/* crypto/engine/hw_aep.c */ /* */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #include #ifndef OPENSSL_SYS_MSDOS #include #include #else #include typedef int pid_t; #endif #include #include #include #ifndef OPENSSL_NO_HW #ifndef OPENSSL_NO_HW_AEP #ifdef FLAT_INC #include "aep.h" #else #include "vendor_defns/aep.h" #endif #define AEP_LIB_NAME "aep engine" #define FAIL_TO_SW 0x10101010 #include "hw_aep_err.c" static int aep_init(ENGINE *e); static int aep_finish(ENGINE *e); static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)()); static int aep_destroy(ENGINE *e); static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR hConnection); static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection); static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection); static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use); /* BIGNUM stuff */ static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); static AEP_RV aep_mod_exp_crt(BIGNUM *r,const BIGNUM *a, const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1,const BIGNUM *dmq1, const BIGNUM *iqmp, BN_CTX *ctx); /* RSA stuff */ #ifndef OPENSSL_NO_RSA static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa); #endif /* This function is aliased to mod_exp (with the mont stuff dropped). */ static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); /* DSA stuff */ #ifndef OPENSSL_NO_DSA static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); #endif /* DH stuff */ /* This function is aliased to mod_exp (with the DH and mont dropped). */ #ifndef OPENSSL_NO_DH static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); #endif /* rand stuff */ #ifdef AEPRAND static int aep_rand(unsigned char *buf, int num); static int aep_rand_status(void); #endif /* Bignum conversion stuff */ static AEP_RV GetBigNumSize(void* ArbBigNum, AEP_U32* BigNumSize); static AEP_RV MakeAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize, unsigned char* AEP_BigNum); static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize, unsigned char* AEP_BigNum); /* The definitions for control commands specific to this engine */ #define AEP_CMD_SO_PATH ENGINE_CMD_BASE static const ENGINE_CMD_DEFN aep_cmd_defns[] = { { AEP_CMD_SO_PATH, "SO_PATH", "Specifies the path to the 'aep' shared library", ENGINE_CMD_FLAG_STRING }, {0, NULL, NULL, 0} }; #ifndef OPENSSL_NO_RSA /* Our internal RSA_METHOD that we provide pointers to */ static RSA_METHOD aep_rsa = { "Aep RSA method", NULL, /*rsa_pub_encrypt*/ NULL, /*rsa_pub_decrypt*/ NULL, /*rsa_priv_encrypt*/ NULL, /*rsa_priv_encrypt*/ aep_rsa_mod_exp, /*rsa_mod_exp*/ aep_mod_exp_mont, /*bn_mod_exp*/ NULL, /*init*/ NULL, /*finish*/ 0, /*flags*/ NULL, /*app_data*/ NULL, /*rsa_sign*/ NULL /*rsa_verify*/ }; #endif #ifndef OPENSSL_NO_DSA /* Our internal DSA_METHOD that we provide pointers to */ static DSA_METHOD aep_dsa = { "Aep DSA method", NULL, /* dsa_do_sign */ NULL, /* dsa_sign_setup */ NULL, /* dsa_do_verify */ aep_dsa_mod_exp, /* dsa_mod_exp */ aep_mod_exp_dsa, /* bn_mod_exp */ NULL, /* init */ NULL, /* finish */ 0, /* flags */ NULL /* app_data */ }; #endif #ifndef OPENSSL_NO_DH /* Our internal DH_METHOD that we provide pointers to */ static DH_METHOD aep_dh = { "Aep DH method", NULL, NULL, aep_mod_exp_dh, NULL, NULL, 0, NULL }; #endif #ifdef AEPRAND /* our internal RAND_method that we provide pointers to */ static RAND_METHOD aep_random = { /*"AEP RAND method", */ NULL, aep_rand, NULL, NULL, aep_rand, aep_rand_status, }; #endif /*Define an array of structures to hold connections*/ static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS]; /*Used to determine if this is a new process*/ static pid_t recorded_pid = 0; #ifdef AEPRAND static AEP_U8 rand_block[RAND_BLK_SIZE]; static AEP_U32 rand_block_bytes = 0; #endif /* Constants used when creating the ENGINE */ static const char *engine_aep_id = "aep"; static const char *engine_aep_name = "Aep hardware engine support"; static int max_key_len = 2176; /* This internal function is used by ENGINE_aep() and possibly by the * "dynamic" ENGINE support too */ static int bind_aep(ENGINE *e) { #ifndef OPENSSL_NO_RSA const RSA_METHOD *meth1; #endif #ifndef OPENSSL_NO_DSA const DSA_METHOD *meth2; #endif #ifndef OPENSSL_NO_DH const DH_METHOD *meth3; #endif if(!ENGINE_set_id(e, engine_aep_id) || !ENGINE_set_name(e, engine_aep_name) || #ifndef OPENSSL_NO_RSA !ENGINE_set_RSA(e, &aep_rsa) || #endif #ifndef OPENSSL_NO_DSA !ENGINE_set_DSA(e, &aep_dsa) || #endif #ifndef OPENSSL_NO_DH !ENGINE_set_DH(e, &aep_dh) || #endif #ifdef AEPRAND !ENGINE_set_RAND(e, &aep_random) || #endif !ENGINE_set_init_function(e, aep_init) || !ENGINE_set_destroy_function(e, aep_destroy) || !ENGINE_set_finish_function(e, aep_finish) || !ENGINE_set_ctrl_function(e, aep_ctrl) || !ENGINE_set_cmd_defns(e, aep_cmd_defns)) return 0; #ifndef OPENSSL_NO_RSA /* We know that the "PKCS1_SSLeay()" functions hook properly * to the aep-specific mod_exp and mod_exp_crt so we use * those functions. NB: We don't use ENGINE_openssl() or * anything "more generic" because something like the RSAref * code may not hook properly, and if you own one of these * cards then you have the right to do RSA operations on it * anyway! */ meth1 = RSA_PKCS1_SSLeay(); aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc; aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec; aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc; aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec; #endif #ifndef OPENSSL_NO_DSA /* Use the DSA_OpenSSL() method and just hook the mod_exp-ish * bits. */ meth2 = DSA_OpenSSL(); aep_dsa.dsa_do_sign = meth2->dsa_do_sign; aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup; aep_dsa.dsa_do_verify = meth2->dsa_do_verify; aep_dsa = *DSA_get_default_method(); aep_dsa.dsa_mod_exp = aep_dsa_mod_exp; aep_dsa.bn_mod_exp = aep_mod_exp_dsa; #endif #ifndef OPENSSL_NO_DH /* Much the same for Diffie-Hellman */ meth3 = DH_OpenSSL(); aep_dh.generate_key = meth3->generate_key; aep_dh.compute_key = meth3->compute_key; aep_dh.bn_mod_exp = meth3->bn_mod_exp; #endif /* Ensure the aep error handling is set up */ ERR_load_AEPHK_strings(); return 1; } #ifdef ENGINE_DYNAMIC_SUPPORT static int bind_helper(ENGINE *e, const char *id) { if(id && (strcmp(id, engine_aep_id) != 0)) return 0; if(!bind_aep(e)) return 0; return 1; } IMPLEMENT_DYNAMIC_CHECK_FN() IMPLEMENT_DYNAMIC_BIND_FN(bind_helper) #else static ENGINE *engine_aep(void) { ENGINE *ret = ENGINE_new(); if(!ret) return NULL; if(!bind_aep(ret)) { ENGINE_free(ret); return NULL; } return ret; } void ENGINE_load_aep(void) { /* Copied from eng_[openssl|dyn].c */ ENGINE *toadd = engine_aep(); if(!toadd) return; ENGINE_add(toadd); ENGINE_free(toadd); ERR_clear_error(); } #endif /* This is a process-global DSO handle used for loading and unloading * the Aep library. NB: This is only set (or unset) during an * init() or finish() call (reference counts permitting) and they're * operating with global locks, so this should be thread-safe * implicitly. */ static DSO *aep_dso = NULL; /* These are the static string constants for the DSO file name and the function * symbol names to bind to. */ static const char *AEP_LIBNAME = "aep"; static const char *AEP_F1 = "AEP_ModExp"; static const char *AEP_F2 = "AEP_ModExpCrt"; #ifdef AEPRAND static const char *AEP_F3 = "AEP_GenRandom"; #endif static const char *AEP_F4 = "AEP_Finalize"; static const char *AEP_F5 = "AEP_Initialize"; static const char *AEP_F6 = "AEP_OpenConnection"; static const char *AEP_F7 = "AEP_SetBNCallBacks"; static const char *AEP_F8 = "AEP_CloseConnection"; /* These are the function pointers that are (un)set when the library has * successfully (un)loaded. */ static t_AEP_OpenConnection *p_AEP_OpenConnection = NULL; static t_AEP_CloseConnection *p_AEP_CloseConnection = NULL; static t_AEP_ModExp *p_AEP_ModExp = NULL; static t_AEP_ModExpCrt *p_AEP_ModExpCrt = NULL; #ifdef AEPRAND static t_AEP_GenRandom *p_AEP_GenRandom = NULL; #endif static t_AEP_Initialize *p_AEP_Initialize = NULL; static t_AEP_Finalize *p_AEP_Finalize = NULL; static t_AEP_SetBNCallBacks *p_AEP_SetBNCallBacks = NULL; /* (de)initialisation functions. */ static int aep_init(ENGINE *e) { t_AEP_ModExp *p1; t_AEP_ModExpCrt *p2; #ifdef AEPRAND t_AEP_GenRandom *p3; #endif t_AEP_Finalize *p4; t_AEP_Initialize *p5; t_AEP_OpenConnection *p6; t_AEP_SetBNCallBacks *p7; t_AEP_CloseConnection *p8; int to_return = 0; if(aep_dso != NULL) { AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_ALREADY_LOADED); goto err; } /* Attempt to load libaep.so. */ aep_dso = DSO_load(NULL, AEP_LIBNAME, NULL, 0); if(aep_dso == NULL) { AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED); goto err; } if( !(p1 = (t_AEP_ModExp *) DSO_bind_func( aep_dso,AEP_F1)) || !(p2 = (t_AEP_ModExpCrt*) DSO_bind_func( aep_dso,AEP_F2)) || #ifdef AEPRAND !(p3 = (t_AEP_GenRandom*) DSO_bind_func( aep_dso,AEP_F3)) || #endif !(p4 = (t_AEP_Finalize*) DSO_bind_func( aep_dso,AEP_F4)) || !(p5 = (t_AEP_Initialize*) DSO_bind_func( aep_dso,AEP_F5)) || !(p6 = (t_AEP_OpenConnection*) DSO_bind_func( aep_dso,AEP_F6)) || !(p7 = (t_AEP_SetBNCallBacks*) DSO_bind_func( aep_dso,AEP_F7)) || !(p8 = (t_AEP_CloseConnection*) DSO_bind_func( aep_dso,AEP_F8))) { AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED); goto err; } /* Copy the pointers */ p_AEP_ModExp = p1; p_AEP_ModExpCrt = p2; #ifdef AEPRAND p_AEP_GenRandom = p3; #endif p_AEP_Finalize = p4; p_AEP_Initialize = p5; p_AEP_OpenConnection = p6; p_AEP_SetBNCallBacks = p7; p_AEP_CloseConnection = p8; to_return = 1; return to_return; err: if(aep_dso) DSO_free(aep_dso); p_AEP_OpenConnection = NULL; p_AEP_ModExp = NULL; p_AEP_ModExpCrt = NULL; #ifdef AEPRAND p_AEP_GenRandom = NULL; #endif p_AEP_Initialize = NULL; p_AEP_Finalize = NULL; p_AEP_SetBNCallBacks = NULL; p_AEP_CloseConnection = NULL; return to_return; } /* Destructor (complements the "ENGINE_aep()" constructor) */ static int aep_destroy(ENGINE *e) { ERR_unload_AEPHK_strings(); return 1; } static int aep_finish(ENGINE *e) { int to_return = 0, in_use; AEP_RV rv; if(aep_dso == NULL) { AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_NOT_LOADED); goto err; } rv = aep_close_all_connections(0, &in_use); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CLOSE_HANDLES_FAILED); goto err; } if (in_use) { AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CONNECTIONS_IN_USE); goto err; } rv = p_AEP_Finalize(); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_FINALIZE_FAILED); goto err; } if(!DSO_free(aep_dso)) { AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_UNIT_FAILURE); goto err; } aep_dso = NULL; p_AEP_CloseConnection = NULL; p_AEP_OpenConnection = NULL; p_AEP_ModExp = NULL; p_AEP_ModExpCrt = NULL; #ifdef AEPRAND p_AEP_GenRandom = NULL; #endif p_AEP_Initialize = NULL; p_AEP_Finalize = NULL; p_AEP_SetBNCallBacks = NULL; to_return = 1; err: return to_return; } static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)()) { int initialised = ((aep_dso == NULL) ? 0 : 1); switch(cmd) { case AEP_CMD_SO_PATH: if(p == NULL) { AEPHKerr(AEPHK_F_AEP_CTRL, ERR_R_PASSED_NULL_PARAMETER); return 0; } if(initialised) { AEPHKerr(AEPHK_F_AEP_CTRL, AEPHK_R_ALREADY_LOADED); return 0; } AEP_LIBNAME = (const char *)p; return 1; default: break; } AEPHKerr(AEPHK_F_AEP_CTRL,AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED); return 0; } static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int to_return = 0; int r_len = 0; AEP_CONNECTION_HNDL hConnection; AEP_RV rv; r_len = BN_num_bits(m); /* Perform in software if modulus is too large for hardware. */ if (r_len > max_key_len){ AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL); return BN_mod_exp(r, a, p, m, ctx); } /*Grab a connection from the pool*/ rv = aep_get_connection(&hConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_GET_HANDLE_FAILED); return BN_mod_exp(r, a, p, m, ctx); } /*To the card with the mod exp*/ rv = p_AEP_ModExp(hConnection,(void*)a, (void*)p,(void*)m, (void*)r,NULL); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_MOD_EXP_FAILED); rv = aep_close_connection(hConnection); return BN_mod_exp(r, a, p, m, ctx); } /*Return the connection to the pool*/ rv = aep_return_connection(hConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED); goto err; } to_return = 1; err: return to_return; } static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1, const BIGNUM *dmq1,const BIGNUM *iqmp, BN_CTX *ctx) { AEP_RV rv = AEP_R_OK; AEP_CONNECTION_HNDL hConnection; /*Grab a connection from the pool*/ rv = aep_get_connection(&hConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_GET_HANDLE_FAILED); return FAIL_TO_SW; } /*To the card with the mod exp*/ rv = p_AEP_ModExpCrt(hConnection,(void*)a, (void*)p, (void*)q, (void*)dmp1,(void*)dmq1, (void*)iqmp,(void*)r,NULL); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_MOD_EXP_CRT_FAILED); rv = aep_close_connection(hConnection); return FAIL_TO_SW; } /*Return the connection to the pool*/ rv = aep_return_connection(hConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED); goto err; } err: return rv; } #ifdef AEPRAND static int aep_rand(unsigned char *buf,int len ) { AEP_RV rv = AEP_R_OK; AEP_CONNECTION_HNDL hConnection; int to_return = 0; CRYPTO_w_lock(CRYPTO_LOCK_RAND); /*Can the request be serviced with what's already in the buffer?*/ if (len <= rand_block_bytes) { memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); rand_block_bytes -= len; CRYPTO_w_unlock(CRYPTO_LOCK_RAND); } else /*If not the get another block of random bytes*/ { CRYPTO_w_unlock(CRYPTO_LOCK_RAND); rv = aep_get_connection(&hConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_HANDLE_FAILED); goto err_nounlock; } if (len > RAND_BLK_SIZE) { rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED); goto err_nounlock; } } else { CRYPTO_w_lock(CRYPTO_LOCK_RAND); rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, &rand_block[0], NULL); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED); goto err; } rand_block_bytes = RAND_BLK_SIZE; memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); rand_block_bytes -= len; CRYPTO_w_unlock(CRYPTO_LOCK_RAND); } rv = aep_return_connection(hConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED); goto err_nounlock; } } return 1; err: CRYPTO_w_unlock(CRYPTO_LOCK_RAND); err_nounlock: return 0; } static int aep_rand_status(void) { return 1; } #endif #ifndef OPENSSL_NO_RSA static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa) { BN_CTX *ctx = NULL; int to_return = 0; AEP_RV rv = AEP_R_OK; if ((ctx = BN_CTX_new()) == NULL) goto err; if (!aep_dso) { AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_NOT_LOADED); goto err; } /*See if we have all the necessary bits for a crt*/ if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp) { rv = aep_mod_exp_crt(r0,I,rsa->p,rsa->q, rsa->dmp1,rsa->dmq1,rsa->iqmp,ctx); if (rv == FAIL_TO_SW){ const RSA_METHOD *meth = RSA_PKCS1_SSLeay(); to_return = (*meth->rsa_mod_exp)(r0, I, rsa); goto err; } else if (rv != AEP_R_OK) goto err; } else { if (!rsa->d || !rsa->n) { AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_MISSING_KEY_COMPONENTS); goto err; } rv = aep_mod_exp(r0,I,rsa->d,rsa->n,ctx); if (rv != AEP_R_OK) goto err; } to_return = 1; err: if(ctx) BN_CTX_free(ctx); return to_return; } #endif #ifndef OPENSSL_NO_DSA static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { BIGNUM t; int to_return = 0; BN_init(&t); /* let rr = a1 ^ p1 mod m */ if (!aep_mod_exp(rr,a1,p1,m,ctx)) goto end; /* let t = a2 ^ p2 mod m */ if (!aep_mod_exp(&t,a2,p2,m,ctx)) goto end; /* let rr = rr * t mod m */ if (!BN_mod_mul(rr,rr,&t,m,ctx)) goto end; to_return = 1; end: BN_free(&t); return to_return; } static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return aep_mod_exp(r, a, p, m, ctx); } #endif /* This function is aliased to mod_exp (with the mont stuff dropped). */ static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return aep_mod_exp(r, a, p, m, ctx); } #ifndef OPENSSL_NO_DH /* This function is aliased to mod_exp (with the dh and mont dropped). */ static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return aep_mod_exp(r, a, p, m, ctx); } #endif static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection) { int count; AEP_RV rv = AEP_R_OK; /*Get the current process id*/ pid_t curr_pid; CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); curr_pid = getpid(); /*Check if this is the first time this is being called from the current process*/ if (recorded_pid != curr_pid) { /*Remember our pid so we can check if we're in a new process*/ recorded_pid = curr_pid; /*Call Finalize to make sure we have not inherited some data from a parent process*/ p_AEP_Finalize(); /*Initialise the AEP API*/ rv = p_AEP_Initialize(NULL); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_INIT_FAILURE); recorded_pid = 0; goto end; } /*Set the AEP big num call back functions*/ rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum, &ConvertAEPBigNum); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_SETBNCALLBACK_FAILURE); recorded_pid = 0; goto end; } #ifdef AEPRAND /*Reset the rand byte count*/ rand_block_bytes = 0; #endif /*Init the structures*/ for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { aep_app_conn_table[count].conn_state = NotConnected; aep_app_conn_table[count].conn_hndl = 0; } /*Open a connection*/ rv = p_AEP_OpenConnection(phConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE); recorded_pid = 0; goto end; } aep_app_conn_table[0].conn_state = InUse; aep_app_conn_table[0].conn_hndl = *phConnection; goto end; } /*Check the existing connections to see if we can find a free one*/ for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { if (aep_app_conn_table[count].conn_state == Connected) { aep_app_conn_table[count].conn_state = InUse; *phConnection = aep_app_conn_table[count].conn_hndl; goto end; } } /*If no connections available, we're going to have to try to open a new one*/ for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { if (aep_app_conn_table[count].conn_state == NotConnected) { /*Open a connection*/ rv = p_AEP_OpenConnection(phConnection); if (rv != AEP_R_OK) { AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE); goto end; } aep_app_conn_table[count].conn_state = InUse; aep_app_conn_table[count].conn_hndl = *phConnection; goto end; } } rv = AEP_R_GENERAL_ERROR; end: CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection) { int count; CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); /*Find the connection item that matches this connection handle*/ for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { if (aep_app_conn_table[count].conn_hndl == hConnection) { aep_app_conn_table[count].conn_state = Connected; break; } } CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return AEP_R_OK; } static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection) { int count; AEP_RV rv = AEP_R_OK; CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); /*Find the connection item that matches this connection handle*/ for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { if (aep_app_conn_table[count].conn_hndl == hConnection) { rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl); if (rv != AEP_R_OK) goto end; aep_app_conn_table[count].conn_state = NotConnected; aep_app_conn_table[count].conn_hndl = 0; break; } } end: CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use) { int count; AEP_RV rv = AEP_R_OK; *in_use = 0; if (use_engine_lock) CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { switch (aep_app_conn_table[count].conn_state) { case Connected: rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl); if (rv != AEP_R_OK) goto end; aep_app_conn_table[count].conn_state = NotConnected; aep_app_conn_table[count].conn_hndl = 0; break; case InUse: (*in_use)++; break; case NotConnected: break; } } end: if (use_engine_lock) CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } /*BigNum call back functions, used to convert OpenSSL bignums into AEP bignums. Note only 32bit Openssl build support*/ static AEP_RV GetBigNumSize(void* ArbBigNum, AEP_U32* BigNumSize) { BIGNUM* bn; /*Cast the ArbBigNum pointer to our BIGNUM struct*/ bn = (BIGNUM*) ArbBigNum; #ifdef SIXTY_FOUR_BIT_LONG *BigNumSize = bn->top << 3; #else /*Size of the bignum in bytes is equal to the bn->top (no of 32 bit words) multiplies by 4*/ *BigNumSize = bn->top << 2; #endif return AEP_R_OK; } static AEP_RV MakeAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize, unsigned char* AEP_BigNum) { BIGNUM* bn; #ifndef SIXTY_FOUR_BIT_LONG unsigned char* buf; int i; #endif /*Cast the ArbBigNum pointer to our BIGNUM struct*/ bn = (BIGNUM*) ArbBigNum; #ifdef SIXTY_FOUR_BIT_LONG memcpy(AEP_BigNum, bn->d, BigNumSize); #else /*Must copy data into a (monotone) least significant byte first format performing endian conversion if necessary*/ for(i=0;itop;i++) { buf = (unsigned char*)&bn->d[i]; *((AEP_U32*)AEP_BigNum) = (AEP_U32) ((unsigned) buf[1] << 8 | buf[0]) | ((unsigned) buf[3] << 8 | buf[2]) << 16; AEP_BigNum += 4; } #endif return AEP_R_OK; } /*Turn an AEP Big Num back to a user big num*/ static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize, unsigned char* AEP_BigNum) { BIGNUM* bn; #ifndef SIXTY_FOUR_BIT_LONG int i; #endif bn = (BIGNUM*)ArbBigNum; /*Expand the result bn so that it can hold our big num. Size is in bits*/ bn_expand(bn, (int)(BigNumSize << 3)); #ifdef SIXTY_FOUR_BIT_LONG bn->top = BigNumSize >> 3; if((BigNumSize & 7) != 0) bn->top++; memset(bn->d, 0, bn->top << 3); memcpy(bn->d, AEP_BigNum, BigNumSize); #else bn->top = BigNumSize >> 2; for(i=0;itop;i++) { bn->d[i] = (AEP_U32) ((unsigned) AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 | ((unsigned) AEP_BigNum[1] << 8 | AEP_BigNum[0]); AEP_BigNum += 4; } #endif return AEP_R_OK; } #endif /* !OPENSSL_NO_HW_AEP */ #endif /* !OPENSSL_NO_HW */