/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include "internal/rand_int.h" #include #include "internal/thread_once.h" #include "rand_lcl.h" #ifndef OPENSSL_NO_ENGINE /* non-NULL if default_RAND_meth is ENGINE-provided */ static ENGINE *funct_ref; static CRYPTO_RWLOCK *rand_engine_lock; #endif static CRYPTO_RWLOCK *rand_meth_lock; static const RAND_METHOD *default_RAND_meth; static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT; RAND_BYTES_BUFFER rand_bytes; int rand_fork_count; #ifdef OPENSSL_RAND_SEED_RDTSC /* * IMPORTANT NOTE: It is not currently possible to use this code * because we are not sure about the amount of randomness it provides. * Some SP900 tests have been run, but there is internal skepticism. * So for now this code is not used. */ # error "RDTSC enabled? Should not be possible!" /* * Since we get some randomness from the low-order bits of the * high-speec clock, it can help. But don't return a status since * it's not sufficient to indicate whether or not the seeding was * done. */ void rand_read_tsc(RAND_poll_cb rand_add, void *arg) { unsigned char c; int i; if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) { for (i = 0; i < TSC_READ_COUNT; i++) { c = (unsigned char)(OPENSSL_rdtsc() & 0xFF); rand_add(arg, &c, 1, 0.5); } } } #endif #ifdef OPENSSL_RAND_SEED_RDCPU size_t OPENSSL_ia32_rdseed_bytes(char *buf, size_t len); size_t OPENSSL_ia32_rdrand_bytes(char *buf, size_t len); extern unsigned int OPENSSL_ia32cap_P[]; int rand_read_cpu(RAND_poll_cb rand_add, void *arg) { char buff[RANDOMNESS_NEEDED]; /* If RDSEED is available, use that. */ if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) { if (OPENSSL_ia32_rdseed_bytes(buff, sizeof(buff)) == sizeof(buff)) { rand_add(arg, buff, (int)sizeof(buff), sizeof(buff)); return 1; } } /* Second choice is RDRAND. */ if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) { if (OPENSSL_ia32_rdrand_bytes(buff, sizeof(buff)) == sizeof(buff)) { rand_add(arg, buff, (int)sizeof(buff), sizeof(buff)); return 1; } } return 0; } #endif /* * DRBG has two sets of callbacks; we only discuss the "entropy" one * here. When the DRBG needs additional randomness bits (called entropy * in the NIST document), it calls the get_entropy callback which fills in * a pointer and returns the number of bytes. When the DRBG is finished with * the buffer, it calls the cleanup_entropy callback, with the value of * the buffer that the get_entropy callback filled in. * * Get entropy from the system, via RAND_poll if needed. The |entropy| * is the bits of randomness required, and is expected to fit into a buffer * of |min_len|..|max__len| size. We assume we're getting high-quality * randomness from the system, and that |min_len| bytes will do. */ size_t drbg_entropy_from_system(RAND_DRBG *drbg, unsigned char **pout, int entropy, size_t min_len, size_t max_len) { int i; if (min_len > (size_t)drbg->size) { /* Should not happen. See comment near RANDOMNESS_NEEDED. */ min_len = drbg->size; } if (drbg->filled) { /* Re-use what we have. */ *pout = drbg->randomness; return drbg->size; } drbg->randomness = drbg->secure ? OPENSSL_secure_malloc(drbg->size) : OPENSSL_malloc(drbg->size); /* If we don't have enough, try to get more. */ CRYPTO_THREAD_write_lock(rand_bytes.lock); for (i = RAND_POLL_RETRIES; rand_bytes.curr < min_len && --i >= 0; ) { CRYPTO_THREAD_unlock(rand_bytes.lock); RAND_poll(); CRYPTO_THREAD_write_lock(rand_bytes.lock); } /* Get desired amount, but no more than we have. */ if (min_len > rand_bytes.curr) min_len = rand_bytes.curr; if (min_len != 0) { memcpy(drbg->randomness, rand_bytes.buff, min_len); drbg->filled = 1; /* Update amount left and shift it down. */ rand_bytes.curr -= min_len; if (rand_bytes.curr != 0) memmove(rand_bytes.buff, &rand_bytes.buff[min_len], rand_bytes.curr); } CRYPTO_THREAD_unlock(rand_bytes.lock); *pout = drbg->randomness; return min_len; } size_t drbg_entropy_from_parent(RAND_DRBG *drbg, unsigned char **pout, int entropy, size_t min_len, size_t max_len) { int st; if (min_len > (size_t)drbg->size) { /* Should not happen. See comment near RANDOMNESS_NEEDED. */ min_len = drbg->size; } drbg->randomness = drbg->secure ? OPENSSL_secure_malloc(drbg->size) : OPENSSL_malloc(drbg->size); /* Get random from parent, include our state as additional input. */ st = RAND_DRBG_generate(drbg->parent, drbg->randomness, min_len, 0, (unsigned char *)drbg, sizeof(*drbg)); if (st == 0) return 0; drbg->filled = 1; *pout = drbg->randomness; return min_len; } void drbg_release_entropy(RAND_DRBG *drbg, unsigned char *out) { drbg->filled = 0; if (drbg->secure) OPENSSL_secure_clear_free(drbg->randomness, drbg->size); else OPENSSL_clear_free(drbg->randomness, drbg->size); drbg->randomness = NULL; } /* * Set up a global DRBG. */ static int setup_drbg(RAND_DRBG *drbg) { int ret = 1; drbg->lock = CRYPTO_THREAD_lock_new(); ret &= drbg->lock != NULL; drbg->size = RANDOMNESS_NEEDED; drbg->secure = CRYPTO_secure_malloc_initialized(); drbg->randomness = NULL; /* If you change these parameters, see RANDOMNESS_NEEDED */ ret &= RAND_DRBG_set(drbg, NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF) == 1; ret &= RAND_DRBG_set_callbacks(drbg, drbg_entropy_from_system, drbg_release_entropy, NULL, NULL) == 1; return ret; } static void free_drbg(RAND_DRBG *drbg) { CRYPTO_THREAD_lock_free(drbg->lock); RAND_DRBG_uninstantiate(drbg); } void rand_fork() { rand_fork_count++; } DEFINE_RUN_ONCE_STATIC(do_rand_init) { int ret = 1; #ifndef OPENSSL_NO_ENGINE rand_engine_lock = CRYPTO_THREAD_lock_new(); ret &= rand_engine_lock != NULL; #endif rand_meth_lock = CRYPTO_THREAD_lock_new(); ret &= rand_meth_lock != NULL; rand_bytes.lock = CRYPTO_THREAD_lock_new(); ret &= rand_bytes.lock != NULL; rand_bytes.curr = 0; rand_bytes.size = MAX_RANDOMNESS_HELD; rand_bytes.secure = CRYPTO_secure_malloc_initialized(); rand_bytes.buff = rand_bytes.secure ? OPENSSL_secure_malloc(rand_bytes.size) : OPENSSL_malloc(rand_bytes.size); ret &= rand_bytes.buff != NULL; ret &= setup_drbg(&rand_drbg); ret &= setup_drbg(&priv_drbg); return ret; } void rand_cleanup_int(void) { const RAND_METHOD *meth = default_RAND_meth; if (meth != NULL && meth->cleanup != NULL) meth->cleanup(); RAND_set_rand_method(NULL); #ifndef OPENSSL_NO_ENGINE CRYPTO_THREAD_lock_free(rand_engine_lock); #endif CRYPTO_THREAD_lock_free(rand_meth_lock); CRYPTO_THREAD_lock_free(rand_bytes.lock); if (rand_bytes.secure) OPENSSL_secure_clear_free(rand_bytes.buff, rand_bytes.size); else OPENSSL_clear_free(rand_bytes.buff, rand_bytes.size); free_drbg(&rand_drbg); free_drbg(&priv_drbg); } /* * RAND_poll_ex() gets a function pointer to call when it has random bytes. * RAND_poll() sets the function pointer to be a wrapper that calls RAND_add(). */ static void call_rand_add(void* arg, const void *buf, int num, double r) { RAND_add(buf, num, r); } int RAND_poll(void) { return RAND_poll_ex(call_rand_add, NULL); } int RAND_set_rand_method(const RAND_METHOD *meth) { if (!RUN_ONCE(&rand_init, do_rand_init)) return 0; CRYPTO_THREAD_write_lock(rand_meth_lock); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(funct_ref); funct_ref = NULL; #endif default_RAND_meth = meth; CRYPTO_THREAD_unlock(rand_meth_lock); return 1; } const RAND_METHOD *RAND_get_rand_method(void) { const RAND_METHOD *tmp_meth = NULL; if (!RUN_ONCE(&rand_init, do_rand_init)) return NULL; CRYPTO_THREAD_write_lock(rand_meth_lock); if (default_RAND_meth == NULL) { #ifndef OPENSSL_NO_ENGINE ENGINE *e; /* If we have an engine that can do RAND, use it. */ if ((e = ENGINE_get_default_RAND()) != NULL && (tmp_meth = ENGINE_get_RAND(e)) != NULL) { funct_ref = e; default_RAND_meth = tmp_meth; } else { ENGINE_finish(e); default_RAND_meth = &rand_meth; } #else default_RAND_meth = &rand_meth; #endif } tmp_meth = default_RAND_meth; CRYPTO_THREAD_unlock(rand_meth_lock); return tmp_meth; } #ifndef OPENSSL_NO_ENGINE int RAND_set_rand_engine(ENGINE *engine) { const RAND_METHOD *tmp_meth = NULL; if (!RUN_ONCE(&rand_init, do_rand_init)) return 0; if (engine != NULL) { if (!ENGINE_init(engine)) return 0; tmp_meth = ENGINE_get_RAND(engine); if (tmp_meth == NULL) { ENGINE_finish(engine); return 0; } } CRYPTO_THREAD_write_lock(rand_engine_lock); /* This function releases any prior ENGINE so call it first */ RAND_set_rand_method(tmp_meth); funct_ref = engine; CRYPTO_THREAD_unlock(rand_engine_lock); return 1; } #endif void RAND_seed(const void *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth->seed != NULL) meth->seed(buf, num); } void RAND_add(const void *buf, int num, double randomness) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth->add != NULL) meth->add(buf, num, randomness); } /* * This function is not part of RAND_METHOD, so if we're not using * the default method, then just call RAND_bytes(). Otherwise make * sure we're instantiated and use the private DRBG. */ int RAND_priv_bytes(unsigned char *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth != RAND_OpenSSL()) return RAND_bytes(buf, num); if (priv_drbg.state == DRBG_UNINITIALISED && RAND_DRBG_instantiate(&priv_drbg, NULL, 0) == 0) return 0; return RAND_DRBG_generate(&priv_drbg, buf, num, 0, NULL, 0); } int RAND_bytes(unsigned char *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth->bytes != NULL) return meth->bytes(buf, num); RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); return -1; } #if OPENSSL_API_COMPAT < 0x10100000L int RAND_pseudo_bytes(unsigned char *buf, int num) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth->pseudorand != NULL) return meth->pseudorand(buf, num); return -1; } #endif int RAND_status(void) { const RAND_METHOD *meth = RAND_get_rand_method(); if (meth->status != NULL) return meth->status(); return 0; }