提交 7eeeb49e 编写于 作者: A Andy Polyakov

modes/asm/ghashv8-armx.pl: up to 90% performance improvement.

Reviewed-by: NMatt Caswell <matt@openssl.org>
上级 be5a87a1
...@@ -16,12 +16,17 @@ ...@@ -16,12 +16,17 @@
# other assembly modules. Just like aesv8-armx.pl this module # other assembly modules. Just like aesv8-armx.pl this module
# supports both AArch32 and AArch64 execution modes. # supports both AArch32 and AArch64 execution modes.
# #
# July 2014
#
# Implement 2x aggregated reduction [see ghash-x86.pl for background
# information].
#
# Current performance in cycles per processed byte: # Current performance in cycles per processed byte:
# #
# PMULL[2] 32-bit NEON(*) # PMULL[2] 32-bit NEON(*)
# Apple A7 1.76 5.62 # Apple A7 0.92 5.62
# Cortex-A53 1.45 8.39 # Cortex-A53 1.01 8.39
# Cortex-A57 2.22 7.61 # Cortex-A57 1.17 7.61
# #
# (*) presented for reference/comparison purposes; # (*) presented for reference/comparison purposes;
...@@ -45,7 +50,7 @@ $inc="x12"; ...@@ -45,7 +50,7 @@ $inc="x12";
{ {
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
my ($t0,$t1,$t2,$t3,$H,$Hhl)=map("q$_",(8..14)); my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
$code=<<___; $code=<<___;
#include "arm_arch.h" #include "arm_arch.h"
...@@ -55,114 +60,277 @@ ___ ...@@ -55,114 +60,277 @@ ___
$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/); $code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
$code.=".fpu neon\n.code 32\n" if ($flavour !~ /64/); $code.=".fpu neon\n.code 32\n" if ($flavour !~ /64/);
################################################################################
# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
#
# input: 128-bit H - secret parameter E(K,0^128)
# output: precomputed table filled with degrees of twisted H;
# H is twisted to handle reverse bitness of GHASH;
# only few of 16 slots of Htable[16] are used;
# data is opaque to outside world (which allows to
# optimize the code independently);
#
$code.=<<___; $code.=<<___;
.global gcm_init_v8 .global gcm_init_v8
.type gcm_init_v8,%function .type gcm_init_v8,%function
.align 4 .align 4
gcm_init_v8: gcm_init_v8:
vld1.64 {$t1},[x1] @ load H vld1.64 {$t1},[x1] @ load input H
vmov.i8 $t0,#0xe1 vmov.i8 $xC2,#0xe1
vshl.i64 $xC2,$xC2,#57 @ 0xc2.0
vext.8 $IN,$t1,$t1,#8 vext.8 $IN,$t1,$t1,#8
vshl.i64 $t0,$t0,#57 vshr.u64 $t2,$xC2,#63
vshr.u64 $t2,$t0,#63
vext.8 $t0,$t2,$t0,#8 @ t0=0xc2....01
vdup.32 $t1,${t1}[1] vdup.32 $t1,${t1}[1]
vshr.u64 $t3,$IN,#63 vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01
vshr.u64 $t2,$IN,#63
vshr.s32 $t1,$t1,#31 @ broadcast carry bit vshr.s32 $t1,$t1,#31 @ broadcast carry bit
vand $t3,$t3,$t0 vand $t2,$t2,$t0
vshl.i64 $IN,$IN,#1 vshl.i64 $IN,$IN,#1
vext.8 $t3,$t3,$t3,#8 vext.8 $t2,$t2,$t2,#8
vand $t0,$t0,$t1 vand $t0,$t0,$t1
vorr $IN,$IN,$t3 @ H<<<=1 vorr $IN,$IN,$t2 @ H<<<=1
veor $IN,$IN,$t0 @ twisted H veor $H,$IN,$t0 @ twisted H
vst1.64 {$IN},[x0] vst1.64 {$H},[x0],#16 @ store Htable[0]
@ calculate H^2
vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing
vpmull.p64 $Xl,$H,$H
veor $t0,$t0,$H
vpmull2.p64 $Xh,$H,$H
vpmull.p64 $Xm,$t0,$t0
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1
veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
veor $Xl,$Xm,$t2
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
vpmull.p64 $Xl,$Xl,$xC2
veor $t2,$t2,$Xh
veor $H2,$Xl,$t2
vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing
veor $t1,$t1,$H2
vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
vst1.64 {$Hhl-$H2},[x0] @ store Htable[1..2]
ret ret
.size gcm_init_v8,.-gcm_init_v8 .size gcm_init_v8,.-gcm_init_v8
___
################################################################################
# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
#
# input: Xi - current hash value;
# Htable - table precomputed in gcm_init_v8;
# output: Xi - next hash value Xi;
#
$code.=<<___;
.global gcm_gmult_v8 .global gcm_gmult_v8
.type gcm_gmult_v8,%function .type gcm_gmult_v8,%function
.align 4 .align 4
gcm_gmult_v8: gcm_gmult_v8:
vld1.64 {$t1},[$Xi] @ load Xi vld1.64 {$t1},[$Xi] @ load Xi
vmov.i8 $t3,#0xe1 vmov.i8 $xC2,#0xe1
vld1.64 {$H},[$Htbl] @ load twisted H vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ...
vshl.u64 $t3,$t3,#57 vshl.u64 $xC2,$xC2,#57
#ifndef __ARMEB__ #ifndef __ARMEB__
vrev64.8 $t1,$t1 vrev64.8 $t1,$t1
#endif #endif
vext.8 $Hhl,$H,$H,#8
mov $len,#0
vext.8 $IN,$t1,$t1,#8 vext.8 $IN,$t1,$t1,#8
mov $inc,#0
veor $Hhl,$Hhl,$H @ Karatsuba pre-processing
mov $inp,$Xi
b .Lgmult_v8
.size gcm_gmult_v8,.-gcm_gmult_v8
vpmull.p64 $Xl,$H,$IN @ H.loXi.lo
veor $t1,$t1,$IN @ Karatsuba pre-processing
vpmull2.p64 $Xh,$H,$IN @ H.hiXi.hi
vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)(Xi.lo+Xi.hi)
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1
veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
veor $Xl,$Xm,$t2
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
vpmull.p64 $Xl,$Xl,$xC2
veor $t2,$t2,$Xh
veor $Xl,$Xl,$t2
#ifndef __ARMEB__
vrev64.8 $Xl,$Xl
#endif
vext.8 $Xl,$Xl,$Xl,#8
vst1.64 {$Xl},[$Xi] @ write out Xi
ret
.size gcm_gmult_v8,.-gcm_gmult_v8
___
################################################################################
# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
#
# input: table precomputed in gcm_init_v8;
# current hash value Xi;
# pointer to input data;
# length of input data in bytes, but divisible by block size;
# output: next hash value Xi;
#
$code.=<<___;
.global gcm_ghash_v8 .global gcm_ghash_v8
.type gcm_ghash_v8,%function .type gcm_ghash_v8,%function
.align 4 .align 4
gcm_ghash_v8: gcm_ghash_v8:
___
$code.=<<___ if ($flavour !~ /64/);
vstmdb sp!,{d8-d15} @ 32-bit ABI says so
___
$code.=<<___;
vld1.64 {$Xl},[$Xi] @ load [rotated] Xi vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
subs $len,$len,#16 @ "[rotated]" means that
vmov.i8 $t3,#0xe1 @ loaded value would have
mov $inc,#16 @ to be rotated in order to
vld1.64 {$H},[$Htbl] @ load twisted H @ make it appear as in
cclr $inc,eq @ alorithm specification
vext.8 $Xl,$Xl,$Xl,#8 subs $len,$len,#32 @ see if $len is 32 or larger
vshl.u64 $t3,$t3,#57 mov $inc,#16 @ $inc is used as post-
vld1.64 {$t1},[$inp],$inc @ load [rotated] inp @ increment for input pointer;
vext.8 $Hhl,$H,$H,#8 @ as loop is modulo-scheduled
@ $inc is zeroed just in time
@ to preclude oversteping
@ inp[len], which means that
@ last block[s] are actually
@ loaded twice, but last
@ copy is not processed
vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2
vmov.i8 $xC2,#0xe1
vld1.64 {$H2},[$Htbl]
cclr $inc,eq @ is it time to zero $inc?
vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi
vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0]
vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
#ifndef __ARMEB__ #ifndef __ARMEB__
vrev64.8 $t0,$t0
vrev64.8 $Xl,$Xl vrev64.8 $Xl,$Xl
#endif
vext.8 $IN,$t0,$t0,#8 @ rotate I[0]
b.lo .Lodd_tail_v8 @ $len was less than 32
___
{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
#######
# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
# [(H*Ii+1) + (H*Xi+1)] mod P =
# [(H*Ii+1) + H^2*(Ii+Xi)] mod P
#
$code.=<<___;
vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1]
#ifndef __ARMEB__
vrev64.8 $t1,$t1 vrev64.8 $t1,$t1
#endif #endif
veor $Hhl,$Hhl,$H @ Karatsuba pre-processing vext.8 $In,$t1,$t1,#8
vext.8 $IN,$t1,$t1,#8 veor $IN,$IN,$Xl @ I[i]^=Xi
b .Loop_v8 vpmull.p64 $Xln,$H,$In @ HIi+1
veor $t1,$t1,$In @ Karatsuba pre-processing
vpmull2.p64 $Xhn,$H,$In
b .Loop_mod2x_v8
.align 4 .align 4
.Loop_v8: .Loop_mod2x_v8:
vext.8 $t2,$IN,$IN,#8
subs $len,$len,#32 @ is there more data?
vpmull.p64 $Xl,$H2,$IN @ H^2.loXi.lo
cclr $inc,lo @ is it time to zero $inc?
vpmull.p64 $Xmn,$Hhl,$t1
veor $t2,$t2,$IN @ Karatsuba pre-processing
vpmull2.p64 $Xh,$H2,$IN @ H^2.hiXi.hi
veor $Xl,$Xl,$Xln @ accumulate
vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)(Xi.lo+Xi.hi)
vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2]
veor $Xh,$Xh,$Xhn
cclr $inc,eq @ is it time to zero $inc?
veor $Xm,$Xm,$Xmn
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1
vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3]
#ifndef __ARMEB__
vrev64.8 $t0,$t0
#endif
veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
#ifndef __ARMEB__
vrev64.8 $t1,$t1
#endif
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
vext.8 $In,$t1,$t1,#8
vext.8 $IN,$t0,$t0,#8
veor $Xl,$Xm,$t2
vpmull.p64 $Xln,$H,$In @ HIi+1
veor $IN,$IN,$Xh @ accumulate $IN early
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
vpmull.p64 $Xl,$Xl,$xC2
veor $IN,$IN,$t2
veor $t1,$t1,$In @ Karatsuba pre-processing
veor $IN,$IN,$Xl
vpmull2.p64 $Xhn,$H,$In
b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes
veor $Xh,$Xh,$t2
vext.8 $IN,$t0,$t0,#8 @ re-construct $IN
adds $len,$len,#32 @ re-construct $len
veor $Xl,$Xl,$Xh @ re-construct $Xl
b.eq .Ldone_v8 @ is $len zero?
___
}
$code.=<<___;
.Lodd_tail_v8:
vext.8 $t2,$Xl,$Xl,#8 vext.8 $t2,$Xl,$Xl,#8
veor $IN,$IN,$Xl @ inp^=Xi veor $IN,$IN,$Xl @ inp^=Xi
veor $t1,$t1,$t2 @ $t1 is rotated inp^Xi veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi
.Lgmult_v8:
vpmull.p64 $Xl,$H,$IN @ H.loXi.lo vpmull.p64 $Xl,$H,$IN @ H.loXi.lo
veor $t1,$t1,$IN @ Karatsuba pre-processing veor $t1,$t1,$IN @ Karatsuba pre-processing
vpmull2.p64 $Xh,$H,$IN @ H.hiXi.hi vpmull2.p64 $Xh,$H,$IN @ H.hiXi.hi
subs $len,$len,#16
vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)(Xi.lo+Xi.hi) vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)(Xi.lo+Xi.hi)
cclr $inc,eq
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
veor $t2,$Xl,$Xh veor $t2,$Xl,$Xh
veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t1
vld1.64 {$t1},[$inp],$inc @ load [rotated] inp
veor $Xm,$Xm,$t2 veor $Xm,$Xm,$t2
vpmull.p64 $t2,$Xl,$t3 @ 1st phase vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
#ifndef __ARMEB__
vrev64.8 $t1,$t1
#endif
veor $Xl,$Xm,$t2 veor $Xl,$Xm,$t2
vext.8 $IN,$t1,$t1,#8
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
vpmull.p64 $Xl,$Xl,$t3 vpmull.p64 $Xl,$Xl,$xC2
veor $t2,$t2,$Xh veor $t2,$t2,$Xh
veor $Xl,$Xl,$t2 veor $Xl,$Xl,$t2
b.hs .Loop_v8
.Ldone_v8:
#ifndef __ARMEB__ #ifndef __ARMEB__
vrev64.8 $Xl,$Xl vrev64.8 $Xl,$Xl
#endif #endif
vext.8 $Xl,$Xl,$Xl,#8 vext.8 $Xl,$Xl,$Xl,#8
vst1.64 {$Xl},[$Xi] @ write out Xi vst1.64 {$Xl},[$Xi] @ write out Xi
___
$code.=<<___ if ($flavour !~ /64/);
vldmia sp!,{d8-d15} @ 32-bit ABI says so
___
$code.=<<___;
ret ret
.size gcm_ghash_v8,.-gcm_ghash_v8 .size gcm_ghash_v8,.-gcm_ghash_v8
___ ___
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册