diff --git a/crypto/aes/asm/aes-s390x.pl b/crypto/aes/asm/aes-s390x.pl index db963c9df0fa0fb17794ed353d68f0d4845f3461..d5d514dc2daef0634820d360bb0881a6061308eb 100644 --- a/crypto/aes/asm/aes-s390x.pl +++ b/crypto/aes/asm/aes-s390x.pl @@ -70,6 +70,18 @@ # remains z/Architecture specific. On z990 it was measured to perform # 2x better than code generated by gcc 4.3. +# December 2010. +# +# Add support for z196 "cipher message with counter" instruction. +# Note however that it's disengaged, because it was measured to +# perform ~12% worse than vanilla km-based code... + +# February 2011. +# +# Add AES_xts_[en|de]crypt. This includes support for z196 +# km-xts-aes instructions, which deliver ~70% improvement at 8KB +# block size over vanilla km-based code. + $flavour = shift; if ($flavour =~ /3[12]/) { @@ -268,7 +280,7 @@ $code.=<<___; .type _s390x_AES_encrypt,\@function .align 16 _s390x_AES_encrypt: - st${g} $ra,`$stdframe-$SIZE_T`($sp) + st${g} $ra,15*$SIZE_T($sp) x $s0,0($key) x $s1,4($key) x $s2,8($key) @@ -432,7 +444,7 @@ _s390x_AES_encrypt: or $s2,$i3 or $s3,$t3 - l${g} $ra,`$stdframe-$SIZE_T`($sp) + l${g} $ra,15*$SIZE_T($sp) xr $s0,$t0 xr $s1,$t2 x $s2,24($key) @@ -594,7 +606,7 @@ $code.=<<___; .type _s390x_AES_decrypt,\@function .align 16 _s390x_AES_decrypt: - st${g} $ra,`$stdframe-$SIZE_T`($sp) + st${g} $ra,15*$SIZE_T($sp) x $s0,0($key) x $s1,4($key) x $s2,8($key) @@ -738,7 +750,7 @@ _s390x_AES_decrypt: nr $i1,$mask nr $i2,$mask - l${g} $ra,`$stdframe-$SIZE_T`($sp) + l${g} $ra,15*$SIZE_T($sp) or $s1,$t1 l $t0,16($key) l $t1,20($key) @@ -1164,7 +1176,8 @@ $code.=<<___; .size AES_set_decrypt_key,.-AES_set_decrypt_key ___ -#void AES_cbc_encrypt(const unsigned char *in, unsigned char *out, +######################################################################## +# void AES_cbc_encrypt(const unsigned char *in, unsigned char *out, # size_t length, const AES_KEY *key, # unsigned char *ivec, const int enc) { @@ -1365,13 +1378,14 @@ $code.=<<___; .size AES_cbc_encrypt,.-AES_cbc_encrypt ___ } -#void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, +######################################################################## +# void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, # size_t blocks, const AES_KEY *key, # const unsigned char *ivec) { my $inp="%r2"; -my $out="%r3"; -my $len="%r4"; +my $out="%r4"; # blocks and out are swapped +my $len="%r3"; my $key="%r5"; my $iv0="%r5"; my $ivp="%r6"; my $fp ="%r7"; @@ -1381,6 +1395,9 @@ $code.=<<___; .type AES_ctr32_encrypt,\@function .align 16 AES_ctr32_encrypt: + xgr %r3,%r4 # flip %r3 and %r4, $out and $len + xgr %r4,%r3 + xgr %r3,%r4 llgfr $len,$len # safe in ctr32 subroutine even in 64-bit case ___ $code.=<<___ if (!$softonly); @@ -1415,20 +1432,75 @@ $code.=<<___ if (!$softonly); st${g} $fp,$SIZE_T($sp) slgr $len,$fp - brc 1,.Lctr32_hw_loop # not zero, no borrow + brc 1,.Lctr32_hw_switch # not zero, no borrow algr $fp,$len # input is shorter than allocated buffer lghi $len,0 st${g} $fp,$SIZE_T($sp) -.Lctr32_hw_loop: +.Lctr32_hw_switch: +___ +$code.=<<___ if (0); ######### kmctr code was measured to be ~12% slower + larl $s0,OPENSSL_s390xcap_P + lg $s0,8($s0) + tmhh $s0,0x0004 # check for message_security-assist-4 + jz .Lctr32_km_loop + + llgfr $s0,%r0 + lgr $s1,%r1 + lghi %r0,0 + la %r1,16($sp) + .long 0xb92d2042 # kmctr %r4,%r2,%r2 + + llihh %r0,0x8000 # check if kmctr supports the function code + srlg %r0,%r0,0($s0) + ng %r0,16($sp) + lgr %r0,$s0 + lgr %r1,$s1 + jz .Lctr32_km_loop + +####### kmctr code + algr $out,$inp # restore $out + lgr $s1,$len # $s1 undertakes $len + j .Lctr32_kmctr_loop +.align 16 +.Lctr32_kmctr_loop: + la $s2,16($sp) + lgr $s3,$fp +.Lctr32_kmctr_prepare: + stg $iv0,0($s2) + stg $ivp,8($s2) + la $s2,16($s2) + ahi $ivp,1 # 32-bit increment, preserves upper half + brct $s3,.Lctr32_kmctr_prepare + + #la $inp,0($inp) # inp + sllg $len,$fp,4 # len + #la $out,0($out) # out + la $s2,16($sp) # iv + .long 0xb92da042 # kmctr $out,$s2,$inp + brc 1,.-4 # pay attention to "partial completion" + + slgr $s1,$fp + brc 1,.Lctr32_kmctr_loop # not zero, no borrow + algr $fp,$s1 + lghi $s1,0 + brc 4+1,.Lctr32_kmctr_loop # not zero + + l${g} $sp,0($sp) + lm${g} %r6,$s3,6*$SIZE_T($sp) + br $ra +.align 16 +___ +$code.=<<___; +.Lctr32_km_loop: la $s2,16($sp) lgr $s3,$fp -.Lctr32_hw_prepare: +.Lctr32_km_prepare: stg $iv0,0($s2) stg $ivp,8($s2) la $s2,16($s2) ahi $ivp,1 # 32-bit increment, preserves upper half - brct $s3,.Lctr32_hw_prepare + brct $s3,.Lctr32_km_prepare la $s0,16($sp) # inp sllg $s1,$fp,4 # len @@ -1439,7 +1511,7 @@ $code.=<<___ if (!$softonly); la $s2,16($sp) lgr $s3,$fp slgr $s2,$inp -.Lctr32_hw_xor: +.Lctr32_km_xor: lg $s0,0($inp) lg $s1,8($inp) xg $s0,0($s2,$inp) @@ -1447,22 +1519,22 @@ $code.=<<___ if (!$softonly); stg $s0,0($out,$inp) stg $s1,8($out,$inp) la $inp,16($inp) - brct $s3,.Lctr32_hw_xor + brct $s3,.Lctr32_km_xor slgr $len,$fp - brc 1,.Lctr32_hw_loop # not zero, no borrow + brc 1,.Lctr32_km_loop # not zero, no borrow algr $fp,$len lghi $len,0 - brc 4+1,.Lctr32_hw_loop # not zero + brc 4+1,.Lctr32_km_loop # not zero l${g} $s0,0($sp) l${g} $s1,$SIZE_T($sp) la $s2,16($sp) -.Lctr32_hw_zap: +.Lctr32_km_zap: stg $s0,0($s2) stg $s0,8($s2) la $s2,16($s2) - brct $s1,.Lctr32_hw_zap + brct $s1,.Lctr32_km_zap la $sp,0($s0) lm${g} %r6,$s3,6*$SIZE_T($sp) @@ -1472,12 +1544,12 @@ $code.=<<___ if (!$softonly); ___ $code.=<<___; stm${g} $key,$ra,5*$SIZE_T($sp) - sl${g}r $out,$inp + sl${g}r $inp,$out larl $tbl,AES_Te llgf $t1,12($ivp) .Lctr32_loop: - stm${g} $inp,$len,2*$SIZE_T($sp) + stm${g} $inp,$out,2*$SIZE_T($sp) llgf $s0,0($ivp) llgf $s1,4($ivp) llgf $s2,8($ivp) @@ -1489,27 +1561,694 @@ $code.=<<___; lm${g} $inp,$ivp,2*$SIZE_T($sp) llgf $t1,16*$SIZE_T($sp) - x $s0,0($inp) + x $s0,0($inp,$out) + x $s1,4($inp,$out) + x $s2,8($inp,$out) + x $s3,12($inp,$out) + stm $s0,$s3,0($out) + + la $out,16($out) + ahi $t1,1 # 32-bit increment + brct $len,.Lctr32_loop + + lm${g} %r6,$ra,6*$SIZE_T($sp) + br $ra +.size AES_ctr32_encrypt,.-AES_ctr32_encrypt +___ +} + +######################################################################## +# void AES_xts_encrypt(const char *inp,char *out,size_t len, +# const AES_KEY *key1, const AES_KEY *key2,u64 secno); +# +{ +my $inp="%r2"; +my $out="%r4"; # len and out are swapped +my $len="%r3"; +my $key1="%r5"; # $i1 +my $key2="%r6"; # $i2 +my $fp="%r7"; # $i3 +my $tweak=16*$SIZE_T+16; # or $stdframe-16, bottom of the frame... + +$code.=<<___; +.type _s390x_xts_km,\@function +.align 16 +_s390x_xts_km: +___ +$code.=<<___ if(0); + llgfr $s0,%r0 # put aside the function code + lghi $s1,0x7f + nr $s1,%r0 + lghi %r0,0 # query capability vector + la %r1,2*$SIZE_T($sp) + .long 0xb92e0042 # km %r4,%r2 + llihh %r1,0x8000 + srlg %r1,%r1,32($s1) # check for 32+function code + ng %r1,2*$SIZE_T($sp) + lgr %r0,$s0 # restore the function code + la %r1,0($key1) # restore $key1 + jz .Lxts_km_vanilla + + lmg $i2,$i3,$tweak($sp) # put aside the tweak value + algr $out,$inp + + oill %r0,32 # switch to xts function code + aghi $s1,-18 # + sllg $s1,$s1,3 # (function code - 18)*8, 0 or 16 + la %r1,$tweak-16($sp) + slgr %r1,$s1 # parameter block position + lmg $s0,$s3,0($key1) # load 256 bits of key material, + stmg $s0,$s3,0(%r1) # and copy it to parameter block. + # yes, it contains junk and overlaps + # with the tweak in 128-bit case. + # it's done to avoid conditional + # branch. + stmg $i2,$i3,$tweak($sp) # "re-seat" the tweak value + + .long 0xb92e0042 # km %r4,%r2 + brc 1,.-4 # pay attention to "partial completion" + + lrvg $s0,$tweak+0($sp) # load the last tweak + lrvg $s1,$tweak+8($sp) + stmg %r0,%r3,$tweak-32(%r1) # wipe copy of the key + + nill %r0,0xffdf # switch back to original function code + la %r1,0($key1) # restore pointer to $key1 + slgr $out,$inp + + llgc $len,2*$SIZE_T-1($sp) + nill $len,0x0f # $len%=16 + br $ra + +.align 16 +.Lxts_km_vanilla: +___ +$code.=<<___; + # prepare and allocate stack frame at the top of 4K page + # with 1K reserved for eventual signal handling + lghi $s0,-1024-256-16# guarantee at least 256-bytes buffer + lghi $s1,-4096 + algr $s0,$sp + lgr $fp,$sp + ngr $s0,$s1 # align at page boundary + slgr $fp,$s0 # total buffer size + lgr $s2,$sp + lghi $s1,1024+16 # sl[g]fi is extended-immediate facility + slgr $fp,$s1 # deduct reservation to get usable buffer size + # buffer size is at lest 256 and at most 3072+256-16 + + la $sp,1024($s0) # alloca + nill $fp,0xfff0 # round to 16*n + st${g} $s2,0($sp) # back-chain + nill $len,0xfff0 # redundant + st${g} $fp,$SIZE_T($sp) + + slgr $len,$fp + brc 1,.Lxts_km_go # not zero, no borrow + algr $fp,$len # input is shorter than allocated buffer + lghi $len,0 + st${g} $fp,$SIZE_T($sp) + +.Lxts_km_go: + lrvg $s0,$tweak+0($s2) # load the tweak value in little-endian + lrvg $s1,$tweak+8($s2) + + la $s2,16($sp) # vector of ascending tweak values + slgr $s2,$inp + srlg $s3,$fp,4 + j .Lxts_km_start + +.Lxts_km_loop: + la $s2,16($sp) + slgr $s2,$inp + srlg $s3,$fp,4 +.Lxts_km_prepare: + lghi $i1,0x87 + srag $i2,$s1,63 # broadcast upper bit + ngr $i1,$i2 # rem + srlg $i2,$s0,63 # carry bit from lower half + sllg $s0,$s0,1 + sllg $s1,$s1,1 + xgr $s0,$i1 + ogr $s1,$i2 +.Lxts_km_start: + lrvgr $i1,$s0 # flip byte order + lrvgr $i2,$s1 + stg $i1,0($s2,$inp) + stg $i2,8($s2,$inp) + xg $i1,0($inp) + xg $i2,8($inp) + stg $i1,0($out,$inp) + stg $i2,8($out,$inp) + la $inp,16($inp) + brct $s3,.Lxts_km_prepare + + slgr $inp,$fp # rewind $inp + la $s2,0($out,$inp) + lgr $s3,$fp + .long 0xb92e00aa # km $s2,$s2 + brc 1,.-4 # pay attention to "partial completion" + + la $s2,16($sp) + slgr $s2,$inp + srlg $s3,$fp,4 +.Lxts_km_xor: + lg $i1,0($out,$inp) + lg $i2,8($out,$inp) + xg $i1,0($s2,$inp) + xg $i2,8($s2,$inp) + stg $i1,0($out,$inp) + stg $i2,8($out,$inp) + la $inp,16($inp) + brct $s3,.Lxts_km_xor + + slgr $len,$fp + brc 1,.Lxts_km_loop # not zero, no borrow + algr $fp,$len + lghi $len,0 + brc 4+1,.Lxts_km_loop # not zero + + l${g} $i1,0($sp) # back-chain + llgf $fp,`2*$SIZE_T-4`($sp) # bytes used + la $i2,16($sp) + srlg $fp,$fp,4 +.Lxts_km_zap: + stg $i1,0($i2) + stg $i1,8($i2) + la $i2,16($i2) + brct $fp,.Lxts_km_zap + + la $sp,0($i1) + llgc $len,2*$SIZE_T-1($i1) + nill $len,0x0f # $len%=16 + bzr $ra + + # generate one more tweak... + lghi $i1,0x87 + srag $i2,$s1,63 # broadcast upper bit + ngr $i1,$i2 # rem + srlg $i2,$s0,63 # carry bit from lower half + sllg $s0,$s0,1 + sllg $s1,$s1,1 + xgr $s0,$i1 + ogr $s1,$i2 + + ltr $len,$len # clear zero flag + br $ra +.size _s390x_xts_km,.-_s390x_xts_km + +.globl AES_xts_encrypt +.type AES_xts_encrypt,\@function +.align 16 +AES_xts_encrypt: + xgr %r3,%r4 # flip %r3 and %r4, $out and $len + xgr %r4,%r3 + xgr %r3,%r4 +___ +$code.=<<___ if ($SIZE_T==4); + llgfr $len,$len +___ +$code.=<<___; + st${g} $len,1*$SIZE_T($sp) # save copy of $len + srag $len,$len,4 # formally wrong, because it expands + # sign byte, but who can afford asking + # to process more than 2^63-1 bytes? + # I use it, because it sets condition + # code... + bcr 8,$ra # abort if zero (i.e. less than 16) +___ +$code.=<<___ if (!$softonly); + llgf %r0,240($key2) + lhi %r1,16 + clr %r0,%r1 + jl .Lxts_enc_software + + stm${g} %r6,$s3,6*$SIZE_T($sp) + st${g} $ra,14*$SIZE_T($sp) + + sllg $len,$len,4 # $len&=~15 + slgr $out,$inp + + lrvg $s0,$stdframe($sp) # load secno + lghi $s1,0 + la $s2,$tweak($sp) + lghi $s3,16 + stmg $s0,$s1,0($s2) + la %r1,0($key2) # $key2 is not needed anymore + .long 0xb92e00aa # km $s2,$s2, generate the tweak + brc 1,.-4 # can this happen? + + l %r0,240($key1) + la %r1,0($key1) # $key1 is not needed anymore + bras $ra,_s390x_xts_km + jz .Lxts_enc_km_done + + aghi $inp,-16 # take one step back + la $i3,0($out,$inp) # put aside real $out +.Lxts_enc_km_steal: + llgc $i1,16($inp) + llgc $i2,0($out,$inp) + stc $i1,0($out,$inp) + stc $i2,16($out,$inp) + la $inp,1($inp) + brct $len,.Lxts_enc_km_steal + + la $s2,0($i3) + lghi $s3,16 + lrvgr $i1,$s0 # flip byte order + lrvgr $i2,$s1 + xg $i1,0($s2) + xg $i2,8($s2) + stg $i1,0($s2) + stg $i2,8($s2) + .long 0xb92e00aa # km $s2,$s2 + brc 1,.-4 # can this happen? + lrvgr $i1,$s0 # flip byte order + lrvgr $i2,$s1 + xg $i1,0($i3) + xg $i2,8($i3) + stg $i1,0($i3) + stg $i2,8($i3) + +.Lxts_enc_km_done: + l${g} $ra,14*$SIZE_T($sp) + st${g} $sp,$tweak($sp) # wipe tweak + st${g} $sp,$tweak($sp) + lm${g} %r6,$s3,6*$SIZE_T($sp) + br $ra +.align 16 +.Lxts_enc_software: +___ +$code.=<<___; + stm${g} %r6,$ra,6*$SIZE_T($sp) + + slgr $out,$inp + + xgr $s0,$s0 # clear upper half + xgr $s1,$s1 + lrv $s0,$stdframe+4($sp) # load secno + lrv $s1,$stdframe+0($sp) + xgr $s2,$s2 + xgr $s3,$s3 + stm${g} %r2,%r5,2*$SIZE_T($sp) + la $key,0($key2) + larl $tbl,AES_Te + bras $ra,_s390x_AES_encrypt # generate the tweak + lm${g} %r2,%r5,2*$SIZE_T($sp) + stm $s0,$s3,$tweak($sp) # save the tweak + j .Lxts_enc_enter + +.align 16 +.Lxts_enc_loop: + lrvg $s1,$tweak+0($sp) # load the tweak in little-endian + lrvg $s3,$tweak+8($sp) + lghi %r1,0x87 + srag %r0,$s3,63 # broadcast upper bit + ngr %r1,%r0 # rem + srlg %r0,$s1,63 # carry bit from lower half + sllg $s1,$s1,1 + sllg $s3,$s3,1 + xgr $s1,%r1 + ogr $s3,%r0 + lrvgr $s1,$s1 # flip byte order + lrvgr $s3,$s3 + srlg $s0,$s1,32 # smash the tweak to 4x32-bits + stg $s1,$tweak+0($sp) # save the tweak + llgfr $s1,$s1 + srlg $s2,$s3,32 + stg $s3,$tweak+8($sp) + llgfr $s3,$s3 + la $inp,16($inp) # $inp+=16 +.Lxts_enc_enter: + x $s0,0($inp) # ^=*($inp) x $s1,4($inp) x $s2,8($inp) x $s3,12($inp) + stm${g} %r2,%r3,2*$SIZE_T($sp) # only two registers are changing + la $key,0($key1) + bras $ra,_s390x_AES_encrypt + lm${g} %r2,%r5,2*$SIZE_T($sp) + x $s0,$tweak+0($sp) # ^=tweak + x $s1,$tweak+4($sp) + x $s2,$tweak+8($sp) + x $s3,$tweak+12($sp) st $s0,0($out,$inp) st $s1,4($out,$inp) st $s2,8($out,$inp) st $s3,12($out,$inp) + brct${g} $len,.Lxts_enc_loop + + llgc $len,`2*$SIZE_T-1`($sp) + nill $len,0x0f # $len%16 + jz .Lxts_enc_done + + la $i3,0($inp,$out) # put aside real $out +.Lxts_enc_steal: + llgc %r0,16($inp) + llgc %r1,0($out,$inp) + stc %r0,0($out,$inp) + stc %r1,16($out,$inp) + la $inp,1($inp) + brct $len,.Lxts_enc_steal + la $out,0($i3) # restore real $out + + # generate last tweak... + lrvg $s1,$tweak+0($sp) # load the tweak in little-endian + lrvg $s3,$tweak+8($sp) + lghi %r1,0x87 + srag %r0,$s3,63 # broadcast upper bit + ngr %r1,%r0 # rem + srlg %r0,$s1,63 # carry bit from lower half + sllg $s1,$s1,1 + sllg $s3,$s3,1 + xgr $s1,%r1 + ogr $s3,%r0 + lrvgr $s1,$s1 # flip byte order + lrvgr $s3,$s3 + srlg $s0,$s1,32 # smash the tweak to 4x32-bits + stg $s1,$tweak+0($sp) # save the tweak + llgfr $s1,$s1 + srlg $s2,$s3,32 + stg $s3,$tweak+8($sp) + llgfr $s3,$s3 + + x $s0,0($out) # ^=*(inp)|stolen cipther-text + x $s1,4($out) + x $s2,8($out) + x $s3,12($out) + st${g} $out,4*$SIZE_T($sp) + la $key,0($key1) + bras $ra,_s390x_AES_encrypt + l${g} $out,4*$SIZE_T($sp) + x $s0,`$tweak+0`($sp) # ^=tweak + x $s1,`$tweak+4`($sp) + x $s2,`$tweak+8`($sp) + x $s3,`$tweak+12`($sp) + st $s0,0($out) + st $s1,4($out) + st $s2,8($out) + st $s3,12($out) + +.Lxts_enc_done: + stg $sp,$tweak+0($sp) # wipe tweak + stg $sp,$twesk+8($sp) + lm${g} %r6,$ra,6*$SIZE_T($sp) + br $ra +.size AES_xts_encrypt,.-AES_xts_encrypt +___ +# void AES_xts_decrypt(const char *inp,char *out,size_t len, +# const AES_KEY *key1, const AES_KEY *key2,u64 secno); +# +$code.=<<___; +.globl AES_xts_decrypt +.type AES_xts_decrypt,\@function +.align 16 +AES_xts_decrypt: + xgr %r3,%r4 # flip %r3 and %r4, $out and $len + xgr %r4,%r3 + xgr %r3,%r4 +___ +$code.=<<___ if ($SIZE_T==4); + llgfr $len,$len +___ +$code.=<<___; + st${g} $len,1*$SIZE_T($sp) # save copy of $len + aghi $len,-16 + bcr 4,$ra # abort if less than zero. formally + # wrong, because $len is unsigned, + # but who can afford asking to + # process more than 2^63-1 bytes? + tmll $len,0x0f + jnz .Lxts_dec_proceed + aghi $len,16 +.Lxts_dec_proceed: +___ +$code.=<<___ if (!$softonly); + llgf %r0,240($key2) + lhi %r1,16 + clr %r0,%r1 + jl .Lxts_dec_software + stm${g} %r6,$s3,6*$SIZE_T($sp) + st${g} $ra,14*$SIZE_T($sp) + + nill $len,0xfff0 # $len&=~15 + slgr $out,$inp + + # generate the tweak value + lrvg $s0,$stdframe($sp) # load secno + lghi $s1,0 + la $s2,$tweak($sp) + lghi $s3,16 + stg $s0,0($s2) + stg $s1,8($s2) + la %r1,0($key2) # $key2 is not needed past this point + .long 0xb92e00aa # km $s2,$s2, generate the tweak + brc 1,.-4 # can this happen? + + l %r0,240($key1) + la %r1,0($key1) # $key1 is not needed anymore + + ltgr $len,$len + jz .Lxts_dec_km_short + bras $ra,_s390x_xts_km + jz .Lxts_dec_km_done + + lrvgr $s2,$s0 # make copy in reverse byte order + lrvgr $s3,$s1 + j .Lxts_dec_km_2ndtweak + +.Lxts_dec_km_short: + llgc $len,`2*$SIZE_T-1`($sp) + nill $len,0x0f # $len%=16 + lrvg $s0,$tweak+0($sp) # load the tweak + lrvg $s1,$tweak+8($sp) + lrvgr $s2,$s0 # make copy in reverse byte order + lrvgr $s3,$s1 + +.Lxts_dec_km_2ndtweak: + lghi $i1,0x87 + srag $i2,$s1,63 # broadcast upper bit + ngr $i1,$i2 # rem + srlg $i2,$s0,63 # carry bit from lower half + sllg $s0,$s0,1 + sllg $s1,$s1,1 + xgr $s0,$i1 + ogr $s1,$i2 + lrvgr $i1,$s0 # flip byte order + lrvgr $i2,$s1 + + xg $i1,0($inp) + xg $i2,8($inp) + stg $i1,0($out,$inp) + stg $i2,8($out,$inp) + la $i2,0($out,$inp) + lghi $i3,16 + .long 0xb92e0066 # km $i2,$i2 + brc 1,.-4 # can this happen? + lrvgr $i1,$s0 + lrvgr $i2,$s1 + xg $i1,0($out,$inp) + xg $i2,8($out,$inp) + stg $i1,0($out,$inp) + stg $i2,8($out,$inp) + + la $i3,0($out,$inp) # put aside real $out +.Lxts_dec_km_steal: + llgc $i1,16($inp) + llgc $i2,0($out,$inp) + stc $i1,0($out,$inp) + stc $i2,16($out,$inp) + la $inp,1($inp) + brct $len,.Lxts_dec_km_steal + + lgr $s0,$s2 + lgr $s1,$s3 + xg $s0,0($i3) + xg $s1,8($i3) + stg $s0,0($i3) + stg $s1,8($i3) + la $s0,0($i3) + lghi $s1,16 + .long 0xb92e0088 # km $s0,$s0 + brc 1,.-4 # can this happen? + xg $s2,0($i3) + xg $s3,8($i3) + stg $s2,0($i3) + stg $s3,8($i3) +.Lxts_dec_km_done: + l${g} $ra,14*$SIZE_T($sp) + st${g} $sp,$tweak($sp) # wipe tweak + st${g} $sp,$tweak($sp) + lm${g} %r6,$s3,6*$SIZE_T($sp) + br $ra +.align 16 +.Lxts_dec_software: +___ +$code.=<<___; + stm${g} %r6,$ra,6*$SIZE_T($sp) + + srlg $len,$len,4 + slgr $out,$inp + + xgr $s0,$s0 # clear upper half + xgr $s1,$s1 + lrv $s0,$stdframe+4($sp) # load secno + lrv $s1,$stdframe+0($sp) + xgr $s2,$s2 + xgr $s3,$s3 + stm${g} %r2,%r5,2*$SIZE_T($sp) + la $key,0($key2) + larl $tbl,AES_Te + bras $ra,_s390x_AES_encrypt # generate the tweak + lm${g} %r2,%r5,2*$SIZE_T($sp) + larl $tbl,AES_Td + lt${g}r $len,$len + stm $s0,$s3,$tweak($sp) # save the tweak + jz .Lxts_dec_short + j .Lxts_dec_enter + +.align 16 +.Lxts_dec_loop: + lrvg $s1,$tweak+0($sp) # load the tweak in little-endian + lrvg $s3,$tweak+8($sp) + lghi %r1,0x87 + srag %r0,$s3,63 # broadcast upper bit + ngr %r1,%r0 # rem + srlg %r0,$s1,63 # carry bit from lower half + sllg $s1,$s1,1 + sllg $s3,$s3,1 + xgr $s1,%r1 + ogr $s3,%r0 + lrvgr $s1,$s1 # flip byte order + lrvgr $s3,$s3 + srlg $s0,$s1,32 # smash the tweak to 4x32-bits + stg $s1,$tweak+0($sp) # save the tweak + llgfr $s1,$s1 + srlg $s2,$s3,32 + stg $s3,$tweak+8($sp) + llgfr $s3,$s3 +.Lxts_dec_enter: + x $s0,0($inp) # tweak^=*(inp) + x $s1,4($inp) + x $s2,8($inp) + x $s3,12($inp) + stm${g} %r2,%r3,2*$SIZE_T($sp) # only two registers are changing + la $key,0($key1) + bras $ra,_s390x_AES_decrypt + lm${g} %r2,%r5,2*$SIZE_T($sp) + x $s0,$tweak+0($sp) # ^=tweak + x $s1,$tweak+4($sp) + x $s2,$tweak+8($sp) + x $s3,$tweak+12($sp) + st $s0,0($out,$inp) + st $s1,4($out,$inp) + st $s2,8($out,$inp) + st $s3,12($out,$inp) la $inp,16($inp) - ahi $t1,1 # 32-bit increment - brct $len,.Lctr32_loop + brct${g} $len,.Lxts_dec_loop + + llgc $len,`2*$SIZE_T-1`($sp) + nill $len,0x0f # $len%16 + jz .Lxts_dec_done + + # generate pair of tweaks... + lrvg $s1,$tweak+0($sp) # load the tweak in little-endian + lrvg $s3,$tweak+8($sp) + lghi %r1,0x87 + srag %r0,$s3,63 # broadcast upper bit + ngr %r1,%r0 # rem + srlg %r0,$s1,63 # carry bit from lower half + sllg $s1,$s1,1 + sllg $s3,$s3,1 + xgr $s1,%r1 + ogr $s3,%r0 + lrvgr $i2,$s1 # flip byte order + lrvgr $i3,$s3 + stmg $i2,$i3,$tweak($sp) # save the 1st tweak + j .Lxts_dec_2ndtweak + +.align 16 +.Lxts_dec_short: + llgc $len,`2*$SIZE_T-1`($sp) + nill $len,0x0f # $len%16 + lrvg $s1,$tweak+0($sp) # load the tweak in little-endian + lrvg $s3,$tweak+8($sp) +.Lxts_dec_2ndtweak: + lghi %r1,0x87 + srag %r0,$s3,63 # broadcast upper bit + ngr %r1,%r0 # rem + srlg %r0,$s1,63 # carry bit from lower half + sllg $s1,$s1,1 + sllg $s3,$s3,1 + xgr $s1,%r1 + ogr $s3,%r0 + lrvgr $s1,$s1 # flip byte order + lrvgr $s3,$s3 + srlg $s0,$s1,32 # smash the tweak to 4x32-bits + stg $s1,$tweak-16+0($sp) # save the 2nd tweak + llgfr $s1,$s1 + srlg $s2,$s3,32 + stg $s3,$tweak-16+8($sp) + llgfr $s3,$s3 + + x $s0,0($inp) # tweak_the_2nd^=*(inp) + x $s1,4($inp) + x $s2,8($inp) + x $s3,12($inp) + stm${g} %r2,%r3,2*$SIZE_T($sp) + la $key,0($key1) + bras $ra,_s390x_AES_decrypt + lm${g} %r2,%r5,2*$SIZE_T($sp) + x $s0,$tweak-16+0($sp) # ^=tweak_the_2nd + x $s1,$tweak-16+4($sp) + x $s2,$tweak-16+8($sp) + x $s3,$tweak-16+12($sp) + st $s0,0($out,$inp) + st $s1,4($out,$inp) + st $s2,8($out,$inp) + st $s3,12($out,$inp) + la $i3,0($out,$inp) # put aside real $out +.Lxts_dec_steal: + llgc %r0,16($inp) + llgc %r1,0($out,$inp) + stc %r0,0($out,$inp) + stc %r1,16($out,$inp) + la $inp,1($inp) + brct $len,.Lxts_dec_steal + la $out,0($i3) # restore real $out + + lm $s0,$s3,$tweak($sp) # load the 1st tweak + x $s0,0($out) # tweak^=*(inp)|stolen cipher-text + x $s1,4($out) + x $s2,8($out) + x $s3,12($out) + st${g} $out,4*$SIZE_T($sp) + la $key,0($key1) + bras $ra,_s390x_AES_decrypt + l${g} $out,4*$SIZE_T($sp) + x $s0,$tweak+0($sp) # ^=tweak + x $s1,$tweak+4($sp) + x $s2,$tweak+8($sp) + x $s3,$tweak+12($sp) + st $s0,0($out) + st $s1,4($out) + st $s2,8($out) + st $s3,12($out) + stg $sp,$tweak-16+0($sp) # wipe 2nd tweak + stg $sp,$tweak-16+8($sp) +.Lxts_dec_done: + stg $sp,$tweak+0($sp) # wipe tweak + stg $sp,$twesk+8($sp) lm${g} %r6,$ra,6*$SIZE_T($sp) br $ra -.size AES_ctr32_encrypt,.-AES_ctr32_encrypt +.size AES_xts_decrypt,.-AES_xts_decrypt ___ } $code.=<<___; -.comm OPENSSL_s390xcap_P,16,8 .string "AES for s390x, CRYPTOGAMS by " +.comm OPENSSL_s390xcap_P,16,8 ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; diff --git a/crypto/bn/asm/s390x-mont.pl b/crypto/bn/asm/s390x-mont.pl index 0c5f0638e10b523364d934e9d32d8a3ec05b7861..9fd64e81eef36cbde53332d10743b934218530e5 100644 --- a/crypto/bn/asm/s390x-mont.pl +++ b/crypto/bn/asm/s390x-mont.pl @@ -41,8 +41,8 @@ # processor, as long as it's "z-CPU". Latter implies that the code # remains z/Architecture specific. Compatibility with 32-bit BN_ULONG # is achieved by swapping words after 64-bit loads, follow _dswap-s. -# On z990 it was measured to perform 2.6-2.2 times better, less for -# longer keys... +# On z990 it was measured to perform 2.6-2.2 times better than +# compiler-generated code, less for longer keys... $flavour = shift; @@ -102,8 +102,8 @@ $code.=<<___ if ($flavour =~ /3[12]/); bnzr %r14 # if ($num&1) return 0; ___ $code.=<<___ if ($flavour !~ /3[12]/); - cghi $num,128 # - bhr %r14 # if($num>128) return 0; + cghi $num,96 # + bhr %r14 # if($num>96) return 0; ___ $code.=<<___; stm${g} %r3,%r15,3*$SIZE_T($sp) diff --git a/crypto/modes/asm/ghash-s390x.pl b/crypto/modes/asm/ghash-s390x.pl index 16ad034fc12d61c165d7d21adde534ab89d09d3b..48cb08d3383b60da6a61313e2fdf603f61de3ca3 100644 --- a/crypto/modes/asm/ghash-s390x.pl +++ b/crypto/modes/asm/ghash-s390x.pl @@ -28,6 +28,15 @@ # remains z/Architecture specific. On z990 it was measured to perform # 2.8x better than 32-bit code generated by gcc 4.3. +# March 2011. +# +# Support for hardware KIMD-GHASH is verified to produce correct +# result and therefore is engaged. On z196 it was measured to process +# 8KB buffer ~7 faster than software implementation. It's not as +# impressive for smaller buffer sizes and for smallest 16-bytes buffer +# it's actually almost 2 times slower. Which is the reason why +# KIMD-GHASH is not used in gcm_gmult_4bit. + $flavour = shift; if ($flavour =~ /3[12]/) { @@ -41,7 +50,7 @@ if ($flavour =~ /3[12]/) { while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; -$softonly=1; # disable hardware support for now +$softonly=0; $Zhi="%r0"; $Zlo="%r1"; @@ -70,7 +79,7 @@ $code.=<<___; .align 32 gcm_gmult_4bit: ___ -$code.=<<___ if(!$softonly); +$code.=<<___ if(!$softonly && 0); # hardware is slow for single block... larl %r1,OPENSSL_s390xcap_P lg %r0,0(%r1) tmhl %r0,0x4000 # check for message-security-assist