/* ssl/t1_lib.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #include #include #include #include "ssl_locl.h" const char tls1_version_str[]="TLSv1" OPENSSL_VERSION_PTEXT; #ifndef OPENSSL_NO_TLSEXT static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess); static int ssl_check_clienthello_tlsext(SSL *s); int ssl_check_serverhello_tlsext(SSL *s); #endif SSL3_ENC_METHOD TLSv1_enc_data={ tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, tls1_cert_verify_mac, TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, }; long tls1_default_timeout(void) { /* 2 hours, the 24 hours mentioned in the TLSv1 spec * is way too long for http, the cache would over fill */ return(60*60*2); } int tls1_new(SSL *s) { if (!ssl3_new(s)) return(0); s->method->ssl_clear(s); return(1); } void tls1_free(SSL *s) { #ifndef OPENSSL_NO_TLSEXT if (s->tlsext_session_ticket) { OPENSSL_free(s->tlsext_session_ticket); } #endif /* OPENSSL_NO_TLSEXT */ ssl3_free(s); } void tls1_clear(SSL *s) { ssl3_clear(s); s->version = s->method->version; } #ifndef OPENSSL_NO_EC static int nid_list[] = { NID_sect163k1, /* sect163k1 (1) */ NID_sect163r1, /* sect163r1 (2) */ NID_sect163r2, /* sect163r2 (3) */ NID_sect193r1, /* sect193r1 (4) */ NID_sect193r2, /* sect193r2 (5) */ NID_sect233k1, /* sect233k1 (6) */ NID_sect233r1, /* sect233r1 (7) */ NID_sect239k1, /* sect239k1 (8) */ NID_sect283k1, /* sect283k1 (9) */ NID_sect283r1, /* sect283r1 (10) */ NID_sect409k1, /* sect409k1 (11) */ NID_sect409r1, /* sect409r1 (12) */ NID_sect571k1, /* sect571k1 (13) */ NID_sect571r1, /* sect571r1 (14) */ NID_secp160k1, /* secp160k1 (15) */ NID_secp160r1, /* secp160r1 (16) */ NID_secp160r2, /* secp160r2 (17) */ NID_secp192k1, /* secp192k1 (18) */ NID_X9_62_prime192v1, /* secp192r1 (19) */ NID_secp224k1, /* secp224k1 (20) */ NID_secp224r1, /* secp224r1 (21) */ NID_secp256k1, /* secp256k1 (22) */ NID_X9_62_prime256v1, /* secp256r1 (23) */ NID_secp384r1, /* secp384r1 (24) */ NID_secp521r1 /* secp521r1 (25) */ }; static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_uncompressed, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 }; static const unsigned char eccurves_default[] = { 0,14, /* sect571r1 (14) */ 0,13, /* sect571k1 (13) */ 0,25, /* secp521r1 (25) */ 0,11, /* sect409k1 (11) */ 0,12, /* sect409r1 (12) */ 0,24, /* secp384r1 (24) */ 0,9, /* sect283k1 (9) */ 0,10, /* sect283r1 (10) */ 0,22, /* secp256k1 (22) */ 0,23, /* secp256r1 (23) */ 0,8, /* sect239k1 (8) */ 0,6, /* sect233k1 (6) */ 0,7, /* sect233r1 (7) */ 0,20, /* secp224k1 (20) */ 0,21, /* secp224r1 (21) */ 0,4, /* sect193r1 (4) */ 0,5, /* sect193r2 (5) */ 0,18, /* secp192k1 (18) */ 0,19, /* secp192r1 (19) */ 0,1, /* sect163k1 (1) */ 0,2, /* sect163r1 (2) */ 0,3, /* sect163r2 (3) */ 0,15, /* secp160k1 (15) */ 0,16, /* secp160r1 (16) */ 0,17, /* secp160r2 (17) */ }; int tls1_ec_curve_id2nid(int curve_id) { /* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */ if ((curve_id < 1) || ((unsigned int)curve_id > sizeof(nid_list)/sizeof(nid_list[0]))) return 0; return nid_list[curve_id-1]; } int tls1_ec_nid2curve_id(int nid) { /* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */ switch (nid) { case NID_sect163k1: /* sect163k1 (1) */ return 1; case NID_sect163r1: /* sect163r1 (2) */ return 2; case NID_sect163r2: /* sect163r2 (3) */ return 3; case NID_sect193r1: /* sect193r1 (4) */ return 4; case NID_sect193r2: /* sect193r2 (5) */ return 5; case NID_sect233k1: /* sect233k1 (6) */ return 6; case NID_sect233r1: /* sect233r1 (7) */ return 7; case NID_sect239k1: /* sect239k1 (8) */ return 8; case NID_sect283k1: /* sect283k1 (9) */ return 9; case NID_sect283r1: /* sect283r1 (10) */ return 10; case NID_sect409k1: /* sect409k1 (11) */ return 11; case NID_sect409r1: /* sect409r1 (12) */ return 12; case NID_sect571k1: /* sect571k1 (13) */ return 13; case NID_sect571r1: /* sect571r1 (14) */ return 14; case NID_secp160k1: /* secp160k1 (15) */ return 15; case NID_secp160r1: /* secp160r1 (16) */ return 16; case NID_secp160r2: /* secp160r2 (17) */ return 17; case NID_secp192k1: /* secp192k1 (18) */ return 18; case NID_X9_62_prime192v1: /* secp192r1 (19) */ return 19; case NID_secp224k1: /* secp224k1 (20) */ return 20; case NID_secp224r1: /* secp224r1 (21) */ return 21; case NID_secp256k1: /* secp256k1 (22) */ return 22; case NID_X9_62_prime256v1: /* secp256r1 (23) */ return 23; case NID_secp384r1: /* secp384r1 (24) */ return 24; case NID_secp521r1: /* secp521r1 (25) */ return 25; default: return 0; } } /* Get curves list, if "sess" is set return client curves otherwise * preferred list */ static void tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves, size_t *pcurveslen) { if (sess) { *pcurves = s->session->tlsext_ellipticcurvelist; *pcurveslen = s->session->tlsext_ellipticcurvelist_length; } else { *pcurves = s->tlsext_ellipticcurvelist; *pcurveslen = s->tlsext_ellipticcurvelist_length; } /* If not set use default: for now static structure */ if (!*pcurves) { *pcurves = eccurves_default; *pcurveslen = sizeof(eccurves_default); } } /* Return nth shared curve. If nmatch == -1 return number of * matches. */ int tls1_shared_curve(SSL *s, int nmatch) { const unsigned char *pref, *supp; size_t preflen, supplen, i, j; int k; /* Can't do anything on client side */ if (s->server == 0) return -1; tls1_get_curvelist(s, !!(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &supp, &supplen); tls1_get_curvelist(s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref, &preflen); preflen /= 2; supplen /= 2; k = 0; for (i = 0; i < preflen; i++, pref+=2) { const unsigned char *tsupp = supp; for (j = 0; j < supplen; j++, tsupp+=2) { if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) { if (nmatch == k) { int id = (pref[0] << 8) | pref[1]; return tls1_ec_curve_id2nid(id); } k++; } } } if (nmatch == -1) return k; return 0; } int tls1_set_curves(unsigned char **pext, size_t *pextlen, int *curves, size_t ncurves) { unsigned char *clist, *p; size_t i; /* Bitmap of curves included to detect duplicates: only works * while curve ids < 32 */ unsigned long dup_list = 0; clist = OPENSSL_malloc(ncurves * 2); if (!clist) return 0; for (i = 0, p = clist; i < ncurves; i++) { unsigned long idmask; int id; id = tls1_ec_nid2curve_id(curves[i]); idmask = 1L << id; if (!id || (dup_list & idmask)) { OPENSSL_free(clist); return 0; } dup_list |= idmask; s2n(id, p); } if (*pext) OPENSSL_free(*pext); *pext = clist; *pextlen = ncurves * 2; return 1; } #define MAX_CURVELIST 25 typedef struct { size_t nidcnt; int nid_arr[MAX_CURVELIST]; } nid_cb_st; static int nid_cb(const char *elem, int len, void *arg) { nid_cb_st *narg = arg; size_t i; int nid; char etmp[20]; if (narg->nidcnt == MAX_CURVELIST) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; nid = EC_curve_nist2nid(etmp); if (nid == NID_undef) nid = OBJ_sn2nid(etmp); if (nid == NID_undef) nid = OBJ_ln2nid(etmp); if (nid == NID_undef) return 0; for (i = 0; i < narg->nidcnt; i++) if (narg->nid_arr[i] == nid) return 0; narg->nid_arr[narg->nidcnt++] = nid; return 1; } /* Set curves based on a colon separate list */ int tls1_set_curves_list(unsigned char **pext, size_t *pextlen, const char *str) { nid_cb_st ncb; ncb.nidcnt = 0; if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) return 0; return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt); } /* For an EC key set TLS id and required compression based on parameters */ static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id, EC_KEY *ec) { int is_prime, id; const EC_GROUP *grp; const EC_POINT *pt; const EC_METHOD *meth; if (!ec) return 0; /* Determine if it is a prime field */ grp = EC_KEY_get0_group(ec); pt = EC_KEY_get0_public_key(ec); if (!grp || !pt) return 0; meth = EC_GROUP_method_of(grp); if (!meth) return 0; if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field) is_prime = 1; else is_prime = 0; /* Determine curve ID */ id = EC_GROUP_get_curve_name(grp); id = tls1_ec_nid2curve_id(id); /* If we have an ID set it, otherwise set arbitrary explicit curve */ if (id) { curve_id[0] = 0; curve_id[1] = (unsigned char)id; } else { curve_id[0] = 0xff; if (is_prime) curve_id[1] = 0x01; else curve_id[1] = 0x02; } if (comp_id) { if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) { if (is_prime) *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; else *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; } else *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; } return 1; } /* Check an EC key is compatible with extensions */ static int tls1_check_ec_key(SSL *s, unsigned char *curve_id, unsigned char *comp_id) { const unsigned char *p; size_t plen, i; int j; /* If point formats extension present check it, otherwise everything * is supported (see RFC4492). */ if (comp_id && s->session->tlsext_ecpointformatlist) { p = s->session->tlsext_ecpointformatlist; plen = s->session->tlsext_ecpointformatlist_length; for (i = 0; i < plen; i++, p++) { if (*comp_id == *p) break; } if (i == plen) return 0; } /* Check curve is consistent with client and server preferences */ for (j = 0; j <= 1; j++) { tls1_get_curvelist(s, j, &p, &plen); for (i = 0; i < plen; i+=2, p+=2) { if (p[0] == curve_id[0] && p[1] == curve_id[1]) break; } if (i == plen) return 0; } return 1; } /* Check cert parameters compatible with extensions: currently just checks * EC certificates have compatible curves and compression. */ static int tls1_check_cert_param(SSL *s, X509 *x) { unsigned char comp_id, curve_id[2]; EVP_PKEY *pkey; int rv; pkey = X509_get_pubkey(x); if (!pkey) return 0; /* If not EC nothing to do */ if (pkey->type != EVP_PKEY_EC) { EVP_PKEY_free(pkey); return 1; } rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec); EVP_PKEY_free(pkey); if (!rv) return 0; return tls1_check_ec_key(s, curve_id, &comp_id); } /* Check EC temporary key is compatible with client extensions */ int tls1_check_ec_tmp_key(SSL *s) { unsigned char curve_id[2]; EC_KEY *ec = s->cert->ecdh_tmp; if (s->cert->ecdh_tmp_auto) { /* Need a shared curve */ if (tls1_shared_curve(s, 0)) return 1; else return 0; } if (!ec) { if (s->cert->ecdh_tmp_cb) return 1; else return 0; } if (!tls1_set_ec_id(curve_id, NULL, ec)) return 1; return tls1_check_ec_key(s, curve_id, NULL); } #endif /* OPENSSL_NO_EC */ #ifndef OPENSSL_NO_TLSEXT /* List of supported signature algorithms and hashes. Should make this * customisable at some point, for now include everything we support. */ #ifdef OPENSSL_NO_RSA #define tlsext_sigalg_rsa(md) /* */ #else #define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa, #endif #ifdef OPENSSL_NO_DSA #define tlsext_sigalg_dsa(md) /* */ #else #define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa, #endif #ifdef OPENSSL_NO_ECDSA #define tlsext_sigalg_ecdsa(md) /* */ #else #define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa, #endif #define tlsext_sigalg(md) \ tlsext_sigalg_rsa(md) \ tlsext_sigalg_dsa(md) \ tlsext_sigalg_ecdsa(md) static unsigned char tls12_sigalgs[] = { #ifndef OPENSSL_NO_SHA512 tlsext_sigalg(TLSEXT_hash_sha512) tlsext_sigalg(TLSEXT_hash_sha384) #endif #ifndef OPENSSL_NO_SHA256 tlsext_sigalg(TLSEXT_hash_sha256) tlsext_sigalg(TLSEXT_hash_sha224) #endif #ifndef OPENSSL_NO_SHA tlsext_sigalg(TLSEXT_hash_sha1) #endif #ifndef OPENSSL_NO_MD5 tlsext_sigalg_rsa(TLSEXT_hash_md5) #endif }; size_t tls12_get_sig_algs(SSL *s, unsigned char *p) { const unsigned char *sigs; size_t sigslen; sigs = s->cert->conf_sigalgs; if (sigs) sigslen = s->cert->conf_sigalgslen; else { sigs = tls12_sigalgs; sigslen = sizeof(tls12_sigalgs); #ifdef OPENSSL_FIPS /* If FIPS mode don't include MD5 which is last */ if (FIPS_mode()) sigslen -= 2; #endif } if (p) memcpy(p, sigs, sigslen); return sigslen; } /* byte_compare is a compare function for qsort(3) that compares bytes. */ static int byte_compare(const void *in_a, const void *in_b) { unsigned char a = *((const unsigned char*) in_a); unsigned char b = *((const unsigned char*) in_b); if (a > b) return 1; else if (a < b) return -1; return 0; } unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *p, unsigned char *limit) { int extdatalen=0; unsigned char *ret = p; #ifndef OPENSSL_NO_EC /* See if we support any ECC ciphersuites */ int using_ecc = 0; if (s->version != DTLS1_VERSION && s->version >= TLS1_VERSION) { int i; unsigned long alg_k, alg_a; STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s); for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) { SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i); alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; if ((alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe) || (alg_a & SSL_aECDSA))) { using_ecc = 1; break; } } } #endif /* don't add extensions for SSLv3 unless doing secure renegotiation */ if (s->client_version == SSL3_VERSION && !s->s3->send_connection_binding) return p; ret+=2; if (ret>=limit) return NULL; /* this really never occurs, but ... */ if (s->tlsext_hostname != NULL) { /* Add TLS extension servername to the Client Hello message */ unsigned long size_str; long lenmax; /* check for enough space. 4 for the servername type and entension length 2 for servernamelist length 1 for the hostname type 2 for hostname length + hostname length */ if ((lenmax = limit - ret - 9) < 0 || (size_str = strlen(s->tlsext_hostname)) > (unsigned long)lenmax) return NULL; /* extension type and length */ s2n(TLSEXT_TYPE_server_name,ret); s2n(size_str+5,ret); /* length of servername list */ s2n(size_str+3,ret); /* hostname type, length and hostname */ *(ret++) = (unsigned char) TLSEXT_NAMETYPE_host_name; s2n(size_str,ret); memcpy(ret, s->tlsext_hostname, size_str); ret+=size_str; } /* Add RI if renegotiating */ if (s->renegotiate) { int el; if(!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if((limit - p - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate,ret); s2n(el,ret); if(!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } #ifndef OPENSSL_NO_SRP /* Add SRP username if there is one */ if (s->srp_ctx.login != NULL) { /* Add TLS extension SRP username to the Client Hello message */ int login_len = strlen(s->srp_ctx.login); if (login_len > 255 || login_len == 0) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } /* check for enough space. 4 for the srp type type and entension length 1 for the srp user identity + srp user identity length */ if ((limit - ret - 5 - login_len) < 0) return NULL; /* fill in the extension */ s2n(TLSEXT_TYPE_srp,ret); s2n(login_len+1,ret); (*ret++) = (unsigned char) login_len; memcpy(ret, s->srp_ctx.login, login_len); ret+=login_len; } #endif #ifndef OPENSSL_NO_EC if (using_ecc) { /* Add TLS extension ECPointFormats to the ClientHello message */ long lenmax; const unsigned char *plist; size_t plistlen; /* If we have a custom point format list use it otherwise * use default */ plist = s->tlsext_ecpointformatlist; if (plist) plistlen = s->tlsext_ecpointformatlist_length; else { plist = ecformats_default; plistlen = sizeof(ecformats_default); } if ((lenmax = limit - ret - 5) < 0) return NULL; if (plistlen > (size_t)lenmax) return NULL; if (plistlen > 255) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats,ret); s2n(plistlen + 1,ret); *(ret++) = (unsigned char)plistlen ; memcpy(ret, plist, plistlen); ret+=plistlen; /* Add TLS extension EllipticCurves to the ClientHello message */ plist = s->tlsext_ellipticcurvelist; tls1_get_curvelist(s, 0, &plist, &plistlen); if ((lenmax = limit - ret - 6) < 0) return NULL; if (plistlen > (size_t)lenmax) return NULL; if (plistlen > 65532) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_elliptic_curves,ret); s2n(plistlen + 2, ret); /* NB: draft-ietf-tls-ecc-12.txt uses a one-byte prefix for * elliptic_curve_list, but the examples use two bytes. * http://www1.ietf.org/mail-archive/web/tls/current/msg00538.html * resolves this to two bytes. */ s2n(plistlen, ret); memcpy(ret, plist, plistlen); ret+=plistlen; } #endif /* OPENSSL_NO_EC */ if (!(SSL_get_options(s) & SSL_OP_NO_TICKET)) { int ticklen; if (!s->new_session && s->session && s->session->tlsext_tick) ticklen = s->session->tlsext_ticklen; else if (s->session && s->tlsext_session_ticket && s->tlsext_session_ticket->data) { ticklen = s->tlsext_session_ticket->length; s->session->tlsext_tick = OPENSSL_malloc(ticklen); if (!s->session->tlsext_tick) return NULL; memcpy(s->session->tlsext_tick, s->tlsext_session_ticket->data, ticklen); s->session->tlsext_ticklen = ticklen; } else ticklen = 0; if (ticklen == 0 && s->tlsext_session_ticket && s->tlsext_session_ticket->data == NULL) goto skip_ext; /* Check for enough room 2 for extension type, 2 for len * rest for ticket */ if ((long)(limit - ret - 4 - ticklen) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket,ret); s2n(ticklen,ret); if (ticklen) { memcpy(ret, s->session->tlsext_tick, ticklen); ret += ticklen; } } skip_ext: if (TLS1_get_client_version(s) >= TLS1_2_VERSION) { size_t salglen; salglen = tls12_get_sig_algs(s, NULL); if ((size_t)(limit - ret) < salglen + 6) return NULL; s2n(TLSEXT_TYPE_signature_algorithms,ret); s2n(salglen + 2, ret); s2n(salglen, ret); tls12_get_sig_algs(s, ret); ret += salglen; } #ifdef TLSEXT_TYPE_opaque_prf_input if (s->s3->client_opaque_prf_input != NULL && s->version != DTLS1_VERSION) { size_t col = s->s3->client_opaque_prf_input_len; if ((long)(limit - ret - 6 - col < 0)) return NULL; if (col > 0xFFFD) /* can't happen */ return NULL; s2n(TLSEXT_TYPE_opaque_prf_input, ret); s2n(col + 2, ret); s2n(col, ret); memcpy(ret, s->s3->client_opaque_prf_input, col); ret += col; } #endif if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp && s->version != DTLS1_VERSION) { int i; long extlen, idlen, itmp; OCSP_RESPID *id; idlen = 0; for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); itmp = i2d_OCSP_RESPID(id, NULL); if (itmp <= 0) return NULL; idlen += itmp + 2; } if (s->tlsext_ocsp_exts) { extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL); if (extlen < 0) return NULL; } else extlen = 0; if ((long)(limit - ret - 7 - extlen - idlen) < 0) return NULL; s2n(TLSEXT_TYPE_status_request, ret); if (extlen + idlen > 0xFFF0) return NULL; s2n(extlen + idlen + 5, ret); *(ret++) = TLSEXT_STATUSTYPE_ocsp; s2n(idlen, ret); for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { /* save position of id len */ unsigned char *q = ret; id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); /* skip over id len */ ret += 2; itmp = i2d_OCSP_RESPID(id, &ret); /* write id len */ s2n(itmp, q); } s2n(extlen, ret); if (extlen > 0) i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret); } #ifndef OPENSSL_NO_HEARTBEATS /* Add Heartbeat extension */ s2n(TLSEXT_TYPE_heartbeat,ret); s2n(1,ret); /* Set mode: * 1: peer may send requests * 2: peer not allowed to send requests */ if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS) *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS; else *(ret++) = SSL_TLSEXT_HB_ENABLED; #endif #ifndef OPENSSL_NO_NEXTPROTONEG if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) { /* The client advertises an emtpy extension to indicate its * support for Next Protocol Negotiation */ if (limit - ret - 4 < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg,ret); s2n(0,ret); } #endif if(SSL_get_srtp_profiles(s)) { int el; ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0); if((limit - p - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp,ret); s2n(el,ret); if(ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } /* Add TLS extension Server_Authz_DataFormats to the ClientHello */ /* 2 bytes for extension type */ /* 2 bytes for extension length */ /* 1 byte for the list length */ /* 1 byte for the list (we only support audit proofs) */ if (s->ctx->tlsext_authz_server_audit_proof_cb != NULL) { size_t lenmax; const unsigned short ext_len = 2; const unsigned char list_len = 1; if ((lenmax = limit - ret - 6) < 0) return NULL; s2n(TLSEXT_TYPE_server_authz, ret); /* Extension length: 2 bytes */ s2n(ext_len, ret); *(ret++) = list_len; *(ret++) = TLSEXT_AUTHZDATAFORMAT_audit_proof; } if ((extdatalen = ret-p-2) == 0) return p; s2n(extdatalen,p); return ret; } unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *p, unsigned char *limit) { int extdatalen=0; unsigned char *ret = p; #ifndef OPENSSL_NO_NEXTPROTONEG int next_proto_neg_seen; #endif /* don't add extensions for SSLv3, unless doing secure renegotiation */ if (s->version == SSL3_VERSION && !s->s3->send_connection_binding) return p; ret+=2; if (ret>=limit) return NULL; /* this really never occurs, but ... */ if (!s->hit && s->servername_done == 1 && s->session->tlsext_hostname != NULL) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_server_name,ret); s2n(0,ret); } if(s->s3->send_connection_binding) { int el; if(!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if((limit - p - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate,ret); s2n(el,ret); if(!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } #ifndef OPENSSL_NO_EC if (s->tlsext_ecpointformatlist != NULL && s->version != DTLS1_VERSION) { /* Add TLS extension ECPointFormats to the ServerHello message */ long lenmax; if ((lenmax = limit - ret - 5) < 0) return NULL; if (s->tlsext_ecpointformatlist_length > (unsigned long)lenmax) return NULL; if (s->tlsext_ecpointformatlist_length > 255) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats,ret); s2n(s->tlsext_ecpointformatlist_length + 1,ret); *(ret++) = (unsigned char) s->tlsext_ecpointformatlist_length; memcpy(ret, s->tlsext_ecpointformatlist, s->tlsext_ecpointformatlist_length); ret+=s->tlsext_ecpointformatlist_length; } /* Currently the server should not respond with a SupportedCurves extension */ #endif /* OPENSSL_NO_EC */ if (s->tlsext_ticket_expected && !(SSL_get_options(s) & SSL_OP_NO_TICKET)) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket,ret); s2n(0,ret); } if (s->tlsext_status_expected) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_status_request,ret); s2n(0,ret); } #ifdef TLSEXT_TYPE_opaque_prf_input if (s->s3->server_opaque_prf_input != NULL && s->version != DTLS1_VERSION) { size_t sol = s->s3->server_opaque_prf_input_len; if ((long)(limit - ret - 6 - sol) < 0) return NULL; if (sol > 0xFFFD) /* can't happen */ return NULL; s2n(TLSEXT_TYPE_opaque_prf_input, ret); s2n(sol + 2, ret); s2n(sol, ret); memcpy(ret, s->s3->server_opaque_prf_input, sol); ret += sol; } #endif if(s->srtp_profile) { int el; ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0); if((limit - p - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp,ret); s2n(el,ret); if(ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret+=el; } if (((s->s3->tmp.new_cipher->id & 0xFFFF)==0x80 || (s->s3->tmp.new_cipher->id & 0xFFFF)==0x81) && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG)) { const unsigned char cryptopro_ext[36] = { 0xfd, 0xe8, /*65000*/ 0x00, 0x20, /*32 bytes length*/ 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17}; if (limit-ret<36) return NULL; memcpy(ret,cryptopro_ext,36); ret+=36; } #ifndef OPENSSL_NO_HEARTBEATS /* Add Heartbeat extension if we've received one */ if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) { s2n(TLSEXT_TYPE_heartbeat,ret); s2n(1,ret); /* Set mode: * 1: peer may send requests * 2: peer not allowed to send requests */ if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS) *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS; else *(ret++) = SSL_TLSEXT_HB_ENABLED; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG next_proto_neg_seen = s->s3->next_proto_neg_seen; s->s3->next_proto_neg_seen = 0; if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) { const unsigned char *npa; unsigned int npalen; int r; r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, s->ctx->next_protos_advertised_cb_arg); if (r == SSL_TLSEXT_ERR_OK) { if ((long)(limit - ret - 4 - npalen) < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg,ret); s2n(npalen,ret); memcpy(ret, npa, npalen); ret += npalen; s->s3->next_proto_neg_seen = 1; } } #endif /* If the client supports authz then see whether we have any to offer * to it. */ if (s->s3->tlsext_authz_client_types_len) { size_t authz_length; /* By now we already know the new cipher, so we can look ahead * to see whether the cert we are going to send * has any authz data attached to it. */ const unsigned char* authz = ssl_get_authz_data(s, &authz_length); const unsigned char* const orig_authz = authz; size_t i; unsigned authz_count = 0; /* The authz data contains a number of the following structures: * uint8_t authz_type * uint16_t length * uint8_t data[length] * * First we walk over it to find the number of authz elements. */ for (i = 0; i < authz_length; i++) { unsigned short length; unsigned char type; type = *(authz++); if (memchr(s->s3->tlsext_authz_client_types, type, s->s3->tlsext_authz_client_types_len) != NULL) authz_count++; n2s(authz, length); /* n2s increments authz by 2 */ i += 2; authz += length; i += length; } if (authz_count) { /* Add TLS extension server_authz to the ServerHello message * 2 bytes for extension type * 2 bytes for extension length * 1 byte for the list length * n bytes for the list */ const unsigned short ext_len = 1 + authz_count; if ((long)(limit - ret - 4 - ext_len) < 0) return NULL; s2n(TLSEXT_TYPE_server_authz, ret); s2n(ext_len, ret); *(ret++) = authz_count; s->s3->tlsext_authz_promised_to_client = 1; } authz = orig_authz; for (i = 0; i < authz_length; i++) { unsigned short length; unsigned char type; authz_count++; type = *(authz++); if (memchr(s->s3->tlsext_authz_client_types, type, s->s3->tlsext_authz_client_types_len) != NULL) *(ret++) = type; n2s(authz, length); /* n2s increments authz by 2 */ i += 2; authz += length; i += length; } } if ((extdatalen = ret-p-2)== 0) return p; s2n(extdatalen,p); return ret; } static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al) { unsigned short type; unsigned short size; unsigned short len; unsigned char *data = *p; int renegotiate_seen = 0; s->servername_done = 0; s->tlsext_status_type = -1; #ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; #endif #ifndef OPENSSL_NO_HEARTBEATS s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED | SSL_TLSEXT_HB_DONT_SEND_REQUESTS); #endif /* Clear any signature algorithms extension received */ if (s->cert->peer_sigalgs) { OPENSSL_free(s->cert->peer_sigalgs); s->cert->peer_sigalgs = NULL; } /* Clear any shared sigtnature algorithms */ if (s->cert->shared_sigalgs) { OPENSSL_free(s->cert->shared_sigalgs); s->cert->shared_sigalgs = NULL; } if (data >= (d+n-2)) goto ri_check; n2s(data,len); if (data > (d+n-len)) goto ri_check; while (data <= (d+n-4)) { n2s(data,type); n2s(data,size); if (data+size > (d+n)) goto ri_check; #if 0 fprintf(stderr,"Received extension type %d size %d\n",type,size); #endif if (s->tlsext_debug_cb) s->tlsext_debug_cb(s, 0, type, data, size, s->tlsext_debug_arg); /* The servername extension is treated as follows: - Only the hostname type is supported with a maximum length of 255. - The servername is rejected if too long or if it contains zeros, in which case an fatal alert is generated. - The servername field is maintained together with the session cache. - When a session is resumed, the servername call back invoked in order to allow the application to position itself to the right context. - The servername is acknowledged if it is new for a session or when it is identical to a previously used for the same session. Applications can control the behaviour. They can at any time set a 'desirable' servername for a new SSL object. This can be the case for example with HTTPS when a Host: header field is received and a renegotiation is requested. In this case, a possible servername presented in the new client hello is only acknowledged if it matches the value of the Host: field. - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION if they provide for changing an explicit servername context for the session, i.e. when the session has been established with a servername extension. - On session reconnect, the servername extension may be absent. */ if (type == TLSEXT_TYPE_server_name) { unsigned char *sdata; int servname_type; int dsize; if (size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data,dsize); size -= 2; if (dsize > size ) { *al = SSL_AD_DECODE_ERROR; return 0; } sdata = data; while (dsize > 3) { servname_type = *(sdata++); n2s(sdata,len); dsize -= 3; if (len > dsize) { *al = SSL_AD_DECODE_ERROR; return 0; } if (s->servername_done == 0) switch (servname_type) { case TLSEXT_NAMETYPE_host_name: if (!s->hit) { if(s->session->tlsext_hostname) { *al = SSL_AD_DECODE_ERROR; return 0; } if (len > TLSEXT_MAXLEN_host_name) { *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } if ((s->session->tlsext_hostname = OPENSSL_malloc(len+1)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } memcpy(s->session->tlsext_hostname, sdata, len); s->session->tlsext_hostname[len]='\0'; if (strlen(s->session->tlsext_hostname) != len) { OPENSSL_free(s->session->tlsext_hostname); s->session->tlsext_hostname = NULL; *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } s->servername_done = 1; } else s->servername_done = s->session->tlsext_hostname && strlen(s->session->tlsext_hostname) == len && strncmp(s->session->tlsext_hostname, (char *)sdata, len) == 0; break; default: break; } dsize -= len; } if (dsize != 0) { *al = SSL_AD_DECODE_ERROR; return 0; } } #ifndef OPENSSL_NO_SRP else if (type == TLSEXT_TYPE_srp) { if (size <= 0 || ((len = data[0])) != (size -1)) { *al = SSL_AD_DECODE_ERROR; return 0; } if (s->srp_ctx.login != NULL) { *al = SSL_AD_DECODE_ERROR; return 0; } if ((s->srp_ctx.login = OPENSSL_malloc(len+1)) == NULL) return -1; memcpy(s->srp_ctx.login, &data[1], len); s->srp_ctx.login[len]='\0'; if (strlen(s->srp_ctx.login) != len) { *al = SSL_AD_DECODE_ERROR; return 0; } } #endif #ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats && s->version != DTLS1_VERSION) { unsigned char *sdata = data; int ecpointformatlist_length = *(sdata++); if (ecpointformatlist_length != size - 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (!s->hit) { if(s->session->tlsext_ecpointformatlist) { OPENSSL_free(s->session->tlsext_ecpointformatlist); s->session->tlsext_ecpointformatlist = NULL; } s->session->tlsext_ecpointformatlist_length = 0; if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length; memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length); } #if 0 fprintf(stderr,"ssl_parse_clienthello_tlsext s->session->tlsext_ecpointformatlist (length=%i) ", s->session->tlsext_ecpointformatlist_length); sdata = s->session->tlsext_ecpointformatlist; for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) fprintf(stderr,"%i ",*(sdata++)); fprintf(stderr,"\n"); #endif } else if (type == TLSEXT_TYPE_elliptic_curves && s->version != DTLS1_VERSION) { unsigned char *sdata = data; int ellipticcurvelist_length = (*(sdata++) << 8); ellipticcurvelist_length += (*(sdata++)); if (ellipticcurvelist_length != size - 2) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (!s->hit) { if(s->session->tlsext_ellipticcurvelist) { *al = TLS1_AD_DECODE_ERROR; return 0; } s->session->tlsext_ellipticcurvelist_length = 0; if ((s->session->tlsext_ellipticcurvelist = OPENSSL_malloc(ellipticcurvelist_length)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->session->tlsext_ellipticcurvelist_length = ellipticcurvelist_length; memcpy(s->session->tlsext_ellipticcurvelist, sdata, ellipticcurvelist_length); } #if 0 fprintf(stderr,"ssl_parse_clienthello_tlsext s->session->tlsext_ellipticcurvelist (length=%i) ", s->session->tlsext_ellipticcurvelist_length); sdata = s->session->tlsext_ellipticcurvelist; for (i = 0; i < s->session->tlsext_ellipticcurvelist_length; i++) fprintf(stderr,"%i ",*(sdata++)); fprintf(stderr,"\n"); #endif } #endif /* OPENSSL_NO_EC */ #ifdef TLSEXT_TYPE_opaque_prf_input else if (type == TLSEXT_TYPE_opaque_prf_input && s->version != DTLS1_VERSION) { unsigned char *sdata = data; if (size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(sdata, s->s3->client_opaque_prf_input_len); if (s->s3->client_opaque_prf_input_len != size - 2) { *al = SSL_AD_DECODE_ERROR; return 0; } if (s->s3->client_opaque_prf_input != NULL) /* shouldn't really happen */ OPENSSL_free(s->s3->client_opaque_prf_input); if (s->s3->client_opaque_prf_input_len == 0) s->s3->client_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */ else s->s3->client_opaque_prf_input = BUF_memdup(sdata, s->s3->client_opaque_prf_input_len); if (s->s3->client_opaque_prf_input == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } #endif else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } else if (type == TLSEXT_TYPE_renegotiate) { if(!ssl_parse_clienthello_renegotiate_ext(s, data, size, al)) return 0; renegotiate_seen = 1; } else if (type == TLSEXT_TYPE_signature_algorithms) { int dsize; if (s->cert->peer_sigalgs || size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data,dsize); size -= 2; if (dsize != size || dsize & 1 || !dsize) { *al = SSL_AD_DECODE_ERROR; return 0; } if (!tls1_process_sigalgs(s, data, dsize)) { *al = SSL_AD_DECODE_ERROR; return 0; } /* If sigalgs received and no shared algorithms fatal * error. */ if (s->cert->peer_sigalgs && !s->cert->shared_sigalgs) { SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT, SSL_R_NO_SHARED_SIGATURE_ALGORITHMS); *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } } else if (type == TLSEXT_TYPE_status_request && s->version != DTLS1_VERSION && s->ctx->tlsext_status_cb) { if (size < 5) { *al = SSL_AD_DECODE_ERROR; return 0; } s->tlsext_status_type = *data++; size--; if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { const unsigned char *sdata; int dsize; /* Read in responder_id_list */ n2s(data,dsize); size -= 2; if (dsize > size ) { *al = SSL_AD_DECODE_ERROR; return 0; } while (dsize > 0) { OCSP_RESPID *id; int idsize; if (dsize < 4) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data, idsize); dsize -= 2 + idsize; size -= 2 + idsize; if (dsize < 0) { *al = SSL_AD_DECODE_ERROR; return 0; } sdata = data; data += idsize; id = d2i_OCSP_RESPID(NULL, &sdata, idsize); if (!id) { *al = SSL_AD_DECODE_ERROR; return 0; } if (data != sdata) { OCSP_RESPID_free(id); *al = SSL_AD_DECODE_ERROR; return 0; } if (!s->tlsext_ocsp_ids && !(s->tlsext_ocsp_ids = sk_OCSP_RESPID_new_null())) { OCSP_RESPID_free(id); *al = SSL_AD_INTERNAL_ERROR; return 0; } if (!sk_OCSP_RESPID_push( s->tlsext_ocsp_ids, id)) { OCSP_RESPID_free(id); *al = SSL_AD_INTERNAL_ERROR; return 0; } } /* Read in request_extensions */ if (size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data,dsize); size -= 2; if (dsize != size) { *al = SSL_AD_DECODE_ERROR; return 0; } sdata = data; if (dsize > 0) { if (s->tlsext_ocsp_exts) { sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free); } s->tlsext_ocsp_exts = d2i_X509_EXTENSIONS(NULL, &sdata, dsize); if (!s->tlsext_ocsp_exts || (data + dsize != sdata)) { *al = SSL_AD_DECODE_ERROR; return 0; } } } /* We don't know what to do with any other type * so ignore it. */ else s->tlsext_status_type = -1; } #ifndef OPENSSL_NO_HEARTBEATS else if (type == TLSEXT_TYPE_heartbeat) { switch(data[0]) { case 0x01: /* Client allows us to send HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; break; case 0x02: /* Client doesn't accept HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS; break; default: *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } } #endif #ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0) { /* We shouldn't accept this extension on a * renegotiation. * * s->new_session will be set on renegotiation, but we * probably shouldn't rely that it couldn't be set on * the initial renegotation too in certain cases (when * there's some other reason to disallow resuming an * earlier session -- the current code won't be doing * anything like that, but this might change). * A valid sign that there's been a previous handshake * in this connection is if s->s3->tmp.finish_md_len > * 0. (We are talking about a check that will happen * in the Hello protocol round, well before a new * Finished message could have been computed.) */ s->s3->next_proto_neg_seen = 1; } #endif /* session ticket processed earlier */ else if (type == TLSEXT_TYPE_use_srtp) { if(ssl_parse_clienthello_use_srtp_ext(s, data, size, al)) return 0; } else if (type == TLSEXT_TYPE_server_authz) { unsigned char *sdata = data; unsigned char server_authz_dataformatlist_length; if (size == 0) { *al = TLS1_AD_DECODE_ERROR; return 0; } server_authz_dataformatlist_length = *(sdata++); if (server_authz_dataformatlist_length != size - 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } /* Successful session resumption uses the same authz * information as the original session so we ignore this * in the case of a session resumption. */ if (!s->hit) { size_t i; if (s->s3->tlsext_authz_client_types != NULL) OPENSSL_free(s->s3->tlsext_authz_client_types); s->s3->tlsext_authz_client_types = OPENSSL_malloc(server_authz_dataformatlist_length); if (!s->s3->tlsext_authz_client_types) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->s3->tlsext_authz_client_types_len = server_authz_dataformatlist_length; memcpy(s->s3->tlsext_authz_client_types, sdata, server_authz_dataformatlist_length); /* Sort the types in order to check for duplicates. */ qsort(s->s3->tlsext_authz_client_types, server_authz_dataformatlist_length, 1 /* element size */, byte_compare); for (i = 0; i < server_authz_dataformatlist_length; i++) { if (i > 0 && s->s3->tlsext_authz_client_types[i] == s->s3->tlsext_authz_client_types[i-1]) { *al = TLS1_AD_DECODE_ERROR; return 0; } } } } data+=size; } *p = data; ri_check: /* Need RI if renegotiating */ if (!renegotiate_seen && s->renegotiate && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } /* If no signature algorithms extension set default values */ if (!s->cert->peer_sigalgs) ssl_cert_set_default_md(s->cert); return 1; } int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n) { int al = -1; if (ssl_scan_clienthello_tlsext(s, p, d, n, &al) <= 0) { ssl3_send_alert(s,SSL3_AL_FATAL,al); return 0; } if (ssl_check_clienthello_tlsext(s) <= 0) { SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT,SSL_R_CLIENTHELLO_TLSEXT); return 0; } return 1; } #ifndef OPENSSL_NO_NEXTPROTONEG /* ssl_next_proto_validate validates a Next Protocol Negotiation block. No * elements of zero length are allowed and the set of elements must exactly fill * the length of the block. */ static char ssl_next_proto_validate(unsigned char *d, unsigned len) { unsigned int off = 0; while (off < len) { if (d[off] == 0) return 0; off += d[off]; off++; } return off == len; } #endif static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al) { unsigned short length; unsigned short type; unsigned short size; unsigned char *data = *p; int tlsext_servername = 0; int renegotiate_seen = 0; #ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; #endif #ifndef OPENSSL_NO_HEARTBEATS s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED | SSL_TLSEXT_HB_DONT_SEND_REQUESTS); #endif if (data >= (d+n-2)) goto ri_check; n2s(data,length); if (data+length != d+n) { *al = SSL_AD_DECODE_ERROR; return 0; } while(data <= (d+n-4)) { n2s(data,type); n2s(data,size); if (data+size > (d+n)) goto ri_check; if (s->tlsext_debug_cb) s->tlsext_debug_cb(s, 1, type, data, size, s->tlsext_debug_arg); if (type == TLSEXT_TYPE_server_name) { if (s->tlsext_hostname == NULL || size > 0) { *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } tlsext_servername = 1; } #ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats && s->version != DTLS1_VERSION) { unsigned char *sdata = data; int ecpointformatlist_length = *(sdata++); if (ecpointformatlist_length != size - 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } s->session->tlsext_ecpointformatlist_length = 0; if (s->session->tlsext_ecpointformatlist != NULL) OPENSSL_free(s->session->tlsext_ecpointformatlist); if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length; memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length); #if 0 fprintf(stderr,"ssl_parse_serverhello_tlsext s->session->tlsext_ecpointformatlist "); sdata = s->session->tlsext_ecpointformatlist; for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) fprintf(stderr,"%i ",*(sdata++)); fprintf(stderr,"\n"); #endif } #endif /* OPENSSL_NO_EC */ else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } if ((SSL_get_options(s) & SSL_OP_NO_TICKET) || (size > 0)) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } s->tlsext_ticket_expected = 1; } #ifdef TLSEXT_TYPE_opaque_prf_input else if (type == TLSEXT_TYPE_opaque_prf_input && s->version != DTLS1_VERSION) { unsigned char *sdata = data; if (size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(sdata, s->s3->server_opaque_prf_input_len); if (s->s3->server_opaque_prf_input_len != size - 2) { *al = SSL_AD_DECODE_ERROR; return 0; } if (s->s3->server_opaque_prf_input != NULL) /* shouldn't really happen */ OPENSSL_free(s->s3->server_opaque_prf_input); if (s->s3->server_opaque_prf_input_len == 0) s->s3->server_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */ else s->s3->server_opaque_prf_input = BUF_memdup(sdata, s->s3->server_opaque_prf_input_len); if (s->s3->server_opaque_prf_input == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } #endif else if (type == TLSEXT_TYPE_status_request && s->version != DTLS1_VERSION) { /* MUST be empty and only sent if we've requested * a status request message. */ if ((s->tlsext_status_type == -1) || (size > 0)) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } /* Set flag to expect CertificateStatus message */ s->tlsext_status_expected = 1; } #ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0) { unsigned char *selected; unsigned char selected_len; /* We must have requested it. */ if ((s->ctx->next_proto_select_cb == NULL)) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } /* The data must be valid */ if (!ssl_next_proto_validate(data, size)) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (s->ctx->next_proto_select_cb(s, &selected, &selected_len, data, size, s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->next_proto_negotiated = OPENSSL_malloc(selected_len); if (!s->next_proto_negotiated) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } memcpy(s->next_proto_negotiated, selected, selected_len); s->next_proto_negotiated_len = selected_len; s->s3->next_proto_neg_seen = 1; } #endif else if (type == TLSEXT_TYPE_renegotiate) { if(!ssl_parse_serverhello_renegotiate_ext(s, data, size, al)) return 0; renegotiate_seen = 1; } #ifndef OPENSSL_NO_HEARTBEATS else if (type == TLSEXT_TYPE_heartbeat) { switch(data[0]) { case 0x01: /* Server allows us to send HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; break; case 0x02: /* Server doesn't accept HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS; break; default: *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } } #endif else if (type == TLSEXT_TYPE_use_srtp) { if(ssl_parse_serverhello_use_srtp_ext(s, data, size, al)) return 0; } else if (type == TLSEXT_TYPE_server_authz) { /* We only support audit proofs. It's an error to send * an authz hello extension if the client * didn't request a proof. */ unsigned char *sdata = data; unsigned char server_authz_dataformatlist_length; if (!s->ctx->tlsext_authz_server_audit_proof_cb) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } if (!size) { *al = TLS1_AD_DECODE_ERROR; return 0; } server_authz_dataformatlist_length = *(sdata++); if (server_authz_dataformatlist_length != size - 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } /* We only support audit proofs, so a legal ServerHello * authz list contains exactly one entry. */ if (server_authz_dataformatlist_length != 1 || sdata[0] != TLSEXT_AUTHZDATAFORMAT_audit_proof) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } s->s3->tlsext_authz_server_promised = 1; } data += size; } if (data != d+n) { *al = SSL_AD_DECODE_ERROR; return 0; } if (!s->hit && tlsext_servername == 1) { if (s->tlsext_hostname) { if (s->session->tlsext_hostname == NULL) { s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname); if (!s->session->tlsext_hostname) { *al = SSL_AD_UNRECOGNIZED_NAME; return 0; } } else { *al = SSL_AD_DECODE_ERROR; return 0; } } } *p = data; ri_check: /* Determine if we need to see RI. Strictly speaking if we want to * avoid an attack we should *always* see RI even on initial server * hello because the client doesn't see any renegotiation during an * attack. However this would mean we could not connect to any server * which doesn't support RI so for the immediate future tolerate RI * absence on initial connect only. */ if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } return 1; } int ssl_prepare_clienthello_tlsext(SSL *s) { #ifdef TLSEXT_TYPE_opaque_prf_input { int r = 1; if (s->ctx->tlsext_opaque_prf_input_callback != 0) { r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, s->ctx->tlsext_opaque_prf_input_callback_arg); if (!r) return -1; } if (s->tlsext_opaque_prf_input != NULL) { if (s->s3->client_opaque_prf_input != NULL) /* shouldn't really happen */ OPENSSL_free(s->s3->client_opaque_prf_input); if (s->tlsext_opaque_prf_input_len == 0) s->s3->client_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */ else s->s3->client_opaque_prf_input = BUF_memdup(s->tlsext_opaque_prf_input, s->tlsext_opaque_prf_input_len); if (s->s3->client_opaque_prf_input == NULL) { SSLerr(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT,ERR_R_MALLOC_FAILURE); return -1; } s->s3->client_opaque_prf_input_len = s->tlsext_opaque_prf_input_len; } if (r == 2) /* at callback's request, insist on receiving an appropriate server opaque PRF input */ s->s3->server_opaque_prf_input_len = s->tlsext_opaque_prf_input_len; } #endif return 1; } int ssl_prepare_serverhello_tlsext(SSL *s) { #ifndef OPENSSL_NO_EC /* If we are server and using an ECC cipher suite, send the point formats we support * if the client sent us an ECPointsFormat extension. Note that the server is not * supposed to send an EllipticCurves extension. */ unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; int using_ecc = (alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA); using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL); if (using_ecc) { if (s->tlsext_ecpointformatlist != NULL) OPENSSL_free(s->tlsext_ecpointformatlist); if ((s->tlsext_ecpointformatlist = OPENSSL_malloc(3)) == NULL) { SSLerr(SSL_F_SSL_PREPARE_SERVERHELLO_TLSEXT,ERR_R_MALLOC_FAILURE); return -1; } s->tlsext_ecpointformatlist_length = 3; s->tlsext_ecpointformatlist[0] = TLSEXT_ECPOINTFORMAT_uncompressed; s->tlsext_ecpointformatlist[1] = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; s->tlsext_ecpointformatlist[2] = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; } #endif /* OPENSSL_NO_EC */ return 1; } static int ssl_check_clienthello_tlsext(SSL *s) { int ret=SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; #ifndef OPENSSL_NO_EC /* The handling of the ECPointFormats extension is done elsewhere, namely in * ssl3_choose_cipher in s3_lib.c. */ /* The handling of the EllipticCurves extension is done elsewhere, namely in * ssl3_choose_cipher in s3_lib.c. */ #endif if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg); /* If status request then ask callback what to do. * Note: this must be called after servername callbacks in case * the certificate has changed. */ if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) { int r; r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); switch (r) { /* We don't want to send a status request response */ case SSL_TLSEXT_ERR_NOACK: s->tlsext_status_expected = 0; break; /* status request response should be sent */ case SSL_TLSEXT_ERR_OK: if (s->tlsext_ocsp_resp) s->tlsext_status_expected = 1; else s->tlsext_status_expected = 0; break; /* something bad happened */ case SSL_TLSEXT_ERR_ALERT_FATAL: ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_INTERNAL_ERROR; goto err; } } else s->tlsext_status_expected = 0; #ifdef TLSEXT_TYPE_opaque_prf_input { /* This sort of belongs into ssl_prepare_serverhello_tlsext(), * but we might be sending an alert in response to the client hello, * so this has to happen here in ssl_check_clienthello_tlsext(). */ int r = 1; if (s->ctx->tlsext_opaque_prf_input_callback != 0) { r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, s->ctx->tlsext_opaque_prf_input_callback_arg); if (!r) { ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_INTERNAL_ERROR; goto err; } } if (s->s3->server_opaque_prf_input != NULL) /* shouldn't really happen */ OPENSSL_free(s->s3->server_opaque_prf_input); s->s3->server_opaque_prf_input = NULL; if (s->tlsext_opaque_prf_input != NULL) { if (s->s3->client_opaque_prf_input != NULL && s->s3->client_opaque_prf_input_len == s->tlsext_opaque_prf_input_len) { /* can only use this extension if we have a server opaque PRF input * of the same length as the client opaque PRF input! */ if (s->tlsext_opaque_prf_input_len == 0) s->s3->server_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */ else s->s3->server_opaque_prf_input = BUF_memdup(s->tlsext_opaque_prf_input, s->tlsext_opaque_prf_input_len); if (s->s3->server_opaque_prf_input == NULL) { ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_INTERNAL_ERROR; goto err; } s->s3->server_opaque_prf_input_len = s->tlsext_opaque_prf_input_len; } } if (r == 2 && s->s3->server_opaque_prf_input == NULL) { /* The callback wants to enforce use of the extension, * but we can't do that with the client opaque PRF input; * abort the handshake. */ ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_HANDSHAKE_FAILURE; } } #endif err: switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s,SSL3_AL_FATAL,al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s,SSL3_AL_WARNING,al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done=0; default: return 1; } } int ssl_check_serverhello_tlsext(SSL *s) { int ret=SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; #ifndef OPENSSL_NO_EC /* If we are client and using an elliptic curve cryptography cipher * suite, then if server returns an EC point formats lists extension * it must contain uncompressed. */ unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; if ((s->tlsext_ecpointformatlist != NULL) && (s->tlsext_ecpointformatlist_length > 0) && (s->session->tlsext_ecpointformatlist != NULL) && (s->session->tlsext_ecpointformatlist_length > 0) && ((alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA))) { /* we are using an ECC cipher */ size_t i; unsigned char *list; int found_uncompressed = 0; list = s->session->tlsext_ecpointformatlist; for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) { if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) { found_uncompressed = 1; break; } } if (!found_uncompressed) { SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT,SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST); return -1; } } ret = SSL_TLSEXT_ERR_OK; #endif /* OPENSSL_NO_EC */ if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg); #ifdef TLSEXT_TYPE_opaque_prf_input if (s->s3->server_opaque_prf_input_len > 0) { /* This case may indicate that we, as a client, want to insist on using opaque PRF inputs. * So first verify that we really have a value from the server too. */ if (s->s3->server_opaque_prf_input == NULL) { ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_HANDSHAKE_FAILURE; } /* Anytime the server *has* sent an opaque PRF input, we need to check * that we have a client opaque PRF input of the same size. */ if (s->s3->client_opaque_prf_input == NULL || s->s3->client_opaque_prf_input_len != s->s3->server_opaque_prf_input_len) { ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_ILLEGAL_PARAMETER; } } #endif /* If we've requested certificate status and we wont get one * tell the callback */ if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected) && s->ctx && s->ctx->tlsext_status_cb) { int r; /* Set resp to NULL, resplen to -1 so callback knows * there is no response. */ if (s->tlsext_ocsp_resp) { OPENSSL_free(s->tlsext_ocsp_resp); s->tlsext_ocsp_resp = NULL; } s->tlsext_ocsp_resplen = -1; r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); if (r == 0) { al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE; ret = SSL_TLSEXT_ERR_ALERT_FATAL; } if (r < 0) { al = SSL_AD_INTERNAL_ERROR; ret = SSL_TLSEXT_ERR_ALERT_FATAL; } } switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s,SSL3_AL_FATAL,al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s,SSL3_AL_WARNING,al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done=0; default: return 1; } } int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n) { int al = -1; if (s->version < SSL3_VERSION) return 1; if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0) { ssl3_send_alert(s,SSL3_AL_FATAL,al); return 0; } if (ssl_check_serverhello_tlsext(s) <= 0) { SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT,SSL_R_SERVERHELLO_TLSEXT); return 0; } return 1; } /* Since the server cache lookup is done early on in the processing of the * ClientHello, and other operations depend on the result, we need to handle * any TLS session ticket extension at the same time. * * session_id: points at the session ID in the ClientHello. This code will * read past the end of this in order to parse out the session ticket * extension, if any. * len: the length of the session ID. * limit: a pointer to the first byte after the ClientHello. * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * If s->tls_session_secret_cb is set then we are expecting a pre-shared key * ciphersuite, in which case we have no use for session tickets and one will * never be decrypted, nor will s->tlsext_ticket_expected be set to 1. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 0: no ticket was found (or was ignored, based on settings). * 1: a zero length extension was found, indicating that the client supports * session tickets but doesn't currently have one to offer. * 2: either s->tls_session_secret_cb was set, or a ticket was offered but * couldn't be decrypted because of a non-fatal error. * 3: a ticket was successfully decrypted and *ret was set. * * Side effects: * Sets s->tlsext_ticket_expected to 1 if the server will have to issue * a new session ticket to the client because the client indicated support * (and s->tls_session_secret_cb is NULL) but the client either doesn't have * a session ticket or we couldn't use the one it gave us, or if * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket. * Otherwise, s->tlsext_ticket_expected is set to 0. */ int tls1_process_ticket(SSL *s, unsigned char *session_id, int len, const unsigned char *limit, SSL_SESSION **ret) { /* Point after session ID in client hello */ const unsigned char *p = session_id + len; unsigned short i; *ret = NULL; s->tlsext_ticket_expected = 0; /* If tickets disabled behave as if no ticket present * to permit stateful resumption. */ if (SSL_get_options(s) & SSL_OP_NO_TICKET) return 0; if ((s->version <= SSL3_VERSION) || !limit) return 0; if (p >= limit) return -1; /* Skip past DTLS cookie */ if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER) { i = *(p++); p+= i; if (p >= limit) return -1; } /* Skip past cipher list */ n2s(p, i); p+= i; if (p >= limit) return -1; /* Skip past compression algorithm list */ i = *(p++); p += i; if (p > limit) return -1; /* Now at start of extensions */ if ((p + 2) >= limit) return 0; n2s(p, i); while ((p + 4) <= limit) { unsigned short type, size; n2s(p, type); n2s(p, size); if (p + size > limit) return 0; if (type == TLSEXT_TYPE_session_ticket) { int r; if (size == 0) { /* The client will accept a ticket but doesn't * currently have one. */ s->tlsext_ticket_expected = 1; return 1; } if (s->tls_session_secret_cb) { /* Indicate that the ticket couldn't be * decrypted rather than generating the session * from ticket now, trigger abbreviated * handshake based on external mechanism to * calculate the master secret later. */ return 2; } r = tls_decrypt_ticket(s, p, size, session_id, len, ret); switch (r) { case 2: /* ticket couldn't be decrypted */ s->tlsext_ticket_expected = 1; return 2; case 3: /* ticket was decrypted */ return r; case 4: /* ticket decrypted but need to renew */ s->tlsext_ticket_expected = 1; return 3; default: /* fatal error */ return -1; } } p += size; } return 0; } /* tls_decrypt_ticket attempts to decrypt a session ticket. * * etick: points to the body of the session ticket extension. * eticklen: the length of the session tickets extenion. * sess_id: points at the session ID. * sesslen: the length of the session ID. * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 2: the ticket couldn't be decrypted. * 3: a ticket was successfully decrypted and *psess was set. * 4: same as 3, but the ticket needs to be renewed. */ static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, int eticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess) { SSL_SESSION *sess; unsigned char *sdec; const unsigned char *p; int slen, mlen, renew_ticket = 0; unsigned char tick_hmac[EVP_MAX_MD_SIZE]; HMAC_CTX hctx; EVP_CIPHER_CTX ctx; SSL_CTX *tctx = s->initial_ctx; /* Need at least keyname + iv + some encrypted data */ if (eticklen < 48) return 2; /* Initialize session ticket encryption and HMAC contexts */ HMAC_CTX_init(&hctx); EVP_CIPHER_CTX_init(&ctx); if (tctx->tlsext_ticket_key_cb) { unsigned char *nctick = (unsigned char *)etick; int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, &ctx, &hctx, 0); if (rv < 0) return -1; if (rv == 0) return 2; if (rv == 2) renew_ticket = 1; } else { /* Check key name matches */ if (memcmp(etick, tctx->tlsext_tick_key_name, 16)) return 2; HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, tlsext_tick_md(), NULL); EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, tctx->tlsext_tick_aes_key, etick + 16); } /* Attempt to process session ticket, first conduct sanity and * integrity checks on ticket. */ mlen = HMAC_size(&hctx); if (mlen < 0) { EVP_CIPHER_CTX_cleanup(&ctx); return -1; } eticklen -= mlen; /* Check HMAC of encrypted ticket */ HMAC_Update(&hctx, etick, eticklen); HMAC_Final(&hctx, tick_hmac, NULL); HMAC_CTX_cleanup(&hctx); if (memcmp(tick_hmac, etick + eticklen, mlen)) return 2; /* Attempt to decrypt session data */ /* Move p after IV to start of encrypted ticket, update length */ p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx); eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx); sdec = OPENSSL_malloc(eticklen); if (!sdec) { EVP_CIPHER_CTX_cleanup(&ctx); return -1; } EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen); if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0) return 2; slen += mlen; EVP_CIPHER_CTX_cleanup(&ctx); p = sdec; sess = d2i_SSL_SESSION(NULL, &p, slen); OPENSSL_free(sdec); if (sess) { /* The session ID, if non-empty, is used by some clients to * detect that the ticket has been accepted. So we copy it to * the session structure. If it is empty set length to zero * as required by standard. */ if (sesslen) memcpy(sess->session_id, sess_id, sesslen); sess->session_id_length = sesslen; *psess = sess; if (renew_ticket) return 4; else return 3; } ERR_clear_error(); /* For session parse failure, indicate that we need to send a new * ticket. */ return 2; } /* Tables to translate from NIDs to TLS v1.2 ids */ typedef struct { int nid; int id; } tls12_lookup; static tls12_lookup tls12_md[] = { {NID_md5, TLSEXT_hash_md5}, {NID_sha1, TLSEXT_hash_sha1}, {NID_sha224, TLSEXT_hash_sha224}, {NID_sha256, TLSEXT_hash_sha256}, {NID_sha384, TLSEXT_hash_sha384}, {NID_sha512, TLSEXT_hash_sha512} }; static tls12_lookup tls12_sig[] = { {EVP_PKEY_RSA, TLSEXT_signature_rsa}, {EVP_PKEY_DSA, TLSEXT_signature_dsa}, {EVP_PKEY_EC, TLSEXT_signature_ecdsa} }; static int tls12_find_id(int nid, tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if (table[i].nid == nid) return table[i].id; } return -1; } static int tls12_find_nid(int id, tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if ((table[i].id) == id) return table[i].nid; } return NID_undef; } int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, const EVP_MD *md) { int sig_id, md_id; if (!md) return 0; md_id = tls12_find_id(EVP_MD_type(md), tls12_md, sizeof(tls12_md)/sizeof(tls12_lookup)); if (md_id == -1) return 0; sig_id = tls12_get_sigid(pk); if (sig_id == -1) return 0; p[0] = (unsigned char)md_id; p[1] = (unsigned char)sig_id; return 1; } int tls12_get_sigid(const EVP_PKEY *pk) { return tls12_find_id(pk->type, tls12_sig, sizeof(tls12_sig)/sizeof(tls12_lookup)); } const EVP_MD *tls12_get_hash(unsigned char hash_alg) { switch(hash_alg) { #ifndef OPENSSL_NO_MD5 case TLSEXT_hash_md5: #ifdef OPENSSL_FIPS if (FIPS_mode()) return NULL; #endif return EVP_md5(); #endif #ifndef OPENSSL_NO_SHA case TLSEXT_hash_sha1: return EVP_sha1(); #endif #ifndef OPENSSL_NO_SHA256 case TLSEXT_hash_sha224: return EVP_sha224(); case TLSEXT_hash_sha256: return EVP_sha256(); #endif #ifndef OPENSSL_NO_SHA512 case TLSEXT_hash_sha384: return EVP_sha384(); case TLSEXT_hash_sha512: return EVP_sha512(); #endif default: return NULL; } } static int tls12_get_pkey_idx(unsigned char sig_alg) { switch(sig_alg) { #ifndef OPENSSL_NO_RSA case TLSEXT_signature_rsa: return SSL_PKEY_RSA_SIGN; #endif #ifndef OPENSSL_NO_DSA case TLSEXT_signature_dsa: return SSL_PKEY_DSA_SIGN; #endif #ifndef OPENSSL_NO_ECDSA case TLSEXT_signature_ecdsa: return SSL_PKEY_ECC; #endif } return -1; } /* Convert TLS 1.2 signature algorithm extension values into NIDs */ static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid, int *psignhash_nid, const unsigned char *data) { int sign_nid, hash_nid; if (!phash_nid && !psign_nid && !psignhash_nid) return; if (phash_nid || psignhash_nid) { hash_nid = tls12_find_nid(data[0], tls12_md, sizeof(tls12_md)/sizeof(tls12_lookup)); if (phash_nid) *phash_nid = hash_nid; } if (psign_nid || psignhash_nid) { sign_nid = tls12_find_nid(data[1], tls12_sig, sizeof(tls12_sig)/sizeof(tls12_lookup)); if (psign_nid) *psign_nid = sign_nid; } if (psignhash_nid) { if (sign_nid && hash_nid) OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid); else *psignhash_nid = NID_undef; } } /* Given preference and allowed sigalgs set shared sigalgs */ static int tls12_do_shared_sigalgs(TLS_SIGALGS *shsig, const unsigned char *pref, size_t preflen, const unsigned char *allow, size_t allowlen) { const unsigned char *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i+=2, ptmp+=2) { /* Skip disabled hashes or signature algorithms */ if (tls12_get_hash(ptmp[0]) == NULL) continue; if (tls12_get_pkey_idx(ptmp[1]) == -1) continue; for (j = 0, atmp = allow; j < allowlen; j+=2, atmp+=2) { if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) { nmatch++; if (shsig) { shsig->rhash = ptmp[0]; shsig->rsign = ptmp[1]; tls1_lookup_sigalg(&shsig->hash_nid, &shsig->sign_nid, &shsig->signandhash_nid, ptmp); shsig++; } break; } } } return nmatch; } /* Set shared signature algorithms for SSL structures */ static int tls1_set_shared_sigalgs(SSL *s) { const unsigned char *pref, *allow, *conf; size_t preflen, allowlen, conflen; size_t nmatch; TLS_SIGALGS *salgs = NULL; CERT *c = s->cert; conf = c->conf_sigalgs; if (conf) conflen = c->conf_sigalgslen; else { conf = tls12_sigalgs; conflen = sizeof(tls12_sigalgs); #ifdef OPENSSL_FIPS if (FIPS_mode()) conflen -= 2; #endif } if(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { pref = conf; preflen = conflen; allow = c->peer_sigalgs; allowlen = c->peer_sigalgslen; } else { allow = conf; allowlen = conflen; pref = c->peer_sigalgs; preflen = c->peer_sigalgslen; } nmatch = tls12_do_shared_sigalgs(NULL, pref, preflen, allow, allowlen); if (!nmatch) return 1; salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS)); if (!salgs) return 0; nmatch = tls12_do_shared_sigalgs(salgs, pref, preflen, allow, allowlen); c->shared_sigalgs = salgs; c->shared_sigalgslen = nmatch; return 1; } /* Set preferred digest for each key type */ int tls1_process_sigalgs(SSL *s, const unsigned char *data, int dsize) { int idx; size_t i; const EVP_MD *md; CERT *c = s->cert; TLS_SIGALGS *sigptr; /* Extension ignored for TLS versions below 1.2 */ if (TLS1_get_version(s) < TLS1_2_VERSION) return 1; /* Should never happen */ if (!c) return 0; c->pkeys[SSL_PKEY_DSA_SIGN].digest = NULL; c->pkeys[SSL_PKEY_RSA_SIGN].digest = NULL; c->pkeys[SSL_PKEY_RSA_ENC].digest = NULL; c->pkeys[SSL_PKEY_ECC].digest = NULL; c->peer_sigalgs = OPENSSL_malloc(dsize); if (!c->peer_sigalgs) return 0; c->peer_sigalgslen = dsize; memcpy(c->peer_sigalgs, data, dsize); tls1_set_shared_sigalgs(s); for (i = 0, sigptr = c->shared_sigalgs; i < c->shared_sigalgslen; i++, sigptr++) { idx = tls12_get_pkey_idx(sigptr->rsign); if (idx > 0 && c->pkeys[idx].digest == NULL) { md = tls12_get_hash(sigptr->rhash); c->pkeys[idx].digest = md; if (idx == SSL_PKEY_RSA_SIGN) c->pkeys[SSL_PKEY_RSA_ENC].digest = md; } } /* In strict mode leave unset digests as NULL to indicate we can't * use the certificate for signing. */ if (!(s->cert->cert_flags & SSL_CERT_FLAG_TLS_STRICT)) { /* Set any remaining keys to default values. NOTE: if alg is * not supported it stays as NULL. */ #ifndef OPENSSL_NO_DSA if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest) c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1(); #endif #ifndef OPENSSL_NO_RSA if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest) { c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1(); c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1(); } #endif #ifndef OPENSSL_NO_ECDSA if (!c->pkeys[SSL_PKEY_ECC].digest) c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1(); #endif } return 1; } int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { const unsigned char *psig = s->cert->peer_sigalgs; if (psig == NULL) return 0; if (idx >= 0) { idx <<= 1; if (idx >= (int)s->cert->peer_sigalgslen) return 0; psig += idx; if (rhash) *rhash = psig[0]; if (rsig) *rsig = psig[1]; tls1_lookup_sigalg(phash, psign, psignhash, psig); } return s->cert->peer_sigalgslen / 2; } int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs; if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) return 0; shsigalgs += idx; if (phash) *phash = shsigalgs->hash_nid; if (psign) *psign = shsigalgs->sign_nid; if (psignhash) *psignhash = shsigalgs->signandhash_nid; if (rsig) *rsig = shsigalgs->rsign; if (rhash) *rhash = shsigalgs->rhash; return s->cert->shared_sigalgslen; } #ifndef OPENSSL_NO_HEARTBEATS int tls1_process_heartbeat(SSL *s) { unsigned char *p = &s->s3->rrec.data[0], *pl; unsigned short hbtype; unsigned int payload; unsigned int padding = 16; /* Use minimum padding */ /* Read type and payload length first */ hbtype = *p++; n2s(p, payload); pl = p; if (s->msg_callback) s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT, &s->s3->rrec.data[0], s->s3->rrec.length, s, s->msg_callback_arg); if (hbtype == TLS1_HB_REQUEST) { unsigned char *buffer, *bp; int r; /* Allocate memory for the response, size is 1 bytes * message type, plus 2 bytes payload length, plus * payload, plus padding */ buffer = OPENSSL_malloc(1 + 2 + payload + padding); bp = buffer; /* Enter response type, length and copy payload */ *bp++ = TLS1_HB_RESPONSE; s2n(payload, bp); memcpy(bp, pl, payload); bp += payload; /* Random padding */ RAND_pseudo_bytes(bp, padding); r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding); if (r >= 0 && s->msg_callback) s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding, s, s->msg_callback_arg); OPENSSL_free(buffer); if (r < 0) return r; } else if (hbtype == TLS1_HB_RESPONSE) { unsigned int seq; /* We only send sequence numbers (2 bytes unsigned int), * and 16 random bytes, so we just try to read the * sequence number */ n2s(pl, seq); if (payload == 18 && seq == s->tlsext_hb_seq) { s->tlsext_hb_seq++; s->tlsext_hb_pending = 0; } } return 0; } int tls1_heartbeat(SSL *s) { unsigned char *buf, *p; int ret; unsigned int payload = 18; /* Sequence number + random bytes */ unsigned int padding = 16; /* Use minimum padding */ /* Only send if peer supports and accepts HB requests... */ if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) || s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS) { SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT); return -1; } /* ...and there is none in flight yet... */ if (s->tlsext_hb_pending) { SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PENDING); return -1; } /* ...and no handshake in progress. */ if (SSL_in_init(s) || s->in_handshake) { SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_UNEXPECTED_MESSAGE); return -1; } /* Check if padding is too long, payload and padding * must not exceed 2^14 - 3 = 16381 bytes in total. */ OPENSSL_assert(payload + padding <= 16381); /* Create HeartBeat message, we just use a sequence number * as payload to distuingish different messages and add * some random stuff. * - Message Type, 1 byte * - Payload Length, 2 bytes (unsigned int) * - Payload, the sequence number (2 bytes uint) * - Payload, random bytes (16 bytes uint) * - Padding */ buf = OPENSSL_malloc(1 + 2 + payload + padding); p = buf; /* Message Type */ *p++ = TLS1_HB_REQUEST; /* Payload length (18 bytes here) */ s2n(payload, p); /* Sequence number */ s2n(s->tlsext_hb_seq, p); /* 16 random bytes */ RAND_pseudo_bytes(p, 16); p += 16; /* Random padding */ RAND_pseudo_bytes(p, padding); ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding); if (ret >= 0) { if (s->msg_callback) s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding, s, s->msg_callback_arg); s->tlsext_hb_pending = 1; } OPENSSL_free(buf); return ret; } #endif #define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2) typedef struct { size_t sigalgcnt; int sigalgs[MAX_SIGALGLEN]; } sig_cb_st; static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; size_t i; char etmp[20], *p; int sig_alg, hash_alg; if (sarg->sigalgcnt == MAX_SIGALGLEN) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; p = strchr(etmp, '+'); if (!p) return 0; *p = 0; p++; if (!*p) return 0; if (!strcmp(etmp, "RSA")) sig_alg = EVP_PKEY_RSA; else if (!strcmp(etmp, "DSA")) sig_alg = EVP_PKEY_DSA; else if (!strcmp(etmp, "ECDSA")) sig_alg = EVP_PKEY_EC; else return 0; hash_alg = OBJ_sn2nid(p); if (hash_alg == NID_undef) hash_alg = OBJ_ln2nid(p); if (hash_alg == NID_undef) return 0; for (i = 0; i < sarg->sigalgcnt; i+=2) { if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg) return 0; } sarg->sigalgs[sarg->sigalgcnt++] = hash_alg; sarg->sigalgs[sarg->sigalgcnt++] = sig_alg; return 1; } /* Set suppored signature algorithms based on a colon separated list * of the form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ int tls1_set_sigalgs_list(CERT *c, const char *str) { sig_cb_st sig; sig.sigalgcnt = 0; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt); } int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen) { unsigned char *sigalgs, *sptr; int rhash, rsign; size_t i; if (salglen & 1) return 0; sigalgs = OPENSSL_malloc(salglen); if (sigalgs == NULL) return 0; for (i = 0, sptr = sigalgs; i < salglen; i+=2) { rhash = tls12_find_id(*psig_nids++, tls12_md, sizeof(tls12_md)/sizeof(tls12_lookup)); rsign = tls12_find_id(*psig_nids++, tls12_sig, sizeof(tls12_sig)/sizeof(tls12_lookup)); if (rhash == -1 || rsign == -1) goto err; *sptr++ = rhash; *sptr++ = rsign; } if (c->conf_sigalgs) OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen; return 1; err: OPENSSL_free(sigalgs); return 0; } static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid) { int sig_nid; size_t i; if (default_nid == -1) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; for (i = 0; i < c->shared_sigalgslen; i++) if (sig_nid == c->shared_sigalgs[i].signandhash_nid) return 1; return 0; } /* Check certificate chain is consistent with TLS extensions and is * usable by server. */ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx) { int i; int rv = CERT_PKEY_INVALID; CERT_PKEY *cpk = NULL; CERT *c = s->cert; if (idx != -1) { cpk = c->pkeys + idx; x = cpk->x509; pk = cpk->privatekey; chain = cpk->chain; /* If no cert or key, forget it */ if (!x || !pk) goto end; } else { idx = ssl_cert_type(x, pk); if (idx == -1) goto end; } /* Check all signature algorithms are consistent with * signature algorithms extension if TLS 1.2 or later * and strict mode. */ if (TLS1_get_version(s) >= TLS1_2_VERSION && c->cert_flags & SSL_CERT_FLAG_TLS_STRICT) { int default_nid; unsigned char rsign = 0; if (c->peer_sigalgs) default_nid = 0; /* If no sigalgs extension use defaults from RFC5246 */ else { switch(idx) { case SSL_PKEY_RSA_ENC: case SSL_PKEY_RSA_SIGN: case SSL_PKEY_DH_RSA: rsign = TLSEXT_signature_rsa; default_nid = NID_sha1WithRSAEncryption; break; case SSL_PKEY_DSA_SIGN: case SSL_PKEY_DH_DSA: rsign = TLSEXT_signature_dsa; default_nid = NID_dsaWithSHA1; break; case SSL_PKEY_ECC: rsign = TLSEXT_signature_ecdsa; default_nid = NID_ecdsa_with_SHA1; break; default: default_nid = -1; break; } } /* If peer sent no signature algorithms extension and we * have set preferred signature algorithms check we support * sha1. */ if (default_nid > 0 && c->conf_sigalgs) { size_t j; const unsigned char *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) { if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign) break; } if (j == c->conf_sigalgslen) goto end; } /* Check signature algorithm of each cert in chain */ if (!tls1_check_sig_alg(c, x, default_nid)) goto end; for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) goto end; } } /* Check cert parameters are consistent */ if (!tls1_check_cert_param(s, x)) goto end; /* In strict mode check rest of chain too */ if (c->cert_flags & SSL_CERT_FLAG_TLS_STRICT) { for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_cert_param(s, sk_X509_value(chain, i))) goto end; } } rv = CERT_PKEY_VALID; end: if (cpk) { if (rv && cpk->digest) rv |= CERT_PKEY_SIGN; cpk->valid_flags = rv; } return rv; } /* Set validity of certificates in an SSL structure */ void tls1_set_cert_validity(SSL *s) { tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); } /* User level utiity function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { return tls1_check_chain(s, x, pk, chain, -1); } #endif