/* crypto/bn/bn_lib.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef BN_DEBUG # undef NDEBUG /* avoid conflicting definitions */ # define NDEBUG #endif #include #include #include #include "cryptlib.h" #include "bn_lcl.h" const char *BN_version="Big Number" OPENSSL_VERSION_PTEXT; /* For a 32 bit machine * 2 - 4 == 128 * 3 - 8 == 256 * 4 - 16 == 512 * 5 - 32 == 1024 * 6 - 64 == 2048 * 7 - 128 == 4096 * 8 - 256 == 8192 */ static int bn_limit_bits=0; static int bn_limit_num=8; /* (1<= 0) { if (mult > (int)(sizeof(int)*8)-1) mult=sizeof(int)*8-1; bn_limit_bits=mult; bn_limit_num=1<= 0) { if (high > (int)(sizeof(int)*8)-1) high=sizeof(int)*8-1; bn_limit_bits_high=high; bn_limit_num_high=1<= 0) { if (low > (int)(sizeof(int)*8)-1) low=sizeof(int)*8-1; bn_limit_bits_low=low; bn_limit_num_low=1<= 0) { if (mont > (int)(sizeof(int)*8)-1) mont=sizeof(int)*8-1; bn_limit_bits_mont=mont; bn_limit_num_mont=1<>56)]+56); } else return(bits[(int)(l>>48)]+48); } else { if (l & 0x0000ff0000000000L) { return(bits[(int)(l>>40)]+40); } else return(bits[(int)(l>>32)]+32); } } else #else #ifdef SIXTY_FOUR_BIT if (l & 0xffffffff00000000LL) { if (l & 0xffff000000000000LL) { if (l & 0xff00000000000000LL) { return(bits[(int)(l>>56)]+56); } else return(bits[(int)(l>>48)]+48); } else { if (l & 0x0000ff0000000000LL) { return(bits[(int)(l>>40)]+40); } else return(bits[(int)(l>>32)]+32); } } else #endif #endif { #if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) if (l & 0xffff0000L) { if (l & 0xff000000L) return(bits[(int)(l>>24L)]+24); else return(bits[(int)(l>>16L)]+16); } else #endif { #if defined(SIXTEEN_BIT) || defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) if (l & 0xff00L) return(bits[(int)(l>>8)]+8); else #endif return(bits[(int)(l )] ); } } } int BN_num_bits(const BIGNUM *a) { BN_ULONG l; int i; bn_check_top(a); if (a->top == 0) return(0); l=a->d[a->top-1]; assert(l != 0); i=(a->top-1)*BN_BITS2; return(i+BN_num_bits_word(l)); } void BN_clear_free(BIGNUM *a) { int i; if (a == NULL) return; if (a->d != NULL) { OPENSSL_cleanse(a->d,a->dmax*sizeof(a->d[0])); if (!(BN_get_flags(a,BN_FLG_STATIC_DATA))) OPENSSL_free(a->d); } i=BN_get_flags(a,BN_FLG_MALLOCED); OPENSSL_cleanse(a,sizeof(BIGNUM)); if (i) OPENSSL_free(a); } void BN_free(BIGNUM *a) { if (a == NULL) return; if ((a->d != NULL) && !(BN_get_flags(a,BN_FLG_STATIC_DATA))) OPENSSL_free(a->d); a->flags|=BN_FLG_FREE; /* REMOVE? */ if (a->flags & BN_FLG_MALLOCED) OPENSSL_free(a); } void BN_init(BIGNUM *a) { memset(a,0,sizeof(BIGNUM)); bn_check_top(a); } BIGNUM *BN_new(void) { BIGNUM *ret; if ((ret=(BIGNUM *)OPENSSL_malloc(sizeof(BIGNUM))) == NULL) { BNerr(BN_F_BN_NEW,ERR_R_MALLOC_FAILURE); return(NULL); } ret->flags=BN_FLG_MALLOCED; ret->top=0; ret->neg=0; ret->dmax=0; ret->d=NULL; bn_check_top(ret); return(ret); } /* This is used both by bn_expand2() and bn_dup_expand() */ /* The caller MUST check that words > b->dmax before calling this */ static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words) { BN_ULONG *A,*a = NULL; const BN_ULONG *B; int i; if (words > (INT_MAX/(4*BN_BITS2))) { BNerr(BN_F_BN_EXPAND_INTERNAL,BN_R_BIGNUM_TOO_LONG); return NULL; } bn_check_top(b); if (BN_get_flags(b,BN_FLG_STATIC_DATA)) { BNerr(BN_F_BN_EXPAND_INTERNAL,BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); return(NULL); } a=A=(BN_ULONG *)OPENSSL_malloc(sizeof(BN_ULONG)*(words+1)); if (A == NULL) { BNerr(BN_F_BN_EXPAND_INTERNAL,ERR_R_MALLOC_FAILURE); return(NULL); } #if 1 B=b->d; /* Check if the previous number needs to be copied */ if (B != NULL) { for (i=b->top>>2; i>0; i--,A+=4,B+=4) { /* * The fact that the loop is unrolled * 4-wise is a tribute to Intel. It's * the one that doesn't have enough * registers to accomodate more data. * I'd unroll it 8-wise otherwise:-) * * */ BN_ULONG a0,a1,a2,a3; a0=B[0]; a1=B[1]; a2=B[2]; a3=B[3]; A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3; } switch (b->top&3) { case 3: A[2]=B[2]; case 2: A[1]=B[1]; case 1: A[0]=B[0]; case 0: /* workaround for ultrix cc: without 'case 0', the optimizer does * the switch table by doing a=top&3; a--; goto jump_table[a]; * which fails for top== 0 */ ; } } #else memset(A,0,sizeof(BN_ULONG)*(words+1)); memcpy(A,b->d,sizeof(b->d[0])*b->top); #endif return(a); } /* This is an internal function that can be used instead of bn_expand2() * when there is a need to copy BIGNUMs instead of only expanding the * data part, while still expanding them. * Especially useful when needing to expand BIGNUMs that are declared * 'const' and should therefore not be changed. * The reason to use this instead of a BN_dup() followed by a bn_expand2() * is memory allocation overhead. A BN_dup() followed by a bn_expand2() * will allocate new memory for the BIGNUM data twice, and free it once, * while bn_dup_expand() makes sure allocation is made only once. */ BIGNUM *bn_dup_expand(const BIGNUM *b, int words) { BIGNUM *r = NULL; /* This function does not work if * words <= b->dmax && top < words * because BN_dup() does not preserve 'dmax'! * (But bn_dup_expand() is not used anywhere yet.) */ if (words > b->dmax) { BN_ULONG *a = bn_expand_internal(b, words); if (a) { r = BN_new(); if (r) { r->top = b->top; r->dmax = words; r->neg = b->neg; r->d = a; } else { /* r == NULL, BN_new failure */ OPENSSL_free(a); } } /* If a == NULL, there was an error in allocation in bn_expand_internal(), and NULL should be returned */ } else { r = BN_dup(b); } bn_check_top(r); return r; } /* This is an internal function that should not be used in applications. * It ensures that 'b' has enough room for a 'words' word number * and initialises any unused part of b->d with leading zeros. * It is mostly used by the various BIGNUM routines. If there is an error, * NULL is returned. If not, 'b' is returned. */ BIGNUM *bn_expand2(BIGNUM *b, int words) { BN_ULONG *A; int i; if (words > b->dmax) { BN_ULONG *a = bn_expand_internal(b, words); if (a) { if (b->d) OPENSSL_free(b->d); b->d=a; b->dmax=words; } else b = NULL; } /* NB: bn_wexpand() calls this only if the BIGNUM really has to grow */ if ((b != NULL) && (b->top < b->dmax)) { A = &(b->d[b->top]); for (i=(b->dmax - b->top)>>3; i>0; i--,A+=8) { A[0]=0; A[1]=0; A[2]=0; A[3]=0; A[4]=0; A[5]=0; A[6]=0; A[7]=0; } for (i=(b->dmax - b->top)&7; i>0; i--,A++) A[0]=0; assert(A == &(b->d[b->dmax])); } else if(b) bn_check_top(b); return b; } BIGNUM *BN_dup(const BIGNUM *a) { BIGNUM *r, *t; if (a == NULL) return NULL; bn_check_top(a); t = BN_new(); if (t == NULL) return(NULL); r = BN_copy(t, a); /* now r == t || r == NULL */ if (r == NULL) BN_free(t); bn_check_top(r); return r; } BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b) { int i; BN_ULONG *A; const BN_ULONG *B; bn_check_top(b); if (a == b) return(a); if (bn_wexpand(a,b->top) == NULL) return(NULL); #if 1 A=a->d; B=b->d; for (i=b->top>>2; i>0; i--,A+=4,B+=4) { BN_ULONG a0,a1,a2,a3; a0=B[0]; a1=B[1]; a2=B[2]; a3=B[3]; A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3; } switch (b->top&3) { case 3: A[2]=B[2]; case 2: A[1]=B[1]; case 1: A[0]=B[0]; case 0: ; /* ultrix cc workaround, see comments in bn_expand_internal */ } #else memcpy(a->d,b->d,sizeof(b->d[0])*b->top); #endif /* memset(&(a->d[b->top]),0,sizeof(a->d[0])*(a->max-b->top));*/ a->top=b->top; if ((a->top == 0) && (a->d != NULL)) a->d[0]=0; a->neg=b->neg; bn_check_top(a); return(a); } BIGNUM *BN_ncopy(BIGNUM *a, const BIGNUM *b, size_t n) { int i, min; BN_ULONG *A; const BN_ULONG *B; bn_check_top(b); if (a == b) return a; min = (b->top < (int)n)? b->top: (int)n; if (!min) { BN_zero(a); return a; } if (bn_wexpand(a, min) == NULL) return NULL; A=a->d; B=b->d; for (i=min>>2; i>0; i--, A+=4, B+=4) { BN_ULONG a0,a1,a2,a3; a0=B[0]; a1=B[1]; a2=B[2]; a3=B[3]; A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3; } switch (min&3) { case 3: A[2]=B[2]; case 2: A[1]=B[1]; case 1: A[0]=B[0]; case 0: ; } a->top = min; a->neg = b->neg; bn_correct_top(a); bn_check_top(a); return(a); } void BN_swap(BIGNUM *a, BIGNUM *b) { int flags_old_a, flags_old_b; BN_ULONG *tmp_d; int tmp_top, tmp_dmax, tmp_neg; bn_check_top(a); bn_check_top(b); flags_old_a = a->flags; flags_old_b = b->flags; tmp_d = a->d; tmp_top = a->top; tmp_dmax = a->dmax; tmp_neg = a->neg; a->d = b->d; a->top = b->top; a->dmax = b->dmax; a->neg = b->neg; b->d = tmp_d; b->top = tmp_top; b->dmax = tmp_dmax; b->neg = tmp_neg; a->flags = (flags_old_a & BN_FLG_MALLOCED) | (flags_old_b & BN_FLG_STATIC_DATA); b->flags = (flags_old_b & BN_FLG_MALLOCED) | (flags_old_a & BN_FLG_STATIC_DATA); bn_check_top(a); bn_check_top(b); } void BN_clear(BIGNUM *a) { bn_check_top(a); if (a->d != NULL) memset(a->d,0,a->dmax*sizeof(a->d[0])); a->top=0; a->neg=0; } BN_ULONG BN_get_word(const BIGNUM *a) { int i,n; BN_ULONG ret=0; n=BN_num_bytes(a); if (n > (int)sizeof(BN_ULONG)) return(BN_MASK2); for (i=a->top-1; i>=0; i--) { #ifndef SIXTY_FOUR_BIT /* the data item > unsigned long */ ret<<=BN_BITS4; /* stops the compiler complaining */ ret<<=BN_BITS4; #else ret=0; #endif ret|=a->d[i]; } return(ret); } int BN_set_word(BIGNUM *a, BN_ULONG w) { int i,n; bn_check_top(a); if (bn_expand(a,(int)sizeof(BN_ULONG)*8) == NULL) return(0); n=sizeof(BN_ULONG)/BN_BYTES; a->neg=0; a->top=0; a->d[0]=(BN_ULONG)w&BN_MASK2; if (a->d[0] != 0) a->top=1; for (i=1; i>=BN_BITS2 so compilers don't complain * on builds where sizeof(long) == BN_TYPES */ #ifndef SIXTY_FOUR_BIT /* the data item > unsigned long */ w>>=BN_BITS4; w>>=BN_BITS4; #else w=0; #endif a->d[i]=(BN_ULONG)w&BN_MASK2; if (a->d[i] != 0) a->top=i+1; } bn_check_top(a); return(1); } BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret) { unsigned int i,m; unsigned int n; BN_ULONG l; if (ret == NULL) ret=BN_new(); if (ret == NULL) return(NULL); bn_check_top(ret); l=0; n=len; if (n == 0) { ret->top=0; return(ret); } if (bn_expand(ret,(int)(n+2)*8) == NULL) return(NULL); i=((n-1)/BN_BYTES)+1; m=((n-1)%(BN_BYTES)); ret->top=i; ret->neg=0; while (n-- > 0) { l=(l<<8L)| *(s++); if (m-- == 0) { ret->d[--i]=l; l=0; m=BN_BYTES-1; } } /* need to call this due to clear byte at top if avoiding * having the top bit set (-ve number) */ bn_correct_top(ret); return(ret); } /* ignore negative */ int BN_bn2bin(const BIGNUM *a, unsigned char *to) { int n,i; BN_ULONG l; bn_check_top(a); n=i=BN_num_bytes(a); while (i-- > 0) { l=a->d[i/BN_BYTES]; *(to++)=(unsigned char)(l>>(8*(i%BN_BYTES)))&0xff; } return(n); } int BN_ucmp(const BIGNUM *a, const BIGNUM *b) { int i; BN_ULONG t1,t2,*ap,*bp; bn_check_top(a); bn_check_top(b); i=a->top-b->top; if (i != 0) return(i); ap=a->d; bp=b->d; for (i=a->top-1; i>=0; i--) { t1= ap[i]; t2= bp[i]; if (t1 != t2) return(t1 > t2?1:-1); } return(0); } int BN_cmp(const BIGNUM *a, const BIGNUM *b) { int i; int gt,lt; BN_ULONG t1,t2; if ((a == NULL) || (b == NULL)) { if (a != NULL) return(-1); else if (b != NULL) return(1); else return(0); } bn_check_top(a); bn_check_top(b); if (a->neg != b->neg) { if (a->neg) return(-1); else return(1); } if (a->neg == 0) { gt=1; lt= -1; } else { gt= -1; lt=1; } if (a->top > b->top) return(gt); if (a->top < b->top) return(lt); for (i=a->top-1; i>=0; i--) { t1=a->d[i]; t2=b->d[i]; if (t1 > t2) return(gt); if (t1 < t2) return(lt); } return(0); } int BN_set_bit(BIGNUM *a, int n) { int i,j,k; if (n < 0) return 0; i=n/BN_BITS2; j=n%BN_BITS2; if (a->top <= i) { if (bn_wexpand(a,i+1) == NULL) return(0); for(k=a->top; kd[k]=0; a->top=i+1; } a->d[i]|=(((BN_ULONG)1)<top <= i) return(0); a->d[i]&=(~(((BN_ULONG)1)<top <= i) return(0); return((a->d[i]&(((BN_ULONG)1)<= a->top) return(0); if (b == 0) a->top=w; else { a->top=w+1; a->d[w]&= ~(BN_MASK2< bb)?1:-1); for (i=n-2; i>=0; i--) { aa=a[i]; bb=b[i]; if (aa != bb) return((aa > bb)?1:-1); } return(0); } /* Here follows a specialised variants of bn_cmp_words(). It has the property of performing the operation on arrays of different sizes. The sizes of those arrays is expressed through cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, which is the delta between the two lengths, calculated as len(a)-len(b). All lengths are the number of BN_ULONGs... */ int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) { int n,i; n = cl-1; if (dl < 0) { for (i=dl; i<0; i++) { if (b[n-i] != 0) return -1; /* a < b */ } } if (dl > 0) { for (i=dl; i>0; i--) { if (a[n+i] != 0) return 1; /* a > b */ } } return bn_cmp_words(a,b,cl); }