_free(edata->output); memset(edata, 0, sizeof(*edata)); } static int encode_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct encode_data *edata = t->data; if (strcmp(keyword, "Input") == 0) return test_bin(value, &edata->input, &edata->input_len); if (strcmp(keyword, "Output") == 0) return test_bin(value, &edata->output, &edata->output_len); return 0; } static int encode_test_run(struct evp_test *t) { struct encode_data *edata = t->data; unsigned char *encode_out = NULL, *decode_out = NULL; int output_len, chunk_len; const char *err = "INTERNAL_ERROR"; EVP_ENCODE_CTX *decode_ctx = EVP_ENCODE_CTX_new(); if (decode_ctx == NULL) goto err; if (edata->encoding == BASE64_CANONICAL_ENCODING) { EVP_ENCODE_CTX *encode_ctx = EVP_ENCODE_CTX_new(); if (encode_ctx == NULL) goto err; encode_out = OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len)); if (encode_out == NULL) goto err; EVP_EncodeInit(encode_ctx); EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len, edata->input, edata->input_len); output_len = chunk_len; EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len); output_len += chunk_len; EVP_ENCODE_CTX_free(encode_ctx); if (check_var_length_output(t, edata->output, edata->output_len, encode_out, output_len)) { err = "BAD_ENCODING"; goto err; } } decode_out = OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len)); if (decode_out == NULL) goto err; EVP_DecodeInit(decode_ctx); if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output, edata->output_len) < 0) { err = "DECODE_ERROR"; goto err; } output_len = chunk_len; if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) { err = "DECODE_ERROR"; goto err; } output_len += chunk_len; if (edata->encoding != BASE64_INVALID_ENCODING && check_var_length_output(t, edata->input, edata->input_len, decode_out, output_len)) { err = "BAD_DECODING"; goto err; } err = NULL; err: t->err = err; OPENSSL_free(encode_out); OPENSSL_free(decode_out); EVP_ENCODE_CTX_free(decode_ctx); return 1; } static const struct evp_test_method encode_test_method = { "Encoding", encode_test_init, encode_test_cleanup, encode_test_parse, encode_test_run, }; /* KDF operations */ struct kdf_data { /* Context for this operation */ EVP_PKEY_CTX *ctx; /* Expected output */ unsigned char *output; size_t output_len; }; /* * Perform public key operation setup: lookup key, allocated ctx and call * the appropriate initialisation function */ static int kdf_test_init(struct evp_test *t, const char *name) { struct kdf_data *kdata; kdata = OPENSSL_malloc(sizeof(*kdata)); if (kdata == NULL) return 0; kdata->ctx = NULL; kdata->output = NULL; t->data = kdata; kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL); if (kdata->ctx == NULL) return 0; if (EVP_PKEY_derive_init(kdata->ctx) <= 0) return 0; return 1; } static void kdf_test_cleanup(struct evp_test *t) { struct kdf_data *kdata = t->data; OPENSSL_free(kdata->output); EVP_PKEY_CTX_free(kdata->ctx); } static int kdf_test_parse(struct evp_test *t, const char *keyword, const char *value) { struct kdf_data *kdata = t->data; if (strcmp(keyword, "Output") == 0) return test_bin(value, &kdata->output, &kdata->output_len); if (strncmp(keyword, "Ctrl", 4) == 0) return pkey_test_ctrl(t, kdata->ctx, value); return 0; } static int kdf_test_run(struct evp_test *t) { struct kdf_data *kdata = t->data; unsigned char *out = NULL; size_t out_len = kdata->output_len; const char *err = "INTERNAL_ERROR"; out = OPENSSL_malloc(out_len); if (!out) { fprintf(stderr, "Error allocating output buffer!\n"); exit(1); } err = "KDF_DERIVE_ERROR"; if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0) goto err; err = "KDF_LENGTH_MISMATCH"; if (out_len != kdata->output_len) goto err; err = "KDF_MISMATCH"; if (check_output(t, kdata->output, out, out_len)) goto err; err = NULL; err: OPENSSL_free(out); t->err = err; return 1; } static const struct evp_test_method kdf_test_method = { "KDF", kdf_test_init, kdf_test_cleanup, kdf_test_parse, kdf_test_run };