/* crypto/asn1/x_crl.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include "cryptlib.h" #include "asn1_locl.h" #include #include #include static int X509_REVOKED_cmp(const X509_REVOKED * const *a, const X509_REVOKED * const *b); static void setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp); ASN1_SEQUENCE(X509_REVOKED) = { ASN1_SIMPLE(X509_REVOKED,serialNumber, ASN1_INTEGER), ASN1_SIMPLE(X509_REVOKED,revocationDate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_REVOKED,extensions, X509_EXTENSION) } ASN1_SEQUENCE_END(X509_REVOKED) /* The X509_CRL_INFO structure needs a bit of customisation. * Since we cache the original encoding the signature wont be affected by * reordering of the revoked field. */ static int crl_inf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL_INFO *a = (X509_CRL_INFO *)*pval; if(!a || !a->revoked) return 1; switch(operation) { /* Just set cmp function here. We don't sort because that * would affect the output of X509_CRL_print(). */ case ASN1_OP_D2I_POST: sk_X509_REVOKED_set_cmp_func(a->revoked,X509_REVOKED_cmp); break; } return 1; } ASN1_SEQUENCE_enc(X509_CRL_INFO, enc, crl_inf_cb) = { ASN1_OPT(X509_CRL_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(X509_CRL_INFO, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_CRL_INFO, issuer, X509_NAME), ASN1_SIMPLE(X509_CRL_INFO, lastUpdate, ASN1_TIME), ASN1_OPT(X509_CRL_INFO, nextUpdate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_CRL_INFO, revoked, X509_REVOKED), ASN1_EXP_SEQUENCE_OF_OPT(X509_CRL_INFO, extensions, X509_EXTENSION, 0) } ASN1_SEQUENCE_END_enc(X509_CRL_INFO, X509_CRL_INFO) /* The X509_CRL structure needs a bit of customisation. Cache some extensions * and hash of the whole CRL. */ static int crl_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL *crl = (X509_CRL *)*pval; STACK_OF(X509_EXTENSION) *exts; X509_EXTENSION *ext; int idx; switch(operation) { case ASN1_OP_NEW_POST: crl->idp = NULL; crl->akid = NULL; crl->flags = 0; crl->idp_flags = 0; crl->meth = 0; break; case ASN1_OP_D2I_POST: #ifndef OPENSSL_NO_SHA X509_CRL_digest(crl, EVP_sha1(), crl->sha1_hash, NULL); #endif crl->idp = X509_CRL_get_ext_d2i(crl, NID_issuing_distribution_point, NULL, NULL); if (crl->idp) setup_idp(crl, crl->idp); crl->akid = X509_CRL_get_ext_d2i(crl, NID_authority_key_identifier, NULL, NULL); if (crl->meth && crl->meth->crl_init) return crl->meth->crl_init(crl); /* See if we have any unhandled critical CRL extensions and * indicate this in a flag. We only currently handle IDP so * anything else critical sets the flag. * * This code accesses the X509_CRL structure directly: * applications shouldn't do this. */ exts = crl->crl->extensions; for (idx = 0; idx < sk_X509_EXTENSION_num(exts); idx++) { ext = sk_X509_EXTENSION_value(exts, idx); if (ext->critical > 0) { /* We handle IDP now so permit it */ if (OBJ_obj2nid(ext->object) == NID_issuing_distribution_point) continue; crl->flags |= EXFLAG_CRITICAL; break; } } break; case ASN1_OP_FREE_POST: if (crl->meth && crl->meth->crl_free) return crl->meth->crl_free(crl); if (crl->akid) AUTHORITY_KEYID_free(crl->akid); if (crl->idp) ISSUING_DIST_POINT_free(crl->idp); break; } return 1; } /* Convert IDP into a more convenient form */ static void setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp) { int idp_only = 0; /* Set various flags according to IDP */ crl->idp_flags |= IDP_PRESENT; if (idp->onlyuser > 0) { idp_only++; crl->idp_flags |= IDP_ONLYUSER; } if (idp->onlyCA > 0) { idp_only++; crl->idp_flags |= IDP_ONLYCA; } if (idp->onlyattr > 0) { idp_only++; crl->idp_flags |= IDP_ONLYATTR; } if (idp_only > 1) crl->idp_flags |= IDP_INVALID; if (idp->indirectCRL > 0) crl->idp_flags |= IDP_INDIRECT; if (idp->onlysomereasons) { crl->idp_flags |= IDP_REASONS; if (idp->onlysomereasons->length > 0) crl->idp_reasons = idp->onlysomereasons->data[0]; if (idp->onlysomereasons->length > 1) crl->idp_reasons |= (idp->onlysomereasons->data[1] << 8); } } ASN1_SEQUENCE_ref(X509_CRL, crl_cb, CRYPTO_LOCK_X509_CRL) = { ASN1_SIMPLE(X509_CRL, crl, X509_CRL_INFO), ASN1_SIMPLE(X509_CRL, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_CRL, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509_CRL, X509_CRL) IMPLEMENT_ASN1_FUNCTIONS(X509_REVOKED) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL_INFO) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL) IMPLEMENT_ASN1_DUP_FUNCTION(X509_CRL) static int X509_REVOKED_cmp(const X509_REVOKED * const *a, const X509_REVOKED * const *b) { return(ASN1_STRING_cmp( (ASN1_STRING *)(*a)->serialNumber, (ASN1_STRING *)(*b)->serialNumber)); } int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev) { X509_CRL_INFO *inf; inf = crl->crl; if(!inf->revoked) inf->revoked = sk_X509_REVOKED_new(X509_REVOKED_cmp); if(!inf->revoked || !sk_X509_REVOKED_push(inf->revoked, rev)) { ASN1err(ASN1_F_X509_CRL_ADD0_REVOKED, ERR_R_MALLOC_FAILURE); return 0; } inf->enc.modified = 1; return 1; } int X509_CRL_verify(X509_CRL *crl, EVP_PKEY *r) { if (crl->meth && crl->meth->crl_verify) return crl->meth->crl_verify(crl, r); return(ASN1_item_verify(ASN1_ITEM_rptr(X509_CRL_INFO), crl->sig_alg, crl->signature,crl->crl,r)); } int X509_CRL_get0_by_serial(X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *serial) { X509_REVOKED rtmp; int idx; if (crl->meth && crl->meth->crl_lookup) return crl->meth->crl_lookup(crl, ret, serial); rtmp.serialNumber = serial; /* Sort revoked into serial number order if not already sorted. * Do this under a lock to avoid race condition. */ if (!sk_X509_REVOKED_is_sorted(crl->crl->revoked)) { CRYPTO_w_lock(CRYPTO_LOCK_X509_CRL); sk_X509_REVOKED_sort(crl->crl->revoked); CRYPTO_w_unlock(CRYPTO_LOCK_X509_CRL); } idx = sk_X509_REVOKED_find(crl->crl->revoked, &rtmp); /* If found assume revoked: want something cleverer than * this to handle entry extensions in V2 CRLs. */ if(idx >= 0) { if (ret) *ret = sk_X509_REVOKED_value(crl->crl->revoked, idx); return 1; } return 0; } IMPLEMENT_STACK_OF(X509_REVOKED) IMPLEMENT_ASN1_SET_OF(X509_REVOKED) IMPLEMENT_STACK_OF(X509_CRL) IMPLEMENT_ASN1_SET_OF(X509_CRL)