/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include "ssl_locl.h" #include #include #include #include /* seed1 through seed5 are concatenated */ static int tls1_PRF(SSL *s, const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len, const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len, const void *seed5, size_t seed5_len, const unsigned char *sec, size_t slen, unsigned char *out, size_t olen) { const EVP_MD *md = ssl_prf_md(s); EVP_PKEY_CTX *pctx = NULL; int ret = 0; if (md == NULL) { /* Should never happen */ SSLerr(SSL_F_TLS1_PRF, ERR_R_INTERNAL_ERROR); return 0; } pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_TLS1_PRF, NULL); if (pctx == NULL || EVP_PKEY_derive_init(pctx) <= 0 || EVP_PKEY_CTX_set_tls1_prf_md(pctx, md) <= 0 || EVP_PKEY_CTX_set1_tls1_prf_secret(pctx, sec, (int)slen) <= 0) goto err; if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed1, (int)seed1_len) <= 0) goto err; if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed2, (int)seed2_len) <= 0) goto err; if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed3, (int)seed3_len) <= 0) goto err; if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed4, (int)seed4_len) <= 0) goto err; if (EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed5, (int)seed5_len) <= 0) goto err; if (EVP_PKEY_derive(pctx, out, &olen) <= 0) goto err; ret = 1; err: EVP_PKEY_CTX_free(pctx); return ret; } static int tls1_generate_key_block(SSL *s, unsigned char *km, size_t num) { int ret; ret = tls1_PRF(s, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random, SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, km, num); return ret; } int tls1_change_cipher_state(SSL *s, int which) { unsigned char *p, *mac_secret; unsigned char tmp1[EVP_MAX_KEY_LENGTH]; unsigned char tmp2[EVP_MAX_KEY_LENGTH]; unsigned char iv1[EVP_MAX_IV_LENGTH * 2]; unsigned char iv2[EVP_MAX_IV_LENGTH * 2]; unsigned char *ms, *key, *iv; EVP_CIPHER_CTX *dd; const EVP_CIPHER *c; #ifndef OPENSSL_NO_COMP const SSL_COMP *comp; #endif const EVP_MD *m; int mac_type; size_t *mac_secret_size; EVP_MD_CTX *mac_ctx; EVP_PKEY *mac_key; size_t n, i, j, k, cl; int reuse_dd = 0; c = s->s3->tmp.new_sym_enc; m = s->s3->tmp.new_hash; mac_type = s->s3->tmp.new_mac_pkey_type; #ifndef OPENSSL_NO_COMP comp = s->s3->tmp.new_compression; #endif if (which & SSL3_CC_READ) { if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; if (s->enc_read_ctx != NULL) reuse_dd = 1; else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL) goto err; else /* * make sure it's initialised in case we exit later with an error */ EVP_CIPHER_CTX_reset(s->enc_read_ctx); dd = s->enc_read_ctx; mac_ctx = ssl_replace_hash(&s->read_hash, NULL); if (mac_ctx == NULL) goto err; #ifndef OPENSSL_NO_COMP COMP_CTX_free(s->expand); s->expand = NULL; if (comp != NULL) { s->expand = COMP_CTX_new(comp->method); if (s->expand == NULL) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } } #endif /* * this is done by dtls1_reset_seq_numbers for DTLS */ if (!SSL_IS_DTLS(s)) RECORD_LAYER_reset_read_sequence(&s->rlayer); mac_secret = &(s->s3->read_mac_secret[0]); mac_secret_size = &(s->s3->read_mac_secret_size); } else { if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) reuse_dd = 1; else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL) goto err; dd = s->enc_write_ctx; if (SSL_IS_DTLS(s)) { mac_ctx = EVP_MD_CTX_new(); if (mac_ctx == NULL) goto err; s->write_hash = mac_ctx; } else { mac_ctx = ssl_replace_hash(&s->write_hash, NULL); if (mac_ctx == NULL) goto err; } #ifndef OPENSSL_NO_COMP COMP_CTX_free(s->compress); s->compress = NULL; if (comp != NULL) { s->compress = COMP_CTX_new(comp->method); if (s->compress == NULL) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, SSL_R_COMPRESSION_LIBRARY_ERROR); goto err2; } } #endif /* * this is done by dtls1_reset_seq_numbers for DTLS */ if (!SSL_IS_DTLS(s)) RECORD_LAYER_reset_write_sequence(&s->rlayer); mac_secret = &(s->s3->write_mac_secret[0]); mac_secret_size = &(s->s3->write_mac_secret_size); } if (reuse_dd) EVP_CIPHER_CTX_reset(dd); p = s->s3->tmp.key_block; i = *mac_secret_size = s->s3->tmp.new_mac_secret_size; /* TODO(size_t): convert me */ cl = EVP_CIPHER_key_length(c); j = cl; /* Was j=(exp)?5:EVP_CIPHER_key_length(c); */ /* If GCM/CCM mode only part of IV comes from PRF */ if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) k = EVP_GCM_TLS_FIXED_IV_LEN; else if (EVP_CIPHER_mode(c) == EVP_CIPH_CCM_MODE) k = EVP_CCM_TLS_FIXED_IV_LEN; else k = EVP_CIPHER_iv_length(c); if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || (which == SSL3_CHANGE_CIPHER_SERVER_READ)) { ms = &(p[0]); n = i + i; key = &(p[n]); n += j + j; iv = &(p[n]); n += k + k; } else { n = i; ms = &(p[n]); n += i + j; key = &(p[n]); n += j + k; iv = &(p[n]); n += k; } if (n > s->s3->tmp.key_block_length) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } memcpy(mac_secret, ms, i); if (!(EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) { /* TODO(size_t): Convert this function */ mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret, (int)*mac_secret_size); if (mac_key == NULL || EVP_DigestSignInit(mac_ctx, NULL, m, NULL, mac_key) <= 0) { EVP_PKEY_free(mac_key); SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } EVP_PKEY_free(mac_key); } #ifdef SSL_DEBUG printf("which = %04X\nmac key=", which); { int z; for (z = 0; z < i; z++) printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n'); } #endif if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) { if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE)) || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, (int)k, iv)) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } } else if (EVP_CIPHER_mode(c) == EVP_CIPH_CCM_MODE) { int taglen; if (s->s3->tmp. new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) taglen = 8; else taglen = 16; if (!EVP_CipherInit_ex(dd, c, NULL, NULL, NULL, (which & SSL3_CC_WRITE)) || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_IVLEN, 12, NULL) || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_TAG, taglen, NULL) || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_CCM_SET_IV_FIXED, (int)k, iv) || !EVP_CipherInit_ex(dd, NULL, NULL, key, NULL, -1)) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } } else { if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } } /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */ if ((EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size && !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY, (int)*mac_secret_size, mac_secret)) { SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err2; } #ifdef OPENSSL_SSL_TRACE_CRYPTO if (s->msg_callback) { int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0; if (*mac_secret_size) s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_MAC, mac_secret, *mac_secret_size, s, s->msg_callback_arg); if (c->key_len) s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY, key, c->key_len, s, s->msg_callback_arg); if (k) { if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) wh |= TLS1_RT_CRYPTO_FIXED_IV; else wh |= TLS1_RT_CRYPTO_IV; s->msg_callback(2, s->version, wh, iv, k, s, s->msg_callback_arg); } } #endif #ifdef SSL_DEBUG printf("which = %04X\nkey=", which); { int z; for (z = 0; z < EVP_CIPHER_key_length(c); z++) printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("\niv="); { int z; for (z = 0; z < k; z++) printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("\n"); #endif OPENSSL_cleanse(tmp1, sizeof(tmp1)); OPENSSL_cleanse(tmp2, sizeof(tmp1)); OPENSSL_cleanse(iv1, sizeof(iv1)); OPENSSL_cleanse(iv2, sizeof(iv2)); return (1); err: SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); err2: OPENSSL_cleanse(tmp1, sizeof(tmp1)); OPENSSL_cleanse(tmp2, sizeof(tmp1)); OPENSSL_cleanse(iv1, sizeof(iv1)); OPENSSL_cleanse(iv2, sizeof(iv2)); return (0); } int tls1_setup_key_block(SSL *s) { unsigned char *p; const EVP_CIPHER *c; const EVP_MD *hash; SSL_COMP *comp; int mac_type = NID_undef; size_t num, mac_secret_size = 0; int ret = 0; if (s->s3->tmp.key_block_length != 0) return (1); if (!ssl_cipher_get_evp (s->session, &c, &hash, &mac_type, &mac_secret_size, &comp, SSL_USE_ETM(s))) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return (0); } s->s3->tmp.new_sym_enc = c; s->s3->tmp.new_hash = hash; s->s3->tmp.new_mac_pkey_type = mac_type; s->s3->tmp.new_mac_secret_size = mac_secret_size; num = EVP_CIPHER_key_length(c) + mac_secret_size + EVP_CIPHER_iv_length(c); num *= 2; ssl3_cleanup_key_block(s); if ((p = OPENSSL_malloc(num)) == NULL) { SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE); goto err; } s->s3->tmp.key_block_length = num; s->s3->tmp.key_block = p; #ifdef SSL_DEBUG printf("client random\n"); { int z; for (z = 0; z < SSL3_RANDOM_SIZE; z++) printf("%02X%c", s->s3->client_random[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("server random\n"); { int z; for (z = 0; z < SSL3_RANDOM_SIZE; z++) printf("%02X%c", s->s3->server_random[z], ((z + 1) % 16) ? ' ' : '\n'); } printf("master key\n"); { size_t z; for (z = 0; z < s->session->master_key_length; z++) printf("%02X%c", s->session->master_key[z], ((z + 1) % 16) ? ' ' : '\n'); } #endif if (!tls1_generate_key_block(s, p, num)) goto err; #ifdef SSL_DEBUG printf("\nkey block\n"); { size_t z; for (z = 0; z < num; z++) printf("%02X%c", p[z], ((z + 1) % 16) ? ' ' : '\n'); } #endif if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) && s->method->version <= TLS1_VERSION) { /* * enable vulnerability countermeasure for CBC ciphers with known-IV * problem (http://www.openssl.org/~bodo/tls-cbc.txt) */ s->s3->need_empty_fragments = 1; if (s->session->cipher != NULL) { if (s->session->cipher->algorithm_enc == SSL_eNULL) s->s3->need_empty_fragments = 0; #ifndef OPENSSL_NO_RC4 if (s->session->cipher->algorithm_enc == SSL_RC4) s->s3->need_empty_fragments = 0; #endif } } ret = 1; err: return (ret); } size_t tls1_final_finish_mac(SSL *s, const char *str, size_t slen, unsigned char *out) { size_t hashlen; unsigned char hash[EVP_MAX_MD_SIZE]; if (!ssl3_digest_cached_records(s, 0)) return 0; if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) return 0; if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, TLS1_FINISH_MAC_LENGTH)) return 0; OPENSSL_cleanse(hash, hashlen); return TLS1_FINISH_MAC_LENGTH; } int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, size_t len, size_t *secret_size) { if (s->session->flags & SSL_SESS_FLAG_EXTMS) { unsigned char hash[EVP_MAX_MD_SIZE * 2]; size_t hashlen; /* * Digest cached records keeping record buffer (if present): this wont * affect client auth because we're freezing the buffer at the same * point (after client key exchange and before certificate verify) */ if (!ssl3_digest_cached_records(s, 1)) return 0; if(!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) return 0; #ifdef SSL_DEBUG fprintf(stderr, "Handshake hashes:\n"); BIO_dump_fp(stderr, (char *)hash, hashlen); #endif tls1_PRF(s, TLS_MD_EXTENDED_MASTER_SECRET_CONST, TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, hash, hashlen, NULL, 0, NULL, 0, NULL, 0, p, len, s->session->master_key, SSL3_MASTER_SECRET_SIZE); OPENSSL_cleanse(hash, hashlen); } else { tls1_PRF(s, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0, s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0, p, len, s->session->master_key, SSL3_MASTER_SECRET_SIZE); } #ifdef SSL_DEBUG fprintf(stderr, "Premaster Secret:\n"); BIO_dump_fp(stderr, (char *)p, len); fprintf(stderr, "Client Random:\n"); BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE); fprintf(stderr, "Server Random:\n"); BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE); fprintf(stderr, "Master Secret:\n"); BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE); #endif #ifdef OPENSSL_SSL_TRACE_CRYPTO if (s->msg_callback) { s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER, p, len, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM, s->s3->client_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM, s->s3->server_random, SSL3_RANDOM_SIZE, s, s->msg_callback_arg); s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER, s->session->master_key, SSL3_MASTER_SECRET_SIZE, s, s->msg_callback_arg); } #endif *secret_size = SSL3_MASTER_SECRET_SIZE; return 1; } int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen, int use_context) { unsigned char *val = NULL; size_t vallen = 0, currentvalpos; int rv; /* * construct PRF arguments we construct the PRF argument ourself rather * than passing separate values into the TLS PRF to ensure that the * concatenation of values does not create a prohibited label. */ vallen = llen + SSL3_RANDOM_SIZE * 2; if (use_context) { vallen += 2 + contextlen; } val = OPENSSL_malloc(vallen); if (val == NULL) goto err2; currentvalpos = 0; memcpy(val + currentvalpos, (unsigned char *)label, llen); currentvalpos += llen; memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; if (use_context) { val[currentvalpos] = (contextlen >> 8) & 0xff; currentvalpos++; val[currentvalpos] = contextlen & 0xff; currentvalpos++; if ((contextlen > 0) || (context != NULL)) { memcpy(val + currentvalpos, context, contextlen); } } /* * disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited * label len) = 15, so size of val > max(prohibited label len) = 15 and * the comparisons won't have buffer overflow */ if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST, TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1; rv = tls1_PRF(s, val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, olen); goto ret; err1: SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); rv = 0; goto ret; err2: SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE); rv = 0; ret: OPENSSL_clear_free(val, vallen); return (rv); } int tls1_alert_code(int code) { switch (code) { case SSL_AD_CLOSE_NOTIFY: return (SSL3_AD_CLOSE_NOTIFY); case SSL_AD_UNEXPECTED_MESSAGE: return (SSL3_AD_UNEXPECTED_MESSAGE); case SSL_AD_BAD_RECORD_MAC: return (SSL3_AD_BAD_RECORD_MAC); case SSL_AD_DECRYPTION_FAILED: return (TLS1_AD_DECRYPTION_FAILED); case SSL_AD_RECORD_OVERFLOW: return (TLS1_AD_RECORD_OVERFLOW); case SSL_AD_DECOMPRESSION_FAILURE: return (SSL3_AD_DECOMPRESSION_FAILURE); case SSL_AD_HANDSHAKE_FAILURE: return (SSL3_AD_HANDSHAKE_FAILURE); case SSL_AD_NO_CERTIFICATE: return (-1); case SSL_AD_BAD_CERTIFICATE: return (SSL3_AD_BAD_CERTIFICATE); case SSL_AD_UNSUPPORTED_CERTIFICATE: return (SSL3_AD_UNSUPPORTED_CERTIFICATE); case SSL_AD_CERTIFICATE_REVOKED: return (SSL3_AD_CERTIFICATE_REVOKED); case SSL_AD_CERTIFICATE_EXPIRED: return (SSL3_AD_CERTIFICATE_EXPIRED); case SSL_AD_CERTIFICATE_UNKNOWN: return (SSL3_AD_CERTIFICATE_UNKNOWN); case SSL_AD_ILLEGAL_PARAMETER: return (SSL3_AD_ILLEGAL_PARAMETER); case SSL_AD_UNKNOWN_CA: return (TLS1_AD_UNKNOWN_CA); case SSL_AD_ACCESS_DENIED: return (TLS1_AD_ACCESS_DENIED); case SSL_AD_DECODE_ERROR: return (TLS1_AD_DECODE_ERROR); case SSL_AD_DECRYPT_ERROR: return (TLS1_AD_DECRYPT_ERROR); case SSL_AD_EXPORT_RESTRICTION: return (TLS1_AD_EXPORT_RESTRICTION); case SSL_AD_PROTOCOL_VERSION: return (TLS1_AD_PROTOCOL_VERSION); case SSL_AD_INSUFFICIENT_SECURITY: return (TLS1_AD_INSUFFICIENT_SECURITY); case SSL_AD_INTERNAL_ERROR: return (TLS1_AD_INTERNAL_ERROR); case SSL_AD_USER_CANCELLED: return (TLS1_AD_USER_CANCELLED); case SSL_AD_NO_RENEGOTIATION: return (TLS1_AD_NO_RENEGOTIATION); case SSL_AD_UNSUPPORTED_EXTENSION: return (TLS1_AD_UNSUPPORTED_EXTENSION); case SSL_AD_CERTIFICATE_UNOBTAINABLE: return (TLS1_AD_CERTIFICATE_UNOBTAINABLE); case SSL_AD_UNRECOGNIZED_NAME: return (TLS1_AD_UNRECOGNIZED_NAME); case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); case SSL_AD_UNKNOWN_PSK_IDENTITY: return (TLS1_AD_UNKNOWN_PSK_IDENTITY); case SSL_AD_INAPPROPRIATE_FALLBACK: return (TLS1_AD_INAPPROPRIATE_FALLBACK); case SSL_AD_NO_APPLICATION_PROTOCOL: return (TLS1_AD_NO_APPLICATION_PROTOCOL); default: return (-1); } }