提交 87103969 编写于 作者: A Antoine Salon 提交者: Nicola Tuveri

EVP module documentation pass

Replace ECDH_KDF_X9_62() with internal ecdh_KDF_X9_63()
Signed-off-by: NAntoine Salon <asalon@vmware.com>
Reviewed-by: NMatt Caswell <matt@openssl.org>
Reviewed-by: NNicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/7345)

(cherry picked from commit ffd89124bdfc9e69349492c3f15383bb35520a11)
上级 135e8062
......@@ -9,9 +9,10 @@
Changes between 1.1.1 and 1.1.1a [xx XXX xxxx]
*)
Changes between 1.1.1 and 1.1.1a [xx XXX xxxx]
*) Added EVP_PKEY_ECDH_KDF_X9_63 and ecdh_KDF_X9_63() as replacements for
the EVP_PKEY_ECDH_KDF_X9_62 KDF type and ECDH_KDF_X9_62(). The old names
are retained for backwards compatibility.
[Antoine Salon]
*) Fixed the issue that RAND_add()/RAND_seed() silently discards random input
if its length exceeds 4096 bytes. The limit has been raised to a buffer size
......
......@@ -699,7 +699,7 @@ static int ecdh_cms_set_kdf_param(EVP_PKEY_CTX *pctx, int eckdf_nid)
if (EVP_PKEY_CTX_set_ecdh_cofactor_mode(pctx, cofactor) <= 0)
return 0;
if (EVP_PKEY_CTX_set_ecdh_kdf_type(pctx, EVP_PKEY_ECDH_KDF_X9_62) <= 0)
if (EVP_PKEY_CTX_set_ecdh_kdf_type(pctx, EVP_PKEY_ECDH_KDF_X9_63) <= 0)
return 0;
kdf_md = EVP_get_digestbynid(kdfmd_nid);
......@@ -864,7 +864,7 @@ static int ecdh_cms_encrypt(CMS_RecipientInfo *ri)
ecdh_nid = NID_dh_cofactor_kdf;
if (kdf_type == EVP_PKEY_ECDH_KDF_NONE) {
kdf_type = EVP_PKEY_ECDH_KDF_X9_62;
kdf_type = EVP_PKEY_ECDH_KDF_X9_63;
if (EVP_PKEY_CTX_set_ecdh_kdf_type(pctx, kdf_type) <= 0)
goto err;
} else
......
......@@ -209,7 +209,7 @@ static int pkey_ec_kdf_derive(EVP_PKEY_CTX *ctx,
if (!pkey_ec_derive(ctx, ktmp, &ktmplen))
goto err;
/* Do KDF stuff */
if (!ECDH_KDF_X9_62(key, *keylen, ktmp, ktmplen,
if (!ecdh_KDF_X9_63(key, *keylen, ktmp, ktmplen,
dctx->kdf_ukm, dctx->kdf_ukmlen, dctx->kdf_md))
goto err;
rv = 1;
......@@ -281,7 +281,7 @@ static int pkey_ec_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
case EVP_PKEY_CTRL_EC_KDF_TYPE:
if (p1 == -2)
return dctx->kdf_type;
if (p1 != EVP_PKEY_ECDH_KDF_NONE && p1 != EVP_PKEY_ECDH_KDF_X9_62)
if (p1 != EVP_PKEY_ECDH_KDF_NONE && p1 != EVP_PKEY_ECDH_KDF_X9_63)
return -2;
dctx->kdf_type = p1;
return 1;
......
/*
* Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
......@@ -10,12 +10,13 @@
#include <string.h>
#include <openssl/ec.h>
#include <openssl/evp.h>
#include "ec_lcl.h"
/* Key derivation function from X9.62/SECG */
/* Key derivation function from X9.63/SECG */
/* Way more than we will ever need */
#define ECDH_KDF_MAX (1 << 30)
int ECDH_KDF_X9_62(unsigned char *out, size_t outlen,
int ecdh_KDF_X9_63(unsigned char *out, size_t outlen,
const unsigned char *Z, size_t Zlen,
const unsigned char *sinfo, size_t sinfolen,
const EVP_MD *md)
......@@ -66,3 +67,15 @@ int ECDH_KDF_X9_62(unsigned char *out, size_t outlen,
EVP_MD_CTX_free(mctx);
return rv;
}
/*-
* The old name for ecdh_KDF_X9_63
* Retained for ABI compatibility
*/
int ECDH_KDF_X9_62(unsigned char *out, size_t outlen,
const unsigned char *Z, size_t Zlen,
const unsigned char *sinfo, size_t sinfolen,
const EVP_MD *md)
{
return ecdh_KDF_X9_63(out, outlen, Z, Zlen, sinfo, sinfolen, md);
}
......@@ -41,5 +41,13 @@
__owur int ec_group_do_inverse_ord(const EC_GROUP *group, BIGNUM *res,
const BIGNUM *x, BN_CTX *ctx);
/*-
* ECDH Key Derivation Function as defined in ANSI X9.63
*/
int ecdh_KDF_X9_63(unsigned char *out, size_t outlen,
const unsigned char *Z, size_t Zlen,
const unsigned char *sinfo, size_t sinfolen,
const EVP_MD *md);
# endif /* OPENSSL_NO_EC */
#endif
......@@ -11,6 +11,7 @@
#include "internal/sm2.h"
#include "internal/sm2err.h"
#include "internal/ec_int.h" /* ecdh_KDF_X9_63() */
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/bn.h>
......@@ -203,7 +204,7 @@ int sm2_encrypt(const EC_KEY *key,
}
/* X9.63 with no salt happens to match the KDF used in SM2 */
if (!ECDH_KDF_X9_62(msg_mask, msg_len, x2y2, 2 * field_size, NULL, 0,
if (!ecdh_KDF_X9_63(msg_mask, msg_len, x2y2, 2 * field_size, NULL, 0,
digest)) {
SM2err(SM2_F_SM2_ENCRYPT, ERR_R_EVP_LIB);
goto done;
......@@ -344,7 +345,7 @@ int sm2_decrypt(const EC_KEY *key,
if (BN_bn2binpad(x2, x2y2, field_size) < 0
|| BN_bn2binpad(y2, x2y2 + field_size, field_size) < 0
|| !ECDH_KDF_X9_62(msg_mask, msg_len, x2y2, 2 * field_size, NULL, 0,
|| !ecdh_KDF_X9_63(msg_mask, msg_len, x2y2, 2 * field_size, NULL, 0,
digest)) {
SM2err(SM2_F_SM2_DECRYPT, ERR_R_INTERNAL_ERROR);
goto done;
......
......@@ -4,20 +4,55 @@
EVP_PKEY_CTX_ctrl,
EVP_PKEY_CTX_ctrl_str,
EVP_PKEY_CTX_ctrl_uint64,
EVP_PKEY_CTX_md,
EVP_PKEY_CTX_set_signature_md,
EVP_PKEY_CTX_get_signature_md,
EVP_PKEY_CTX_set_mac_key,
EVP_PKEY_CTX_set_rsa_padding,
EVP_PKEY_CTX_get_rsa_padding,
EVP_PKEY_CTX_set_rsa_pss_saltlen,
EVP_PKEY_CTX_get_rsa_pss_saltlen,
EVP_PKEY_CTX_set_rsa_keygen_bits,
EVP_PKEY_CTX_set_rsa_keygen_pubexp,
EVP_PKEY_CTX_set_rsa_keygen_primes,
EVP_PKEY_CTX_set_rsa_mgf1_md,
EVP_PKEY_CTX_get_rsa_mgf1_md,
EVP_PKEY_CTX_set_rsa_oaep_md,
EVP_PKEY_CTX_get_rsa_oaep_md,
EVP_PKEY_CTX_set0_rsa_oaep_label,
EVP_PKEY_CTX_get0_rsa_oaep_label,
EVP_PKEY_CTX_set_dsa_paramgen_bits,
EVP_PKEY_CTX_set_dh_paramgen_prime_len,
EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
EVP_PKEY_CTX_set_dh_paramgen_generator,
EVP_PKEY_CTX_set_dh_paramgen_type,
EVP_PKEY_CTX_set_dh_rfc5114,
EVP_PKEY_CTX_set_dhx_rfc5114,
EVP_PKEY_CTX_set_dh_pad,
EVP_PKEY_CTX_set_dh_nid,
EVP_PKEY_CTX_set_dh_kdf_type,
EVP_PKEY_CTX_get_dh_kdf_type,
EVP_PKEY_CTX_set0_dh_kdf_oid,
EVP_PKEY_CTX_get0_dh_kdf_oid,
EVP_PKEY_CTX_set_dh_kdf_md,
EVP_PKEY_CTX_get_dh_kdf_md,
EVP_PKEY_CTX_set_dh_kdf_outlen,
EVP_PKEY_CTX_get_dh_kdf_outlen,
EVP_PKEY_CTX_set0_dh_kdf_ukm,
EVP_PKEY_CTX_get0_dh_kdf_ukm,
EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
EVP_PKEY_CTX_set_ec_param_enc,
EVP_PKEY_CTX_set_ecdh_cofactor_mode,
EVP_PKEY_CTX_get_ecdh_cofactor_mode,
EVP_PKEY_CTX_set_ecdh_kdf_type,
EVP_PKEY_CTX_get_ecdh_kdf_type,
EVP_PKEY_CTX_set_ecdh_kdf_md,
EVP_PKEY_CTX_get_ecdh_kdf_md,
EVP_PKEY_CTX_set_ecdh_kdf_outlen,
EVP_PKEY_CTX_get_ecdh_kdf_outlen,
EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
EVP_PKEY_CTX_get0_ecdh_kdf_ukm,
EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len
- algorithm specific control operations
......@@ -27,9 +62,13 @@ EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len
int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
int cmd, int p1, void *p2);
int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
int cmd, uint64_t value);
int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
const char *value);
int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);
......@@ -38,22 +77,58 @@ EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len
#include <openssl/rsa.h>
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *len);
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char *label, int len);
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);
#include <openssl/dsa.h>
int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
#include <openssl/dh.h>
int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
#include <openssl/ec.h>
int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
......@@ -73,6 +148,9 @@ and B<p2> is MAC key. This is used by Poly1305, SipHash, HMAC and CMAC.
Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will
instead call one of the algorithm specific macros below.
The function EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a
uint64 value as B<p2> to EVP_PKEY_CTX_ctrl().
The function EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm
specific control operation to a context B<ctx> in string form. This is
intended to be used for options specified on the command line or in text
......@@ -80,6 +158,9 @@ files. The commands supported are documented in the openssl utility
command line pages for the option B<-pkeyopt> which is supported by the
B<pkeyutl>, B<genpkey> and B<req> commands.
The function EVP_PKEY_CTX_md() sends a message digest control operation
to the context B<ctx>. The message digest is specified by its name B<md>.
All the remaining "functions" are implemented as macros.
The EVP_PKEY_CTX_set_signature_md() macro sets the message digest type used
......@@ -99,12 +180,14 @@ L<EVP_PKEY_new_raw_private_key(3)> or similar functions instead of this macro.
The EVP_PKEY_CTX_set_mac_key() macro can be used with any of the algorithms
supported by the L<EVP_PKEY_new_raw_private_key(3)> function.
The macro EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for B<ctx>.
The B<pad> parameter can take the value RSA_PKCS1_PADDING for PKCS#1 padding,
RSA_SSLV23_PADDING for SSLv23 padding, RSA_NO_PADDING for no padding,
RSA_PKCS1_OAEP_PADDING for OAEP padding (encrypt and decrypt only),
RSA_X931_PADDING for X9.31 padding (signature operations only) and
RSA_PKCS1_PSS_PADDING (sign and verify only).
=head2 RSA parameters
The EVP_PKEY_CTX_set_rsa_padding() macro sets the RSA padding mode for B<ctx>.
The B<pad> parameter can take the value B<RSA_PKCS1_PADDING> for PKCS#1
padding, B<RSA_SSLV23_PADDING> for SSLv23 padding, B<RSA_NO_PADDING> for
no padding, B<RSA_PKCS1_OAEP_PADDING> for OAEP padding (encrypt and
decrypt only), B<RSA_X931_PADDING> for X9.31 padding (signature operations
only) and B<RSA_PKCS1_PSS_PADDING> (sign and verify only).
Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md()
is used. If this macro is called for PKCS#1 padding the plaintext buffer is
......@@ -116,41 +199,154 @@ padding for RSA the algorithm identifier byte is added or checked and removed
if this control is called. If it is not called then the first byte of the plaintext
buffer is expected to be the algorithm identifier byte.
The EVP_PKEY_CTX_get_rsa_padding() macro gets the RSA padding mode for B<ctx>.
The EVP_PKEY_CTX_set_rsa_pss_saltlen() macro sets the RSA PSS salt length to
B<len> as its name implies it is only supported for PSS padding. Three special
values are supported: RSA_PSS_SALTLEN_DIGEST sets the salt length to the
digest length, RSA_PSS_SALTLEN_MAX sets the salt length to the maximum
permissible value. When verifying RSA_PSS_SALTLEN_AUTO causes the salt length
B<len>. As its name implies it is only supported for PSS padding. Three special
values are supported: B<RSA_PSS_SALTLEN_DIGEST> sets the salt length to the
digest length, B<RSA_PSS_SALTLEN_MAX> sets the salt length to the maximum
permissible value. When verifying B<RSA_PSS_SALTLEN_AUTO> causes the salt length
to be automatically determined based on the B<PSS> block structure. If this
macro is not called maximum salt length is used when signing and auto detection
when verifying is used by default.
The EVP_PKEY_CTX_get_rsa_pss_saltlen() macro gets the RSA PSS salt length
for B<ctx>. The padding mode must have been set to B<RSA_PKCS1_PSS_PADDING>.
The EVP_PKEY_CTX_set_rsa_keygen_bits() macro sets the RSA key length for
RSA key generation to B<bits>. If not specified 1024 bits is used.
The EVP_PKEY_CTX_set_rsa_keygen_pubexp() macro sets the public exponent value
for RSA key generation to B<pubexp> currently it should be an odd integer. The
for RSA key generation to B<pubexp>. Currently it should be an odd integer. The
B<pubexp> pointer is used internally by this function so it should not be
modified or free after the call. If this macro is not called then 65537 is used.
modified or freed after the call. If not specified 65537 is used.
The EVP_PKEY_CTX_set_rsa_keygen_primes() macro sets the number of primes for
RSA key generation to B<primes>. If not specified 2 is used.
The EVP_PKEY_CTX_set_rsa_mgf1_md() macro sets the MGF1 digest for RSA padding
schemes to B<md>. If not explicitly set the signing digest is used. The
padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>
or B<RSA_PKCS1_PSS_PADDING>.
The EVP_PKEY_CTX_get_rsa_mgf1_md() macro gets the MGF1 digest for B<ctx>.
If not explicitly set the signing digest is used. The padding mode must have
been set to B<RSA_PKCS1_OAEP_PADDING> or B<RSA_PKCS1_PSS_PADDING>.
The EVP_PKEY_CTX_set_rsa_oaep_md() macro sets the message digest type used
in RSA OAEP to B<md>. The padding mode must have been set to
B<RSA_PKCS1_OAEP_PADDING>.
The EVP_PKEY_CTX_get_rsa_oaep_md() macro gets the message digest type used
in RSA OAEP to B<md>. The padding mode must have been set to
B<RSA_PKCS1_OAEP_PADDING>.
The EVP_PKEY_CTX_set0_rsa_oaep_label() macro sets the RSA OAEP label to
B<label> and its length to B<len>. If B<label> is NULL or B<len> is 0,
the label is cleared. The library takes ownership of the label so the
caller should not free the original memory pointed to by B<label>.
The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>.
The EVP_PKEY_CTX_get0_rsa_oaep_label() macro gets the RSA OAEP label to
B<label>. The return value is the label length. The padding mode
must have been set to B<RSA_PKCS1_OAEP_PADDING>. The resulting pointer is owned
by the library and should not be freed by the caller.
=head2 DSA parameters
The macro EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used
The EVP_PKEY_CTX_set_dsa_paramgen_bits() macro sets the number of bits used
for DSA parameter generation to B<bits>. If not specified 1024 is used.
The macro EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH
=head2 DH parameters
The EVP_PKEY_CTX_set_dh_paramgen_prime_len() macro sets the length of the DH
prime parameter B<p> for DH parameter generation. If this macro is not called
then 1024 is used.
then 1024 is used. Only accepts lengths greater than or equal to 256.
The EVP_PKEY_CTX_set_dh_paramgen_subprime_len() macro sets the length of the DH
optional subprime parameter B<q> for DH parameter generation. The default is
256 if the prime is at least 2048 bits long or 160 otherwise. The DH
paramgen type must have been set to x9.42.
The EVP_PKEY_CTX_set_dh_paramgen_generator() macro sets DH generator to B<gen>
for DH parameter generation. If not specified 2 is used.
The EVP_PKEY_CTX_set_dh_paramgen_type() macro sets the key type for DH
parameter generation. Use 0 for PKCS#3 DH and 1 for X9.42 DH.
The default is 0.
The EVP_PKEY_CTX_set_dh_pad() macro sets the DH padding mode. If B<pad> is
1 the shared secret is padded with zeroes up to the size of the DH prime B<p>.
If B<pad> is zero (the default) then no padding is performed.
EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values corresponding to
B<nid>. The B<nid> parameter must be B<NID_ffdhe2048>, B<NID_ffdhe3072>,
B<NID_ffdhe4096>, B<NID_ffdhe6144> or B<NID_ffdhe8192>. This macro can be
called during parameter or key generation.
B<nid> as defined in RFC7919. The B<nid> parameter must be B<NID_ffdhe2048>,
B<NID_ffdhe3072>, B<NID_ffdhe4096>, B<NID_ffdhe6144>, B<NID_ffdhe8192>
or B<NID_undef> to clear the stored value. This macro can be called during
parameter or key generation.
The nid parameter and the rfc5114 parameter are mutually exclusive.
The EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() macros are
synonymous. They set the DH parameters to the values defined in RFC5114. The
B<rfc5114> parameter must be 1, 2 or 3 corresponding to RFC5114 sections
2.1, 2.2 and 2.3. or 0 to clear the stored value. This macro can be called
during parameter generation. The B<ctx> must have a key type of
B<EVP_PKEY_DHX>.
The rfc5114 parameter and the nid parameter are mutually exclusive.
=head2 DH key derivation function parameters
Note that all of the following functions require that the B<ctx> parameter has
a private key type of B<EVP_PKEY_DHX>. When using key derivation, the output of
EVP_PKEY_derive() is the output of the KDF instead of the DH shared secret.
The KDF output is typically used as a Key Encryption Key (KEK) that in turn
encrypts a Content Encryption Key (CEK).
The EVP_PKEY_CTX_set_dh_kdf_type() macro sets the key derivation function type
to B<kdf> for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE>
and B<EVP_PKEY_DH_KDF_X9_42> which uses the key derivation specified in RFC2631
(based on the keying algorithm described in X9.42). When using key derivation,
the B<kdf_oid>, B<kdf_md> and B<kdf_outlen> parameters must also be specified.
The EVP_PKEY_CTX_get_dh_kdf_type() macro gets the key derivation function type
for B<ctx> used for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE>
and B<EVP_PKEY_DH_KDF_X9_42>.
The EVP_PKEY_CTX_set0_dh_kdf_oid() macro sets the key derivation function
object identifier to B<oid> for DH key derivation. This OID should identify
the algorithm to be used with the Content Encryption Key.
The library takes ownership of the object identifier so the caller should not
free the original memory pointed to by B<oid>.
The EVP_PKEY_CTX_get0_dh_kdf_oid() macro gets the key derivation function oid
for B<ctx> used for DH key derivation. The resulting pointer is owned by the
library and should not be freed by the caller.
The EVP_PKEY_CTX_set_dh_kdf_md() macro sets the key derivation function
message digest to B<md> for DH key derivation. Note that RFC2631 specifies
that this digest should be SHA1 but OpenSSL tolerates other digests.
The EVP_PKEY_CTX_get_dh_kdf_md() macro gets the key derivation function
message digest for B<ctx> used for DH key derivation.
The EVP_PKEY_CTX_set_dh_kdf_outlen() macro sets the key derivation function
output length to B<len> for DH key derivation.
The EVP_PKEY_CTX_get_dh_kdf_outlen() macro gets the key derivation function
output length for B<ctx> used for DH key derivation.
The EVP_PKEY_CTX_set0_dh_kdf_ukm() macro sets the user key material to
B<ukm> and its length to B<len> for DH key derivation. This parameter is optional
and corresponds to the partyAInfo field in RFC2631 terms. The specification
requires that it is 512 bits long but this is not enforced by OpenSSL.
The library takes ownership of the user key material so the caller should not
free the original memory pointed to by B<ukm>.
The EVP_PKEY_CTX_get0_dh_kdf_ukm() macro gets the user key material for B<ctx>.
The return value is the user key material length. The resulting pointer is owned
by the library and should not be freed by the caller.
=head2 EC parameters
The EVP_PKEY_CTX_set_ec_paramgen_curve_nid() sets the EC curve for EC parameter
generation to B<nid>. For EC parameter generation this macro must be called
......@@ -158,7 +354,7 @@ or an error occurs because there is no default curve.
This function can also be called to set the curve explicitly when
generating an EC key.
The EVP_PKEY_CTX_set_ec_param_enc() sets the EC parameter encoding to
The EVP_PKEY_CTX_set_ec_param_enc() macro sets the EC parameter encoding to
B<param_enc> when generating EC parameters or an EC key. The encoding can be
B<OPENSSL_EC_EXPLICIT_CURVE> for explicit parameters (the default in versions
of OpenSSL before 1.1.0) or B<OPENSSL_EC_NAMED_CURVE> to use named curve form.
......@@ -166,6 +362,53 @@ For maximum compatibility the named curve form should be used. Note: the
B<OPENSSL_EC_NAMED_CURVE> value was only added to OpenSSL 1.1.0; previous
versions should use 0 instead.
=head2 ECDH parameters
The EVP_PKEY_CTX_set_ecdh_cofactor_mode() macro sets the cofactor mode to
B<cofactor_mode> for ECDH key derivation. Possible values are 1 to enable
cofactor key derivation, 0 to disable it and -1 to clear the stored cofactor
mode and fallback to the private key cofactor mode.
The EVP_PKEY_CTX_get_ecdh_cofactor_mode() macro returns the cofactor mode for
B<ctx> used for ECDH key derivation. Possible values are 1 when cofactor key
derivation is enabled and 0 otherwise.
=head2 ECDH key derivation function parameters
The EVP_PKEY_CTX_set_ecdh_kdf_type() macro sets the key derivation function type
to B<kdf> for ECDH key derivation. Possible values are B<EVP_PKEY_ECDH_KDF_NONE>
and B<EVP_PKEY_ECDH_KDF_X9_63> which uses the key derivation specified in X9.63.
When using key derivation, the B<kdf_md> and B<kdf_outlen> parameters must
also be specified.
The EVP_PKEY_CTX_get_ecdh_kdf_type() macro returns the key derivation function
type for B<ctx> used for ECDH key derivation. Possible values are
B<EVP_PKEY_ECDH_KDF_NONE> and B<EVP_PKEY_ECDH_KDF_X9_63>.
The EVP_PKEY_CTX_set_ecdh_kdf_md() macro sets the key derivation function
message digest to B<md> for ECDH key derivation. Note that X9.63 specifies
that this digest should be SHA1 but OpenSSL tolerates other digests.
The EVP_PKEY_CTX_get_ecdh_kdf_md() macro gets the key derivation function
message digest for B<ctx> used for ECDH key derivation.
The EVP_PKEY_CTX_set_ecdh_kdf_outlen() macro sets the key derivation function
output length to B<len> for ECDH key derivation.
The EVP_PKEY_CTX_get_ecdh_kdf_outlen() macro gets the key derivation function
output length for B<ctx> used for ECDH key derivation.
The EVP_PKEY_CTX_set0_ecdh_kdf_ukm() macro sets the user key material to B<ukm>
for ECDH key derivation. This parameter is optional and corresponds to the
shared info in X9.63 terms. The library takes ownership of the user key material
so the caller should not free the original memory pointed to by B<ukm>.
The EVP_PKEY_CTX_get0_ecdh_kdf_ukm() macro gets the user key material for B<ctx>.
The return value is the user key material length. The resulting pointer is owned
by the library and should not be freed by the caller.
=head2 Other parameters
The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len()
macros are used to manipulate the special identifier field for specific signature
algorithms such as SM2. The EVP_PKEY_CTX_set1_id() sets an ID pointed by B<id> with
......@@ -191,7 +434,7 @@ L<EVP_PKEY_decrypt(3)>,
L<EVP_PKEY_sign(3)>,
L<EVP_PKEY_verify(3)>,
L<EVP_PKEY_verify_recover(3)>,
L<EVP_PKEY_derive(3)>
L<EVP_PKEY_derive(3)>,
L<EVP_PKEY_keygen(3)>
=head1 HISTORY
......
......@@ -32,7 +32,7 @@ The EVP_PKEY_CTX_set_rsa_pss_saltlen() macro is used to set the salt length.
If the key has usage restrictions then an error is returned if an attempt is
made to set the salt length below the minimum value. It is otherwise similar
to the B<RSA> operation except detection of the salt length (using
RSA_PSS_SALTLEN_AUTO is not supported for verification if the key has
RSA_PSS_SALTLEN_AUTO) is not supported for verification if the key has
usage restrictions.
The EVP_PKEY_CTX_set_signature_md() and EVP_PKEY_CTX_set_rsa_mgf1_md() macros
......@@ -43,7 +43,7 @@ similar to the B<RSA> versions.
=head2 Key Generation
As with RSA key generation the EVP_PKEY_CTX_set_rsa_rsa_keygen_bits()
As with RSA key generation the EVP_PKEY_CTX_set_rsa_keygen_bits()
and EVP_PKEY_CTX_set_rsa_keygen_pubexp() macros are supported for RSA-PSS:
they have exactly the same meaning as for the RSA algorithm.
......
......@@ -6,8 +6,10 @@ EVP_PKEY_set1_RSA, EVP_PKEY_set1_DSA, EVP_PKEY_set1_DH, EVP_PKEY_set1_EC_KEY,
EVP_PKEY_get1_RSA, EVP_PKEY_get1_DSA, EVP_PKEY_get1_DH, EVP_PKEY_get1_EC_KEY,
EVP_PKEY_get0_RSA, EVP_PKEY_get0_DSA, EVP_PKEY_get0_DH, EVP_PKEY_get0_EC_KEY,
EVP_PKEY_assign_RSA, EVP_PKEY_assign_DSA, EVP_PKEY_assign_DH,
EVP_PKEY_assign_EC_KEY, EVP_PKEY_get0_hmac, EVP_PKEY_type, EVP_PKEY_id,
EVP_PKEY_base_id, EVP_PKEY_set_alias_type, EVP_PKEY_set1_engine - EVP_PKEY assignment functions
EVP_PKEY_assign_EC_KEY, EVP_PKEY_assign_POLY1305, EVP_PKEY_assign_SIPHASH,
EVP_PKEY_get0_hmac, EVP_PKEY_get0_poly1305, EVP_PKEY_get0_siphash,
EVP_PKEY_type, EVP_PKEY_id, EVP_PKEY_base_id, EVP_PKEY_set_alias_type,
EVP_PKEY_set1_engine - EVP_PKEY assignment functions
=head1 SYNOPSIS
......@@ -24,6 +26,8 @@ EVP_PKEY_base_id, EVP_PKEY_set_alias_type, EVP_PKEY_set1_engine - EVP_PKEY assig
EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey);
const unsigned char *EVP_PKEY_get0_hmac(const EVP_PKEY *pkey, size_t *len);
const unsigned char *EVP_PKEY_get0_poly1305(const EVP_PKEY *pkey, size_t *len);
const unsigned char *EVP_PKEY_get0_siphash(const EVP_PKEY *pkey, size_t *len);
RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey);
DSA *EVP_PKEY_get0_DSA(EVP_PKEY *pkey);
DH *EVP_PKEY_get0_DH(EVP_PKEY *pkey);
......@@ -33,6 +37,8 @@ EVP_PKEY_base_id, EVP_PKEY_set_alias_type, EVP_PKEY_set1_engine - EVP_PKEY assig
int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key);
int EVP_PKEY_assign_DH(EVP_PKEY *pkey, DH *key);
int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key);
int EVP_PKEY_assign_POLY1305(EVP_PKEY *pkey, ASN1_OCTET_STRING *key);
int EVP_PKEY_assign_SIPHASH(EVP_PKEY *pkey, ASN1_OCTET_STRING *key);
int EVP_PKEY_id(const EVP_PKEY *pkey);
int EVP_PKEY_base_id(const EVP_PKEY *pkey);
......@@ -50,14 +56,15 @@ EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and
EVP_PKEY_get1_EC_KEY() return the referenced key in B<pkey> or
B<NULL> if the key is not of the correct type.
EVP_PKEY_get0_hmac(), EVP_PKEY_get0_RSA(), EVP_PKEY_get0_DSA(),
EVP_PKEY_get0_DH() and EVP_PKEY_get0_EC_KEY() also return the
referenced key in B<pkey> or B<NULL> if the key is not of the
correct type but the reference count of the returned key is
B<not> incremented and so must not be freed up after use.
EVP_PKEY_get0_hmac(), EVP_PKEY_get0_poly1305(), EVP_PKEY_get0_siphash(),
EVP_PKEY_get0_RSA(), EVP_PKEY_get0_DSA(), EVP_PKEY_get0_DH()
and EVP_PKEY_get0_EC_KEY() also return the referenced key in B<pkey> or B<NULL>
if the key is not of the correct type but the reference count of the
returned key is B<not> incremented and so must not be freed up after use.
EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH()
and EVP_PKEY_assign_EC_KEY() also set the referenced key to B<key>
EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH(),
EVP_PKEY_assign_EC_KEY(), EVP_PKEY_assign_POLY1305() and
EVP_PKEY_assign_SIPHASH() also set the referenced key to B<key>
however these use the supplied B<key> internally and so B<key>
will be freed when the parent B<pkey> is freed.
......@@ -89,8 +96,9 @@ In accordance with the OpenSSL naming convention the key obtained
from or assigned to the B<pkey> using the B<1> functions must be
freed as well as B<pkey>.
EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH()
and EVP_PKEY_assign_EC_KEY() are implemented as macros.
EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH(),
EVP_PKEY_assign_EC_KEY(), EVP_PKEY_assign_POLY1305()
and EVP_PKEY_assign_SIPHASH() are implemented as macros.
Most applications wishing to know a key type will simply call
EVP_PKEY_base_id() and will not care about the actual type:
......@@ -119,8 +127,9 @@ EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and
EVP_PKEY_get1_EC_KEY() return the referenced key or B<NULL> if
an error occurred.
EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH()
and EVP_PKEY_assign_EC_KEY() return 1 for success and 0 for failure.
EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH(),
EVP_PKEY_assign_EC_KEY(), EVP_PKEY_assign_POLY1305()
and EVP_PKEY_assign_SIPHASH() return 1 for success and 0 for failure.
EVP_PKEY_base_id(), EVP_PKEY_id() and EVP_PKEY_type() return a key
type or B<NID_undef> (equivalently B<EVP_PKEY_NONE>) on error.
......
......@@ -14,6 +14,9 @@ EVP_aes_256_cfb1,
EVP_aes_128_cfb8,
EVP_aes_192_cfb8,
EVP_aes_256_cfb8,
EVP_aes_128_cfb128,
EVP_aes_192_cfb128,
EVP_aes_256_cfb128,
EVP_aes_128_ctr,
EVP_aes_192_ctr,
EVP_aes_256_ctr,
......@@ -75,6 +78,9 @@ EVP_aes_256_cfb1(),
EVP_aes_128_cfb8(),
EVP_aes_192_cfb8(),
EVP_aes_256_cfb8(),
EVP_aes_128_cfb128(),
EVP_aes_192_cfb128(),
EVP_aes_256_cfb128(),
EVP_aes_128_ctr(),
EVP_aes_192_ctr(),
EVP_aes_256_ctr(),
......
......@@ -14,6 +14,9 @@ EVP_aria_256_cfb1,
EVP_aria_128_cfb8,
EVP_aria_192_cfb8,
EVP_aria_256_cfb8,
EVP_aria_128_cfb128,
EVP_aria_192_cfb128,
EVP_aria_256_cfb128,
EVP_aria_128_ctr,
EVP_aria_192_ctr,
EVP_aria_256_ctr,
......@@ -60,6 +63,9 @@ EVP_aria_256_cfb1(),
EVP_aria_128_cfb8(),
EVP_aria_192_cfb8(),
EVP_aria_256_cfb8(),
EVP_aria_128_cfb128(),
EVP_aria_192_cfb128(),
EVP_aria_256_cfb128(),
EVP_aria_128_ctr(),
EVP_aria_192_ctr(),
EVP_aria_256_ctr(),
......
......@@ -4,6 +4,7 @@
EVP_bf_cbc,
EVP_bf_cfb,
EVP_bf_cfb64,
EVP_bf_ecb,
EVP_bf_ofb
- EVP Blowfish cipher
......@@ -14,6 +15,7 @@ EVP_bf_ofb
const EVP_CIPHER *EVP_bf_cbc(void)
const EVP_CIPHER *EVP_bf_cfb(void)
const EVP_CIPHER *EVP_bf_cfb64(void)
const EVP_CIPHER *EVP_bf_ecb(void)
const EVP_CIPHER *EVP_bf_ofb(void)
......@@ -27,6 +29,7 @@ This is a variable key length cipher.
=item EVP_bf_cbc(),
EVP_bf_cfb(),
EVP_bf_cfb64(),
EVP_bf_ecb(),
EVP_bf_ofb()
......
......@@ -14,6 +14,9 @@ EVP_camellia_256_cfb1,
EVP_camellia_128_cfb8,
EVP_camellia_192_cfb8,
EVP_camellia_256_cfb8,
EVP_camellia_128_cfb128,
EVP_camellia_192_cfb128,
EVP_camellia_256_cfb128,
EVP_camellia_128_ctr,
EVP_camellia_192_ctr,
EVP_camellia_256_ctr,
......@@ -54,6 +57,9 @@ EVP_camellia_256_cfb1(),
EVP_camellia_128_cfb8(),
EVP_camellia_192_cfb8(),
EVP_camellia_256_cfb8(),
EVP_camellia_128_cfb128(),
EVP_camellia_192_cfb128(),
EVP_camellia_256_cfb128(),
EVP_camellia_128_ctr(),
EVP_camellia_192_ctr(),
EVP_camellia_256_ctr(),
......
......@@ -4,6 +4,7 @@
EVP_cast5_cbc,
EVP_cast5_cfb,
EVP_cast5_cfb64,
EVP_cast5_ecb,
EVP_cast5_ofb
- EVP CAST cipher
......@@ -14,6 +15,7 @@ EVP_cast5_ofb
const EVP_CIPHER *EVP_cast5_cbc(void)
const EVP_CIPHER *EVP_cast5_cfb(void)
const EVP_CIPHER *EVP_cast5_cfb64(void)
const EVP_CIPHER *EVP_cast5_ecb(void)
const EVP_CIPHER *EVP_cast5_ofb(void)
......@@ -28,6 +30,7 @@ This is a variable key length cipher.
=item EVP_cast5_cbc(),
EVP_cast5_ecb(),
EVP_cast5_cfb(),
EVP_cast5_cfb64(),
EVP_cast5_ofb()
CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
......
......@@ -6,19 +6,24 @@ EVP_des_cbc,
EVP_des_cfb,
EVP_des_cfb1,
EVP_des_cfb8,
EVP_des_cfb64,
EVP_des_ecb,
EVP_des_ofb,
EVP_des_ede,
EVP_des_ede_cbc,
EVP_des_ede_cfb,
EVP_des_ede_cfb64,
EVP_des_ede_ecb,
EVP_des_ede_ofb,
EVP_des_ofb,
EVP_des_ede3,
EVP_des_ede3_cbc,
EVP_des_ede3_cfb,
EVP_des_ede3_cfb1,
EVP_des_ede3_cfb8,
EVP_des_ede3_cfb64,
EVP_des_ede3_ecb,
EVP_des_ede3_ofb,
EVP_des_ede3_wrap,
EVP_des_ede_cbc
EVP_des_ede3_wrap
- EVP DES cipher
=head1 SYNOPSIS
......@@ -43,27 +48,32 @@ EVP_des_ecb(),
EVP_des_cfb(),
EVP_des_cfb1(),
EVP_des_cfb8(),
EVP_des_cfb64(),
EVP_des_ofb()
DES in CBC, ECB, CFB with 128-bit shift, CFB with 1-bit shift, CFB with 8-bit
shift and OFB modes respectively.
DES in CBC, ECB, CFB with 64-bit shift, CFB with 1-bit shift, CFB with 8-bit
shift and OFB modes.
=item EVP_des_ede(),
EVP_des_ede_cbc(),
EVP_des_ede_ofb(),
EVP_des_ede_cfb()
EVP_des_ede_cfb(),
EVP_des_ede_cfb64(),
EVP_des_ede_ecb(),
EVP_des_ede_ofb()
Two key triple DES in ECB, CBC, CFB and OFB modes respectively.
Two key triple DES in ECB, CBC, CFB with 64-bit shift and OFB modes.
=item EVP_des_ede3(),
EVP_des_ede3_cbc(),
EVP_des_ede3_cfb(),
EVP_des_ede3_cfb1(),
EVP_des_ede3_cfb8(),
EVP_des_ede3_cfb64(),
EVP_des_ede3_ecb(),
EVP_des_ede3_ofb()
Three-key triple DES in ECB, CBC, CFB with 128-bit shift, CFB with 1-bit shift,
CFB with 8-bit shift and OFB modes respectively.
Three-key triple DES in ECB, CBC, CFB with 64-bit shift, CFB with 1-bit shift,
CFB with 8-bit shift and OFB modes.
=item EVP_des_ede3_wrap()
......
......@@ -4,6 +4,7 @@
EVP_idea_cbc,
EVP_idea_cfb,
EVP_idea_cfb64,
EVP_idea_ecb,
EVP_idea_ofb
- EVP IDEA cipher
......@@ -14,6 +15,7 @@ EVP_idea_ofb
const EVP_CIPHER *EVP_idea_cbc(void)
const EVP_CIPHER *EVP_idea_cfb(void)
const EVP_CIPHER *EVP_idea_cfb64(void)
const EVP_CIPHER *EVP_idea_ecb(void)
const EVP_CIPHER *EVP_idea_ofb(void)
......@@ -25,6 +27,7 @@ The IDEA encryption algorithm for EVP.
=item EVP_idea_cbc(),
EVP_idea_cfb(),
EVP_idea_cfb64(),
EVP_idea_ecb(),
EVP_idea_ofb()
......
......@@ -2,7 +2,8 @@
=head1 NAME
EVP_md5
EVP_md5,
EVP_md5_sha1
- MD5 For EVP
=head1 SYNOPSIS
......@@ -10,6 +11,7 @@ EVP_md5
#include <openssl/evp.h>
const EVP_MD *EVP_md5(void);
const EVP_MD *EVP_md5_sha1(void);
=head1 DESCRIPTION
......
......@@ -4,6 +4,7 @@
EVP_rc2_cbc,
EVP_rc2_cfb,
EVP_rc2_cfb64,
EVP_rc2_ecb,
EVP_rc2_ofb,
EVP_rc2_40_cbc,
......@@ -16,6 +17,7 @@ EVP_rc2_64_cbc
const EVP_CIPHER *EVP_rc2_cbc(void)
const EVP_CIPHER *EVP_rc2_cfb(void)
const EVP_CIPHER *EVP_rc2_cfb64(void)
const EVP_CIPHER *EVP_rc2_ecb(void)
const EVP_CIPHER *EVP_rc2_ofb(void)
const EVP_CIPHER *EVP_rc2_40_cbc(void)
......@@ -29,6 +31,7 @@ The RC2 encryption algorithm for EVP.
=item EVP_rc2_cbc(),
EVP_rc2_cfb(),
EVP_rc2_cfb64(),
EVP_rc2_ecb(),
EVP_rc2_ofb()
......
......@@ -4,6 +4,7 @@
EVP_rc5_32_12_16_cbc,
EVP_rc5_32_12_16_cfb,
EVP_rc5_32_12_16_cfb64,
EVP_rc5_32_12_16_ecb,
EVP_rc5_32_12_16_ofb
- EVP RC5 cipher
......@@ -14,6 +15,7 @@ EVP_rc5_32_12_16_ofb
const EVP_CIPHER *EVP_rc5_32_12_16_cbc(void)
const EVP_CIPHER *EVP_rc5_32_12_16_cfb(void)
const EVP_CIPHER *EVP_rc5_32_12_16_cfb64(void)
const EVP_CIPHER *EVP_rc5_32_12_16_ecb(void)
const EVP_CIPHER *EVP_rc5_32_12_16_ofb(void)
......@@ -25,6 +27,7 @@ The RC5 encryption algorithm for EVP.
=item EVP_rc5_32_12_16_cbc(),
EVP_rc5_32_12_16_cfb(),
EVP_rc5_32_12_16_cfb64(),
EVP_rc5_32_12_16_ecb(),
EVP_rc5_32_12_16_ofb()
......
......@@ -4,6 +4,7 @@
EVP_seed_cbc,
EVP_seed_cfb,
EVP_seed_cfb128,
EVP_seed_ecb,
EVP_seed_ofb
- EVP SEED cipher
......@@ -14,6 +15,7 @@ EVP_seed_ofb
const EVP_CIPHER *EVP_seed_cbc(void)
const EVP_CIPHER *EVP_seed_cfb(void)
const EVP_CIPHER *EVP_seed_cfb128(void)
const EVP_CIPHER *EVP_seed_ecb(void)
const EVP_CIPHER *EVP_seed_ofb(void)
......@@ -27,6 +29,7 @@ All modes below use a key length of 128 bits and acts on blocks of 128-bits.
=item EVP_seed_cbc(),
EVP_seed_cfb(),
EVP_seed_cfb128(),
EVP_seed_ecb(),
EVP_seed_ofb()
......
......@@ -5,6 +5,7 @@
EVP_sm4_cbc,
EVP_sm4_ecb,
EVP_sm4_cfb,
EVP_sm4_cfb128,
EVP_sm4_ofb,
EVP_sm4_ctr
- EVP SM4 cipher
......@@ -16,6 +17,7 @@ EVP_sm4_ctr
const EVP_CIPHER *EVP_sm4_cbc(void);
const EVP_CIPHER *EVP_sm4_ecb(void);
const EVP_CIPHER *EVP_sm4_cfb(void);
const EVP_CIPHER *EVP_sm4_cfb128(void);
const EVP_CIPHER *EVP_sm4_ofb(void);
const EVP_CIPHER *EVP_sm4_ctr(void);
......@@ -30,6 +32,7 @@ All modes below use a key length of 128 bits and acts on blocks of 128 bits.
=item EVP_sm4_cbc(),
EVP_sm4_ecb(),
EVP_sm4_cfb(),
EVP_sm4_cfb128(),
EVP_sm4_ofb(),
EVP_sm4_ctr()
......
......@@ -1107,6 +1107,11 @@ const EC_KEY_METHOD *EC_KEY_get_method(const EC_KEY *key);
int EC_KEY_set_method(EC_KEY *key, const EC_KEY_METHOD *meth);
EC_KEY *EC_KEY_new_method(ENGINE *engine);
/** The old name for ecdh_KDF_X9_63
* The ECDH KDF specification has been mistakingly attributed to ANSI X9.62,
* it is actually specified in ANSI X9.63.
* This identifier is retained for backwards compatibility
*/
int ECDH_KDF_X9_62(unsigned char *out, size_t outlen,
const unsigned char *Z, size_t Zlen,
const unsigned char *sinfo, size_t sinfolen,
......@@ -1457,7 +1462,13 @@ void EC_KEY_METHOD_get_verify(const EC_KEY_METHOD *meth,
# define EVP_PKEY_CTRL_GET1_ID_LEN (EVP_PKEY_ALG_CTRL + 13)
/* KDF types */
# define EVP_PKEY_ECDH_KDF_NONE 1
# define EVP_PKEY_ECDH_KDF_X9_62 2
# define EVP_PKEY_ECDH_KDF_X9_63 2
/** The old name for EVP_PKEY_ECDH_KDF_X9_63
* The ECDH KDF specification has been mistakingly attributed to ANSI X9.62,
* it is actually specified in ANSI X9.63.
* This identifier is retained for backwards compatibility
*/
# define EVP_PKEY_ECDH_KDF_X9_62 EVP_PKEY_ECDH_KDF_X9_63
# ifdef __cplusplus
......
......@@ -190,8 +190,27 @@ EVP_MD_CTX_type define
EVP_OpenUpdate define
EVP_PKEY_CTX_add1_hkdf_info define
EVP_PKEY_CTX_add1_tls1_prf_seed define
EVP_PKEY_CTX_get0_dh_kdf_oid define
EVP_PKEY_CTX_get0_dh_kdf_ukm define
EVP_PKEY_CTX_get0_ecdh_kdf_ukm define
EVP_PKEY_CTX_get0_rsa_oaep_label define
EVP_PKEY_CTX_get_dh_kdf_md define
EVP_PKEY_CTX_get_dh_kdf_outlen define
EVP_PKEY_CTX_get_dh_kdf_type define
EVP_PKEY_CTX_get_ecdh_cofactor_mode define
EVP_PKEY_CTX_get_ecdh_kdf_md define
EVP_PKEY_CTX_get_ecdh_kdf_outlen define
EVP_PKEY_CTX_get_ecdh_kdf_type define
EVP_PKEY_CTX_get_rsa_mgf1_md define
EVP_PKEY_CTX_get_rsa_oaep_md define
EVP_PKEY_CTX_get_rsa_padding define
EVP_PKEY_CTX_get_rsa_pss_saltlen define
EVP_PKEY_CTX_get_signature_md define
EVP_PKEY_CTX_hkdf_mode define
EVP_PKEY_CTX_set0_dh_kdf_oid define
EVP_PKEY_CTX_set0_dh_kdf_ukm define
EVP_PKEY_CTX_set0_ecdh_kdf_ukm define
EVP_PKEY_CTX_set0_rsa_oaep_label define
EVP_PKEY_CTX_set1_hkdf_key define
EVP_PKEY_CTX_set1_hkdf_salt define
EVP_PKEY_CTX_set1_pbe_pass define
......@@ -199,14 +218,29 @@ EVP_PKEY_CTX_set1_scrypt_salt define
EVP_PKEY_CTX_set1_tls1_prf_secret define
EVP_PKEY_CTX_set_dh_paramgen_generator define
EVP_PKEY_CTX_set_dh_paramgen_prime_len define
EVP_PKEY_CTX_set_dh_pad define
EVP_PKEY_CTX_set_dh_paramgen_subprime_len define
EVP_PKEY_CTX_set_dh_paramgen_type define
EVP_PKEY_CTX_set_dh_kdf_md define
EVP_PKEY_CTX_set_dh_kdf_outlen define
EVP_PKEY_CTX_set_dh_kdf_type define
EVP_PKEY_CTX_set_dh_nid define
EVP_PKEY_CTX_set_dh_pad define
EVP_PKEY_CTX_set_dh_rfc5114 define
EVP_PKEY_CTX_set_dhx_rfc5114 define
EVP_PKEY_CTX_set_dsa_paramgen_bits define
EVP_PKEY_CTX_set_ec_param_enc define
EVP_PKEY_CTX_set_ec_paramgen_curve_nid define
EVP_PKEY_CTX_set_ecdh_cofactor_mode define
EVP_PKEY_CTX_set_ecdh_kdf_md define
EVP_PKEY_CTX_set_ecdh_kdf_outlen define
EVP_PKEY_CTX_set_ecdh_kdf_type define
EVP_PKEY_CTX_set_hkdf_md define
EVP_PKEY_CTX_set_mac_key define
EVP_PKEY_CTX_set_rsa_keygen_bits define
EVP_PKEY_CTX_set_rsa_keygen_pubexp define
EVP_PKEY_CTX_set_rsa_keygen_primes define
EVP_PKEY_CTX_set_rsa_mgf1_md define
EVP_PKEY_CTX_set_rsa_oaep_md define
EVP_PKEY_CTX_set_rsa_padding define
EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md define
EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen define
......@@ -221,7 +255,9 @@ EVP_PKEY_CTX_set_tls1_prf_md define
EVP_PKEY_assign_DH define
EVP_PKEY_assign_DSA define
EVP_PKEY_assign_EC_KEY define
EVP_PKEY_assign_POLY1305 define
EVP_PKEY_assign_RSA define
EVP_PKEY_assign_SIPHASH define
EVP_SealUpdate define
EVP_SignInit define
EVP_SignInit_ex define
......@@ -269,7 +305,6 @@ PEM_FLAG_ONLY_B64 define
PEM_FLAG_SECURE define
RAND_cleanup define deprecated 1.1.0
RAND_DRBG_get_ex_new_index define
EVP_PKEY_CTX_set_rsa_keygen_bits define
SSL_COMP_free_compression_methods define deprecated 1.1.0
SSL_CTX_add0_chain_cert define
SSL_CTX_add1_chain_cert define
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册