#define _GNU_SOURCE #define SYSCALL_NO_TLS 1 #include "dynlink.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cfi.h" #include "dlfcn_ext.h" #include "dynlink_rand.h" #include "ld_log.h" #include "libc.h" #include "malloc_impl.h" #include "namespace.h" #include "ns_config.h" #include "pthread_impl.h" #include "strops.h" #ifdef OHOS_ENABLE_PARAMETER #include "sys_param.h" #endif #ifdef LOAD_ORDER_RANDOMIZATION #include "zip_archive.h" #endif static void error(const char *, ...); #define MAXP2(a,b) (-(-(a)&-(b))) #define ALIGN(x,y) ((x)+(y)-1 & -(y)) #define GNU_HASH_FILTER(ght, ghm, gho) \ const size_t *bloomwords = (const void *)(ght+4); \ size_t f = bloomwords[gho & (ght[2]-1)]; \ if (!(f & ghm)) continue; \ f >>= (gh >> ght[3]) % (8 * sizeof f); \ if (!(f & 1)) continue; #define container_of(p,t,m) ((t*)((char *)(p)-offsetof(t,m))) #define countof(a) ((sizeof (a))/(sizeof (a)[0])) #define DSO_FLAGS_NODELETE 0x1 #ifdef HANDLE_RANDOMIZATION #define NEXT_DYNAMIC_INDEX 2 #define MIN_DEPS_COUNT 2 #define NAME_INDEX_ZERO 0 #define NAME_INDEX_ONE 1 #define NAME_INDEX_TWO 2 #define NAME_INDEX_THREE 3 #define TLS_CNT_INCREASE 3 #define INVALID_FD_INHIBIT_FURTHER_SEARCH (-2) #endif #define PARENTS_BASE_CAPACITY 8 #define RELOC_CAN_SEARCH_DSO_BASE_CAPACITY 32 struct debug { int ver; void *head; void (*bp)(void); int state; void *base; }; struct reserved_address_params { void* start_addr; size_t reserved_size; bool must_use_reserved; bool reserved_address_recursive; #ifdef LOAD_ORDER_RANDOMIZATION struct dso *target; #endif }; typedef void (*stage3_func)(size_t *, size_t *); static struct builtin_tls { char c[8]; struct pthread pt; void *space[16]; } builtin_tls[1]; #define MIN_TLS_ALIGN offsetof(struct builtin_tls, pt) #define ADDEND_LIMIT 4096 static size_t *saved_addends, *apply_addends_to; static bool g_is_asan; static struct dso ldso; static struct dso *head, *tail, *fini_head, *syms_tail, *lazy_head; static char *env_path, *sys_path; static unsigned long long gencnt; static int runtime; static int ldd_mode; static int ldso_fail; static int noload; static int shutting_down; static jmp_buf *rtld_fail; static pthread_rwlock_t lock; static struct debug debug; static struct tls_module *tls_tail; static size_t tls_cnt, tls_offset, tls_align = MIN_TLS_ALIGN; static size_t static_tls_cnt; static pthread_mutex_t init_fini_lock; static pthread_cond_t ctor_cond; static struct dso *builtin_deps[2]; static struct dso *const no_deps[1]; static struct dso *builtin_ctor_queue[4]; static struct dso **main_ctor_queue; static struct fdpic_loadmap *app_loadmap; static struct fdpic_dummy_loadmap app_dummy_loadmap; struct debug *_dl_debug_addr = &debug; extern hidden int __malloc_replaced; hidden void (*const __init_array_start)(void)=0, (*const __fini_array_start)(void)=0; extern hidden void (*const __init_array_end)(void), (*const __fini_array_end)(void); weak_alias(__init_array_start, __init_array_end); weak_alias(__fini_array_start, __fini_array_end); #ifdef DFX_SIGNAL_LIBC static void __InstallSignalHandler() { } weak_alias(__InstallSignalHandler, DFX_InstallSignalHandler); #endif #ifdef HANDLE_RANDOMIZATION static int do_dlclose(struct dso *p); #endif #ifdef LOAD_ORDER_RANDOMIZATION static bool map_library_header(struct loadtask *task); static bool task_map_library(struct loadtask *task, struct reserved_address_params *reserved_params); static bool load_library_header(struct loadtask *task); static void task_load_library(struct loadtask *task, struct reserved_address_params *reserved_params); static void preload_direct_deps(struct dso *p, ns_t *namespace, struct loadtasks *tasks); static void unmap_preloaded_sections(struct loadtasks *tasks); static void preload_deps(struct dso *p, struct loadtasks *tasks); static void run_loadtasks(struct loadtasks *tasks, struct reserved_address_params *reserved_params); static void assign_tls(struct dso *p); static void load_preload(char *s, ns_t *ns, struct loadtasks *tasks); static void open_library_by_path(const char *name, const char *s, struct loadtask *task, struct zip_info *z_info); static void handle_asan_path_open_by_task(int fd, const char *name, ns_t *namespace, struct loadtask *task, struct zip_info *z_info); #endif /* Sharing relro */ static void handle_relro_sharing(struct dso *p, const dl_extinfo *extinfo, ssize_t *relro_fd_offset); /* asan path open */ int handle_asan_path_open(int fd, const char *name, ns_t *namespace, char *buf, size_t buf_size); /* add namespace function */ static void get_sys_path(ns_configor *conf); static void dlclose_ns(struct dso *p); static bool get_app_path(char *path, size_t size) { int l = 0; l = readlink("/proc/self/exe", path, size); if (l < 0 || l >= size) { LD_LOGD("get_app_path readlink failed!"); return false; } path[l] = 0; LD_LOGD("get_app_path path:%{public}s.", path); return true; } static void init_default_namespace(struct dso *app) { ns_t *default_ns = get_default_ns(); memset(default_ns, 0, sizeof *default_ns); ns_set_name(default_ns, NS_DEFAULT_NAME); if (env_path) ns_set_env_paths(default_ns, env_path); ns_set_lib_paths(default_ns, sys_path); ns_set_separated(default_ns, false); app->namespace = default_ns; ns_add_dso(default_ns, app); LD_LOGD("init_default_namespace default_namespace:" "nsname: default ," "lib_paths:%{public}s ," "env_path:%{public}s ," "separated: false.", sys_path, env_path); return; } static void set_ns_attrs(ns_t *ns, ns_configor *conf) { if(!ns || !conf) { return; } char *lib_paths, *asan_lib_paths, *permitted_paths, *asan_permitted_paths, *allowed_libs; ns_set_separated(ns, conf->get_separated(ns->ns_name)); lib_paths = conf->get_lib_paths(ns->ns_name); if (lib_paths) ns_set_lib_paths(ns, lib_paths); asan_lib_paths = conf->get_asan_lib_paths(ns->ns_name); if (asan_lib_paths) ns_set_asan_lib_paths(ns, asan_lib_paths); permitted_paths = conf->get_permitted_paths(ns->ns_name); if (permitted_paths) ns_set_permitted_paths(ns, permitted_paths); asan_permitted_paths = conf->get_asan_permitted_paths(ns->ns_name); if (asan_permitted_paths) ns_set_asan_permitted_paths(ns, asan_permitted_paths); allowed_libs = conf->get_allowed_libs(ns->ns_name); if (allowed_libs) ns_set_allowed_libs(ns, allowed_libs); LD_LOGD("set_ns_attrs :" "ns_name: %{public}s ," "separated:%{public}d ," "lib_paths:%{public}s ," "asan_lib_paths:%{public}s ," "permitted_paths:%{public}s ," "asan_permitted_paths:%{public}s ," "allowed_libs: %{public}s .", ns->ns_name, ns->separated, ns->lib_paths, ns->asan_lib_paths, permitted_paths, asan_permitted_paths, allowed_libs); } static void set_ns_inherits(ns_t *ns, ns_configor *conf) { if(!ns || !conf) { return; } strlist *inherits = conf->get_inherits(ns->ns_name); if (inherits) { for (size_t i=0; inum; i++) { ns_t *inherited_ns = find_ns_by_name(inherits->strs[i]); if (inherited_ns) { char *shared_libs = conf->get_inherit_shared_libs(ns->ns_name, inherited_ns->ns_name); ns_add_inherit(ns, inherited_ns, shared_libs); LD_LOGD("set_ns_inherits :" "ns_name: %{public}s ," "separated:%{public}d ," "lib_paths:%{public}s ," "asan_lib_paths:%{public}s ,", inherited_ns->ns_name, inherited_ns->separated, inherited_ns->lib_paths, inherited_ns->asan_lib_paths); } } strlist_free(inherits); } else { LD_LOGD("set_ns_inherits inherits is NULL!"); } } static void init_namespace(struct dso *app) { char app_path[PATH_MAX+1]; if (!get_app_path(app_path, sizeof app_path)) { strcpy(app_path, app->name); } char *t = strrchr(app_path, '/'); if (t) { *t = 0; } else { app_path[0] = '.'; app_path[1] = 0; } nslist *nsl = nslist_init(); ns_configor *conf = configor_init(); char file_path[sizeof "/etc/ld-musl-namespace-" + sizeof (LDSO_ARCH) + sizeof ".ini" + 1] = {0}; (void)snprintf(file_path, sizeof file_path, "/etc/ld-musl-namespace-%s.ini", LDSO_ARCH); LD_LOGI("init_namespace file_path:%{public}s", file_path); int ret = conf->parse(file_path, app_path); if (ret < 0) { LD_LOGE("init_namespace ini file parse failed!"); /* Init_default_namespace is required even if the ini file parsing fails */ if (!sys_path) get_sys_path(conf); init_default_namespace(app); configor_free(); return; } /* sys_path needs to be parsed through ini file */ if (!sys_path) get_sys_path(conf); init_default_namespace(app); /* Init default namespace */ ns_t *d_ns = get_default_ns(); set_ns_attrs(d_ns, conf); /* Init other namespace */ if (!nsl) { LD_LOGE("init nslist fail!"); configor_free(); return; } strlist *s_ns = conf->get_namespaces(); if (s_ns) { for (size_t i=0; inum; i++) { ns_t *ns = ns_alloc(); ns_set_name(ns, s_ns->strs[i]); set_ns_attrs(ns, conf); ns_add_dso(ns, app); nslist_add_ns(ns); } strlist_free(s_ns); } /* Set inherited namespace */ set_ns_inherits(d_ns, conf); for (size_t i = 0; i < nsl->num; i++) { set_ns_inherits(nsl->nss[i], conf); } configor_free(); return; } /* Compute load address for a virtual address in a given dso. */ #if DL_FDPIC void *laddr(const struct dso *p, size_t v) { size_t j=0; if (!p->loadmap) return p->base + v; for (j=0; v-p->loadmap->segs[j].p_vaddr >= p->loadmap->segs[j].p_memsz; j++); return (void *)(v - p->loadmap->segs[j].p_vaddr + p->loadmap->segs[j].addr); } static void *laddr_pg(const struct dso *p, size_t v) { size_t j=0; size_t pgsz = PAGE_SIZE; if (!p->loadmap) return p->base + v; for (j=0; ; j++) { size_t a = p->loadmap->segs[j].p_vaddr; size_t b = a + p->loadmap->segs[j].p_memsz; a &= -pgsz; b += pgsz-1; b &= -pgsz; if (v-aloadmap->segs[j].p_vaddr + p->loadmap->segs[j].addr); } static void (*fdbarrier(void *p))() { void (*fd)(); __asm__("" : "=r"(fd) : "0"(p)); return fd; } #define fpaddr(p, v) fdbarrier((&(struct funcdesc){ \ laddr(p, v), (p)->got })) #else #define laddr(p, v) (void *)((p)->base + (v)) #define laddr_pg(p, v) laddr(p, v) #define fpaddr(p, v) ((void (*)())laddr(p, v)) #endif static void decode_vec(size_t *v, size_t *a, size_t cnt) { size_t i; for (i=0; ivd_ndx & 0x7fff) == vsym) { if (vna_hash == verdef->vd_hash) { matched = 1; } break; } if (matched) { break; } if (verdef->vd_next == 0) { break; } verdef = (Verdef *)((char *)verdef + verdef->vd_next); } #if (LD_LOG_LEVEL & LD_LOG_DEBUG) if (!matched) { LD_LOGD("check_vna_hash no matched found. vsym=%{public}d vna_hash=%{public}x", vsym, vna_hash); } #endif return matched; } static int check_verinfo(Verdef *def, int16_t *versym, uint32_t index, struct verinfo *verinfo, char *strings) { /* if the versym and verinfo is null , then not need version. */ if (!versym || !def) { if (strlen(verinfo->v) == 0) { return 1; } else { LD_LOGD("check_verinfo versym or def is null and verinfo->v exist, s:%{public}s v:%{public}s.", verinfo->s, verinfo->v); return 0; } } int16_t vsym = versym[index]; /* find the verneed symbol. */ if (verinfo->use_vna_hash) { if (vsym != VER_NDX_LOCAL && versym != VER_NDX_GLOBAL) { return check_vna_hash(def, vsym, verinfo->vna_hash); } } /* if the version length is zero and vsym not less than zero, then library hava default version symbol. */ if (strlen(verinfo->v) == 0) { if (vsym >= 0) { return 1; } else { LD_LOGD("check_verinfo not default version. vsym:%{public}d s:%{public}s", vsym, verinfo->s); return 0; } } /* find the version of symbol. */ vsym &= 0x7fff; for (;;) { if (!(def->vd_flags & VER_FLG_BASE) && (def->vd_ndx & 0x7fff) == vsym) { break; } if (def->vd_next == 0) { return 0; } def = (Verdef *)((char *)def + def->vd_next); } Verdaux *aux = (Verdaux *)((char *)def + def->vd_aux); int ret = !strcmp(verinfo->v, strings + aux->vda_name); #if (LD_LOG_LEVEL & LD_LOG_DEBUG) if (!ret) { LD_LOGD("check_verinfo version not match. s=%{public}s v=%{public}s vsym=%{public}d vda_name=%{public}s", verinfo->s, verinfo->v, vsym, strings + aux->vda_name); } #endif return ret; } static struct sym_info_pair sysv_hash(const char *s0) { struct sym_info_pair s_info_p; const unsigned char *s = (void *)s0; uint_fast32_t h = 0; while (*s) { h = 16*h + *s++; h ^= h>>24 & 0xf0; } s_info_p.sym_h = h & 0xfffffff; s_info_p.sym_l = (char *)s - s0; return s_info_p; } struct sym_info_pair gnu_hash(const char *s0) { struct sym_info_pair s_info_p; const unsigned char *s = (void *)s0; uint_fast32_t h = 5381; for (; *s; s++) h += h*32 + *s; s_info_p.sym_h = h; s_info_p.sym_l = (char *)s - s0; return s_info_p; } static Sym *sysv_lookup(struct verinfo *verinfo, struct sym_info_pair s_info_p, struct dso *dso) { size_t i; uint32_t h = s_info_p.sym_h; Sym *syms = dso->syms; Elf_Symndx *hashtab = dso->hashtab; char *strings = dso->strings; for (i=hashtab[2+h%hashtab[0]]; i; i=hashtab[2+hashtab[0]+i]) { if ((!dso->versym || (dso->versym[i] & 0x7fff) >= 0) && (!memcmp(verinfo->s, strings+syms[i].st_name, s_info_p.sym_l))) { if (!check_verinfo(dso->verdef, dso->versym, i, verinfo, dso->strings)) { continue; } return syms+i; } } LD_LOGD("sysv_lookup not find the symbol, " "so:%{public}s s:%{public}s v:%{public}s use_vna_hash:%{public}d vna_hash:%{public}x", dso->name, verinfo->s, verinfo->v, verinfo->use_vna_hash, verinfo->vna_hash); return 0; } static Sym *gnu_lookup(struct sym_info_pair s_info_p, uint32_t *hashtab, struct dso *dso, struct verinfo *verinfo) { uint32_t h1 = s_info_p.sym_h; uint32_t nbuckets = hashtab[0]; uint32_t *buckets = hashtab + 4 + hashtab[2]*(sizeof(size_t)/4); uint32_t i = buckets[h1 % nbuckets]; if (!i) { LD_LOGD("gnu_lookup symbol not found (bloom filter), so:%{public}s s:%{public}s", dso->name, verinfo->s); return 0; } uint32_t *hashval = buckets + nbuckets + (i - hashtab[1]); for (h1 |= 1; ; i++) { uint32_t h2 = *hashval++; if ((h1 == (h2|1)) && (!dso->versym || (dso->versym[i] & 0x7fff) >= 0) && !memcmp(verinfo->s, dso->strings + dso->syms[i].st_name, s_info_p.sym_l)) { if (!check_verinfo(dso->verdef, dso->versym, i, verinfo, dso->strings)) { continue; } return dso->syms+i; } if (h2 & 1) break; } LD_LOGD("gnu_lookup symbol not found, " "so:%{public}s s:%{public}s v:%{public}s use_vna_hash:%{public}d vna_hash:%{public}x", dso->name, verinfo->s, verinfo->v, verinfo->use_vna_hash, verinfo->vna_hash); return 0; } static bool check_sym_accessible(struct dso *dso, ns_t *ns) { if (!dso || !dso->namespace || !ns) { LD_LOGD("check_sym_accessible invalid parameter!"); return false; } if (dso->namespace == ns) { return true; } for (int i = 0; i < dso->parents_count; i++) { if (dso->parents[i]->namespace == ns) { return true; } } LD_LOGD( "check_sym_accessible dso name [%{public}s] ns_name [%{public}s] not accessible!", dso->name, ns->ns_name); return false; } static int find_dso_parent(struct dso *p, struct dso *target) { int index = -1; for (int i = 0; i < p->parents_count; i++) { if (p->parents[i] == target) { index = i; break; } } return index; } static void add_dso_parent(struct dso *p, struct dso *parent) { int index = find_dso_parent(p, parent); if (index != -1) { return; } if (p->parents_count + 1 > p->parents_capacity) { if (p->parents_capacity == 0) { p->parents = (struct dso **)internal_malloc(sizeof(struct dso *) * PARENTS_BASE_CAPACITY); if (!p->parents) { return; } p->parents_capacity = PARENTS_BASE_CAPACITY; } else { struct dso ** realloced = (struct dso **)internal_realloc( p->parents, sizeof(struct dso *) * (p->parents_capacity + PARENTS_BASE_CAPACITY)); if (!realloced) { return; } p->parents = realloced; p->parents_capacity += PARENTS_BASE_CAPACITY; } } p->parents[p->parents_count] = parent; p->parents_count++; } static void remove_dso_parent(struct dso *p, struct dso *parent) { int index = find_dso_parent(p, parent); if (index == -1) { return; } int i; for (i = 0; i < index; i++) { p->parents[i] = p->parents[i]; } for (i = index; i < p->parents_count - 1; i++) { p->parents[i] = p->parents[i + 1]; } p->parents_count--; } static void add_reloc_can_search_dso(struct dso *p, struct dso *can_search_so) { if (p->reloc_can_search_dso_count + 1 > p->reloc_can_search_dso_capacity) { if (p->reloc_can_search_dso_capacity == 0) { p->reloc_can_search_dso_list = (struct dso **)internal_malloc(sizeof(struct dso *) * RELOC_CAN_SEARCH_DSO_BASE_CAPACITY); if (!p->reloc_can_search_dso_list) { return; } p->reloc_can_search_dso_capacity = RELOC_CAN_SEARCH_DSO_BASE_CAPACITY; } else { struct dso ** realloced = (struct dso **)internal_realloc( p->reloc_can_search_dso_list, sizeof(struct dso *) * (p->reloc_can_search_dso_capacity + RELOC_CAN_SEARCH_DSO_BASE_CAPACITY)); if (!realloced) { return; } p->reloc_can_search_dso_list = realloced; p->reloc_can_search_dso_capacity += RELOC_CAN_SEARCH_DSO_BASE_CAPACITY; } } p->reloc_can_search_dso_list[p->reloc_can_search_dso_count] = can_search_so; p->reloc_can_search_dso_count++; } static void free_reloc_can_search_dso(struct dso *p) { if (p->reloc_can_search_dso_list) { internal_free(p->reloc_can_search_dso_list); p->reloc_can_search_dso_list = NULL; p->reloc_can_search_dso_count = 0; p->reloc_can_search_dso_capacity = 0; } } /* The list of so that can be accessed during relocation include: * - The is_global flag of the so is true which means accessible by default. * Global so includes exe, ld preload so and ldso. * - We only check whether ns is accessible for the so if is_reloc_head_so_dep is true. * * How to set is_reloc_head_so_dep: * When dlopen A, we set is_reloc_head_so_dep to true for * all direct and indirect dependent sos of A, including A itself. */ static void add_can_search_so_list_in_dso(struct dso *dso_relocating, struct dso *start_check_dso) { struct dso *p = start_check_dso; for (; p; p = p->syms_next) { if (p->is_global) { add_reloc_can_search_dso(dso_relocating, p); continue; } if (p->is_reloc_head_so_dep) { if (dso_relocating->namespace && check_sym_accessible(p, dso_relocating->namespace)) { add_reloc_can_search_dso(dso_relocating, p); } } } return; } #define OK_TYPES (1<ghashtab)) { const size_t *bloomwords = (const void *)(ght + 4); size_t f = bloomwords[gho & (ght[2] - 1)]; if (!(f & ghm)) return def; f >>= (gh >> ght[3]) % (8 * sizeof f); if (!(f & 1)) return def; sym = gnu_lookup(s_info_p, ght, dso, verinfo); } else { if (!h) s_info_p = sysv_hash(verinfo->s); sym = sysv_lookup(verinfo, s_info_p, dso); } if (!sym) return def; if (!sym->st_shndx) if (need_def || (sym->st_info & 0xf) == STT_TLS || ARCH_SYM_REJECT_UND(sym)) return def; if (!sym->st_value) if ((sym->st_info & 0xf) != STT_TLS) return def; if (!(1 << (sym->st_info & 0xf) & OK_TYPES)) return def; if (!(1 << (sym->st_info >> 4) & OK_BINDS)) return def; def.sym = sym; def.dso = dso; return def; } static inline struct symdef find_sym2(struct dso *dso, struct verinfo *verinfo, int need_def, int use_deps, ns_t *ns) { struct sym_info_pair s_info_p = gnu_hash(verinfo->s); uint32_t h = 0, gh = s_info_p.sym_h, gho = gh / (8*sizeof(size_t)), *ght; size_t ghm = 1ul << gh % (8*sizeof(size_t)); struct symdef def = {0}; struct dso **deps = use_deps ? dso->deps : 0; for (; dso; dso=use_deps ? *deps++ : dso->syms_next) { Sym *sym; if (ns && !check_sym_accessible(dso, ns)) { continue; } if ((ght = dso->ghashtab)) { GNU_HASH_FILTER(ght, ghm, gho) sym = gnu_lookup(s_info_p, ght, dso, verinfo); } else { if (!h) s_info_p = sysv_hash(verinfo->s); sym = sysv_lookup(verinfo, s_info_p, dso); } if (!sym) continue; if (!sym->st_shndx) if (need_def || (sym->st_info&0xf) == STT_TLS || ARCH_SYM_REJECT_UND(sym)) continue; if (!sym->st_value) if ((sym->st_info&0xf) != STT_TLS) continue; if (!(1<<(sym->st_info&0xf) & OK_TYPES)) continue; if (!(1<<(sym->st_info>>4) & OK_BINDS)) continue; def.sym = sym; def.dso = dso; break; } return def; } static inline struct symdef find_sym_by_saved_so_list( int sym_type, struct dso *dso, struct verinfo *verinfo, int need_def, struct dso *dso_relocating) { struct sym_info_pair s_info_p = gnu_hash(verinfo->s); uint32_t h = 0, gh = s_info_p.sym_h, gho = gh / (8 * sizeof(size_t)), *ght; size_t ghm = 1ul << gh % (8 * sizeof(size_t)); struct symdef def = {0}; // skip head dso. int start_search_index = sym_type==REL_COPY ? 1 : 0; struct dso *dso_searching = 0; for (int i = start_search_index; i < dso_relocating->reloc_can_search_dso_count; i++) { dso_searching = dso_relocating->reloc_can_search_dso_list[i]; Sym *sym; if ((ght = dso_searching->ghashtab)) { GNU_HASH_FILTER(ght, ghm, gho) sym = gnu_lookup(s_info_p, ght, dso_searching, verinfo); } else { if (!h) s_info_p = sysv_hash(verinfo->s); sym = sysv_lookup(verinfo, s_info_p, dso_searching); } if (!sym) continue; if (!sym->st_shndx) if (need_def || (sym->st_info&0xf) == STT_TLS || ARCH_SYM_REJECT_UND(sym)) continue; if (!sym->st_value) if ((sym->st_info&0xf) != STT_TLS) continue; if (!(1<<(sym->st_info&0xf) & OK_TYPES)) continue; if (!(1<<(sym->st_info>>4) & OK_BINDS)) continue; def.sym = sym; def.dso = dso_searching; break; } return def; } static struct symdef find_sym(struct dso *dso, const char *s, int need_def) { struct verinfo verinfo = { .s = s, .v = "", .use_vna_hash = false }; return find_sym2(dso, &verinfo, need_def, 0, NULL); } static bool get_vna_hash(struct dso *dso, int sym_index, uint32_t *vna_hash) { if (!dso->versym || !dso->verneed) { return false; } uint16_t vsym = dso->versym[sym_index]; if (vsym == VER_NDX_LOCAL || vsym == VER_NDX_GLOBAL) { return false; } bool result = false; Verneed *verneed = dso->verneed; Vernaux *vernaux; vsym &= 0x7fff; for(;;) { vernaux = (Vernaux *)((char *)verneed + verneed->vn_aux); for (size_t cnt = 0; cnt < verneed->vn_cnt; cnt++) { if ((vernaux->vna_other & 0x7fff) == vsym) { result = true; *vna_hash = vernaux->vna_hash; break; } vernaux = (Vernaux *)((char *)vernaux + vernaux->vna_next); } if (result) { break; } if (verneed->vn_next == 0) { break; } verneed = (Verneed *)((char *)verneed + verneed->vn_next); } return result; } static void do_relocs(struct dso *dso, size_t *rel, size_t rel_size, size_t stride) { unsigned char *base = dso->base; Sym *syms = dso->syms; char *strings = dso->strings; Sym *sym; const char *name; void *ctx; int type; int sym_index; struct symdef def; size_t *reloc_addr; size_t sym_val; size_t tls_val; size_t addend; int skip_relative = 0, reuse_addends = 0, save_slot = 0; if (dso == &ldso) { /* Only ldso's REL table needs addend saving/reuse. */ if (rel == apply_addends_to) reuse_addends = 1; skip_relative = 1; } for (; rel_size; rel+=stride, rel_size-=stride*sizeof(size_t)) { if (skip_relative && IS_RELATIVE(rel[1], dso->syms)) continue; type = R_TYPE(rel[1]); if (type == REL_NONE) continue; reloc_addr = laddr(dso, rel[0]); if (stride > 2) { addend = rel[2]; } else if (type==REL_GOT || type==REL_PLT|| type==REL_COPY) { addend = 0; } else if (reuse_addends) { /* Save original addend in stage 2 where the dso * chain consists of just ldso; otherwise read back * saved addend since the inline one was clobbered. */ if (head==&ldso) saved_addends[save_slot] = *reloc_addr; addend = saved_addends[save_slot++]; } else { addend = *reloc_addr; } sym_index = R_SYM(rel[1]); if (sym_index) { sym = syms + sym_index; name = strings + sym->st_name; ctx = type==REL_COPY ? head->syms_next : head; struct verinfo vinfo = { .s = name, .v = "" }; vinfo.use_vna_hash = get_vna_hash(dso, sym_index, &vinfo.vna_hash); if (dso->cache_sym_index == sym_index) { def = (struct symdef){ .dso = dso->cache_dso, .sym = dso->cache_sym }; } else { def = (sym->st_info>>4) == STB_LOCAL ? (struct symdef){ .dso = dso, .sym = sym } : dso != &ldso ? find_sym_by_saved_so_list(type, ctx, &vinfo, type==REL_PLT, dso) : find_sym2(ctx, &vinfo, type==REL_PLT, 0, dso->namespace); dso->cache_sym_index = sym_index; dso->cache_dso = def.dso; dso->cache_sym = def.sym; } if (!def.sym && (sym->st_shndx != SHN_UNDEF || sym->st_info>>4 != STB_WEAK)) { if (dso->lazy && (type==REL_PLT || type==REL_GOT)) { dso->lazy[3*dso->lazy_cnt+0] = rel[0]; dso->lazy[3*dso->lazy_cnt+1] = rel[1]; dso->lazy[3*dso->lazy_cnt+2] = addend; dso->lazy_cnt++; continue; } LD_LOGE("relocating failed: symbol not found. " "dso=%{public}s s=%{public}s use_vna_hash=%{public}d van_hash=%{public}x", dso->name, name, vinfo.use_vna_hash, vinfo.vna_hash); error("Error relocating %s: %s: symbol not found", dso->name, name); if (runtime) longjmp(*rtld_fail, 1); continue; } } else { sym = 0; def.sym = 0; def.dso = dso; } sym_val = def.sym ? (size_t)laddr(def.dso, def.sym->st_value) : 0; tls_val = def.sym ? def.sym->st_value : 0; if ((type == REL_TPOFF || type == REL_TPOFF_NEG) && def.dso->tls_id > static_tls_cnt) { error("Error relocating %s: %s: initial-exec TLS " "resolves to dynamic definition in %s", dso->name, name, def.dso->name); longjmp(*rtld_fail, 1); } switch(type) { case REL_NONE: break; case REL_OFFSET: addend -= (size_t)reloc_addr; case REL_SYMBOLIC: case REL_GOT: case REL_PLT: *reloc_addr = sym_val + addend; break; case REL_USYMBOLIC: memcpy(reloc_addr, &(size_t){sym_val + addend}, sizeof(size_t)); break; case REL_RELATIVE: *reloc_addr = (size_t)base + addend; break; case REL_SYM_OR_REL: if (sym) *reloc_addr = sym_val + addend; else *reloc_addr = (size_t)base + addend; break; case REL_COPY: memcpy(reloc_addr, (void *)sym_val, sym->st_size); break; case REL_OFFSET32: *(uint32_t *)reloc_addr = sym_val + addend - (size_t)reloc_addr; break; case REL_FUNCDESC: *reloc_addr = def.sym ? (size_t)(def.dso->funcdescs + (def.sym - def.dso->syms)) : 0; break; case REL_FUNCDESC_VAL: if ((sym->st_info&0xf) == STT_SECTION) *reloc_addr += sym_val; else *reloc_addr = sym_val; reloc_addr[1] = def.sym ? (size_t)def.dso->got : 0; break; case REL_DTPMOD: *reloc_addr = def.dso->tls_id; break; case REL_DTPOFF: *reloc_addr = tls_val + addend - DTP_OFFSET; break; #ifdef TLS_ABOVE_TP case REL_TPOFF: *reloc_addr = tls_val + def.dso->tls.offset + TPOFF_K + addend; break; #else case REL_TPOFF: *reloc_addr = tls_val - def.dso->tls.offset + addend; break; case REL_TPOFF_NEG: *reloc_addr = def.dso->tls.offset - tls_val + addend; break; #endif case REL_TLSDESC: if (stride<3) addend = reloc_addr[1]; if (def.dso->tls_id > static_tls_cnt) { struct td_index *new = internal_malloc(sizeof *new); if (!new) { error( "Error relocating %s: cannot allocate TLSDESC for %s", dso->name, sym ? name : "(local)" ); longjmp(*rtld_fail, 1); } new->next = dso->td_index; dso->td_index = new; new->args[0] = def.dso->tls_id; new->args[1] = tls_val + addend - DTP_OFFSET; reloc_addr[0] = (size_t)__tlsdesc_dynamic; reloc_addr[1] = (size_t)new; } else { reloc_addr[0] = (size_t)__tlsdesc_static; #ifdef TLS_ABOVE_TP reloc_addr[1] = tls_val + def.dso->tls.offset + TPOFF_K + addend; #else reloc_addr[1] = tls_val - def.dso->tls.offset + addend; #endif } #ifdef TLSDESC_BACKWARDS /* Some archs (32-bit ARM at least) invert the order of * the descriptor members. Fix them up here. */ size_t tmp = reloc_addr[0]; reloc_addr[0] = reloc_addr[1]; reloc_addr[1] = tmp; #endif break; default: error("Error relocating %s: unsupported relocation type %d", dso->name, type); if (runtime) longjmp(*rtld_fail, 1); continue; } } } static void redo_lazy_relocs() { struct dso *p = lazy_head, *next; lazy_head = 0; for (; p; p=next) { next = p->lazy_next; size_t size = p->lazy_cnt*3*sizeof(size_t); p->lazy_cnt = 0; do_relocs(p, p->lazy, size, 3); if (p->lazy_cnt) { p->lazy_next = lazy_head; lazy_head = p; } else { internal_free(p->lazy); p->lazy = 0; p->lazy_next = 0; } } } /* A huge hack: to make up for the wastefulness of shared libraries * needing at least a page of dirty memory even if they have no global * data, we reclaim the gaps at the beginning and end of writable maps * and "donate" them to the heap. */ static void reclaim(struct dso *dso, size_t start, size_t end) { if (start >= dso->relro_start && start < dso->relro_end) start = dso->relro_end; if (end >= dso->relro_start && end < dso->relro_end) end = dso->relro_start; if (start >= end) return; char *base = laddr_pg(dso, start); __malloc_donate(base, base+(end-start)); } static void reclaim_gaps(struct dso *dso) { Phdr *ph = dso->phdr; size_t phcnt = dso->phnum; for (; phcnt--; ph=(void *)((char *)ph+dso->phentsize)) { if (ph->p_type!=PT_LOAD) continue; if ((ph->p_flags&(PF_R|PF_W))!=(PF_R|PF_W)) continue; reclaim(dso, ph->p_vaddr & -PAGE_SIZE, ph->p_vaddr); reclaim(dso, ph->p_vaddr+ph->p_memsz, ph->p_vaddr+ph->p_memsz+PAGE_SIZE-1 & -PAGE_SIZE); } } static void *mmap_fixed(void *p, size_t n, int prot, int flags, int fd, off_t off) { static int no_map_fixed; char *q; if (!no_map_fixed) { q = mmap(p, n, prot, flags|MAP_FIXED, fd, off); if (!DL_NOMMU_SUPPORT || q != MAP_FAILED || errno != EINVAL) return q; no_map_fixed = 1; } /* Fallbacks for MAP_FIXED failure on NOMMU kernels. */ if (flags & MAP_ANONYMOUS) { memset(p, 0, n); return p; } ssize_t r; if (lseek(fd, off, SEEK_SET) < 0) return MAP_FAILED; for (q=p; n; q+=r, off+=r, n-=r) { r = read(fd, q, n); if (r < 0 && errno != EINTR) return MAP_FAILED; if (!r) { memset(q, 0, n); break; } } return p; } static void unmap_library(struct dso *dso) { if (dso->loadmap) { size_t i; for (i=0; iloadmap->nsegs; i++) { if (!dso->loadmap->segs[i].p_memsz) continue; if (!is_dlclose_debug_enable()) { munmap((void *)dso->loadmap->segs[i].addr, dso->loadmap->segs[i].p_memsz); } else { (void)mprotect((void *)dso->loadmap->segs[i].addr, dso->loadmap->segs[i].p_memsz, PROT_NONE); } } internal_free(dso->loadmap); } else if (dso->map && dso->map_len) { if (!is_dlclose_debug_enable()) { munmap(dso->map, dso->map_len); } else { mprotect(dso->map, dso->map_len, PROT_NONE); } } } static bool get_random(void *buf, size_t buflen) { int ret; int fd = open("/dev/urandom", O_RDONLY); if (fd < 0) { return false; } ret = read(fd, buf, buflen); if (ret < 0) { close(fd); return false; } close(fd); return true; } static void fill_random_data(void *buf, size_t buflen) { uint64_t x; int i; int pos = 0; struct timespec ts; /* Try to use urandom to get the random number first */ if (!get_random(buf, buflen)) { /* Can't get random number from /dev/urandom, generate from addr based on ASLR and time */ for (i = 1; i <= (buflen / sizeof(x)); i++) { (void)clock_gettime(CLOCK_REALTIME, &ts); x = (((uint64_t)get_random) << 32) ^ (uint64_t)fill_random_data ^ ts.tv_nsec; memcpy((char *)buf + pos, &x, sizeof(x)); pos += sizeof(x); } } return; } static void *map_library(int fd, struct dso *dso, struct reserved_address_params *reserved_params) { Ehdr buf[(896+sizeof(Ehdr))/sizeof(Ehdr)]; void *allocated_buf=0; size_t phsize; size_t addr_min=SIZE_MAX, addr_max=0, map_len; size_t this_min, this_max; size_t nsegs = 0; off_t off_start; Ehdr *eh; Phdr *ph, *ph0; unsigned prot; unsigned char *map=MAP_FAILED, *base; size_t dyn=0; size_t tls_image=0; size_t i; int map_flags = MAP_PRIVATE; size_t start_addr; ssize_t l = read(fd, buf, sizeof buf); eh = buf; if (l<0) return 0; if (le_type != ET_DYN && eh->e_type != ET_EXEC)) goto noexec; phsize = eh->e_phentsize * eh->e_phnum; if (phsize > sizeof buf - sizeof *eh) { allocated_buf = internal_malloc(phsize); if (!allocated_buf) return 0; l = pread(fd, allocated_buf, phsize, eh->e_phoff); if (l < 0) goto error; if (l != phsize) goto noexec; ph = ph0 = allocated_buf; } else if (eh->e_phoff + phsize > l) { l = pread(fd, buf+1, phsize, eh->e_phoff); if (l < 0) goto error; if (l != phsize) goto noexec; ph = ph0 = (void *)(buf + 1); } else { ph = ph0 = (void *)((char *)buf + eh->e_phoff); } for (i=eh->e_phnum; i; i--, ph=(void *)((char *)ph+eh->e_phentsize)) { if (ph->p_type == PT_DYNAMIC) { dyn = ph->p_vaddr; } else if (ph->p_type == PT_TLS) { tls_image = ph->p_vaddr; dso->tls.align = ph->p_align; dso->tls.len = ph->p_filesz; dso->tls.size = ph->p_memsz; } else if (ph->p_type == PT_GNU_RELRO) { dso->relro_start = ph->p_vaddr & -PAGE_SIZE; dso->relro_end = (ph->p_vaddr + ph->p_memsz) & -PAGE_SIZE; } else if (ph->p_type == PT_GNU_STACK) { if (!runtime && ph->p_memsz > __default_stacksize) { __default_stacksize = ph->p_memsz < DEFAULT_STACK_MAX ? ph->p_memsz : DEFAULT_STACK_MAX; } } if (ph->p_type != PT_LOAD) continue; nsegs++; if (ph->p_vaddr < addr_min) { addr_min = ph->p_vaddr; off_start = ph->p_offset; prot = (((ph->p_flags&PF_R) ? PROT_READ : 0) | ((ph->p_flags&PF_W) ? PROT_WRITE: 0) | ((ph->p_flags&PF_X) ? PROT_EXEC : 0)); } if (ph->p_vaddr+ph->p_memsz > addr_max) { addr_max = ph->p_vaddr+ph->p_memsz; } } if (!dyn) goto noexec; if (DL_FDPIC && !(eh->e_flags & FDPIC_CONSTDISP_FLAG)) { dso->loadmap = internal_calloc(1, sizeof *dso->loadmap + nsegs * sizeof *dso->loadmap->segs); if (!dso->loadmap) goto error; dso->loadmap->nsegs = nsegs; for (ph=ph0, i=0; ie_phentsize)) { if (ph->p_type != PT_LOAD) continue; prot = (((ph->p_flags&PF_R) ? PROT_READ : 0) | ((ph->p_flags&PF_W) ? PROT_WRITE: 0) | ((ph->p_flags&PF_X) ? PROT_EXEC : 0)); map = mmap(0, ph->p_memsz + (ph->p_vaddr & PAGE_SIZE-1), prot, MAP_PRIVATE, fd, ph->p_offset & -PAGE_SIZE); if (map == MAP_FAILED) { unmap_library(dso); goto error; } dso->loadmap->segs[i].addr = (size_t)map + (ph->p_vaddr & PAGE_SIZE-1); dso->loadmap->segs[i].p_vaddr = ph->p_vaddr; dso->loadmap->segs[i].p_memsz = ph->p_memsz; i++; if (prot & PROT_WRITE) { size_t brk = (ph->p_vaddr & PAGE_SIZE-1) + ph->p_filesz; size_t pgbrk = brk + PAGE_SIZE-1 & -PAGE_SIZE; size_t pgend = brk + ph->p_memsz - ph->p_filesz + PAGE_SIZE-1 & -PAGE_SIZE; if (pgend > pgbrk && mmap_fixed(map+pgbrk, pgend-pgbrk, prot, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, off_start) == MAP_FAILED) goto error; memset(map + brk, 0, pgbrk-brk); } } map = (void *)dso->loadmap->segs[0].addr; map_len = 0; goto done_mapping; } addr_max += PAGE_SIZE-1; addr_max &= -PAGE_SIZE; addr_min &= -PAGE_SIZE; off_start &= -PAGE_SIZE; map_len = addr_max - addr_min + off_start; start_addr = addr_min; if (reserved_params) { if (map_len > reserved_params->reserved_size) { if (reserved_params->must_use_reserved) { goto error; } } else { start_addr = ((size_t)reserved_params->start_addr - 1 + PAGE_SIZE) & -PAGE_SIZE; map_flags |= MAP_FIXED; } } /* we will find a LIBRARY_ALIGNMENT aligned address as the start of dso * so we need a tmp_map_len as map_len + LIBRARY_ALIGNMENT to make sure * we have enough space to shift the dso to the correct location*/ size_t tmp_map_len = ALIGN(map_len, LIBRARY_ALIGNMENT) + LIBRARY_ALIGNMENT - PAGE_SIZE; /* if reserved_params exists, we should use start_addr as prefered result to do the mmap operation */ if (reserved_params) { map = DL_NOMMU_SUPPORT ? mmap((void *)start_addr, map_len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) : mmap((void *)start_addr, map_len, prot, map_flags, fd, off_start); if (map == MAP_FAILED) { goto error; } if (reserved_params && map_len < reserved_params->reserved_size) { reserved_params->reserved_size -= (map_len + (start_addr - (size_t)reserved_params->start_addr)); reserved_params->start_addr = (void *)((uint8_t *)map + map_len); } /* if reserved_params does not exist, we should use real_map as prefered result to do the mmap operation */ } else { /* use tmp_map_len to mmap enough space for the dso with anonymous mapping */ unsigned char *temp_map = mmap((void *)NULL, tmp_map_len, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (temp_map == MAP_FAILED) { goto error; } /* find the LIBRARY_ALIGNMENT aligned address */ unsigned char *real_map = (unsigned char*)ALIGN((uintptr_t)temp_map, LIBRARY_ALIGNMENT); /* mummap the space we mmap before so that we can mmap correct space again */ munmap(temp_map, tmp_map_len); map = DL_NOMMU_SUPPORT ? mmap(real_map, map_len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) /* use map_len to mmap correct space for the dso with file mapping */ : mmap(real_map, map_len, prot, map_flags, fd, off_start); if (map == MAP_FAILED) { goto error; } } dso->map = map; dso->map_len = map_len; /* If the loaded file is not relocatable and the requested address is * not available, then the load operation must fail. */ if (eh->e_type != ET_DYN && addr_min && map!=(void *)addr_min) { errno = EBUSY; goto error; } base = map - addr_min; dso->phdr = 0; dso->phnum = 0; for (ph=ph0, i=eh->e_phnum; i; i--, ph=(void *)((char *)ph+eh->e_phentsize)) { if (ph->p_type == PT_OHOS_RANDOMDATA) { fill_random_data((void *)(ph->p_vaddr + base), ph->p_memsz); continue; } if (ph->p_type != PT_LOAD) continue; /* Check if the programs headers are in this load segment, and * if so, record the address for use by dl_iterate_phdr. */ if (!dso->phdr && eh->e_phoff >= ph->p_offset && eh->e_phoff+phsize <= ph->p_offset+ph->p_filesz) { dso->phdr = (void *)(base + ph->p_vaddr + (eh->e_phoff-ph->p_offset)); dso->phnum = eh->e_phnum; dso->phentsize = eh->e_phentsize; } this_min = ph->p_vaddr & -PAGE_SIZE; this_max = ph->p_vaddr+ph->p_memsz+PAGE_SIZE-1 & -PAGE_SIZE; off_start = ph->p_offset & -PAGE_SIZE; prot = (((ph->p_flags&PF_R) ? PROT_READ : 0) | ((ph->p_flags&PF_W) ? PROT_WRITE: 0) | ((ph->p_flags&PF_X) ? PROT_EXEC : 0)); /* Reuse the existing mapping for the lowest-address LOAD */ if ((ph->p_vaddr & -PAGE_SIZE) != addr_min || DL_NOMMU_SUPPORT) if (mmap_fixed(base+this_min, this_max-this_min, prot, MAP_PRIVATE|MAP_FIXED, fd, off_start) == MAP_FAILED) goto error; if (ph->p_memsz > ph->p_filesz && (ph->p_flags&PF_W)) { size_t brk = (size_t)base+ph->p_vaddr+ph->p_filesz; size_t pgbrk = brk+PAGE_SIZE-1 & -PAGE_SIZE; memset((void *)brk, 0, pgbrk-brk & PAGE_SIZE-1); if (pgbrk-(size_t)base < this_max && mmap_fixed((void *)pgbrk, (size_t)base+this_max-pgbrk, prot, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) == MAP_FAILED) goto error; } } for (i=0; ((size_t *)(base+dyn))[i]; i+=2) if (((size_t *)(base+dyn))[i]==DT_TEXTREL) { if (mprotect(map, map_len, PROT_READ|PROT_WRITE|PROT_EXEC) && errno != ENOSYS) goto error; break; } done_mapping: dso->base = base; dso->dynv = laddr(dso, dyn); if (dso->tls.size) dso->tls.image = laddr(dso, tls_image); internal_free(allocated_buf); return map; noexec: errno = ENOEXEC; error: if (map!=MAP_FAILED) unmap_library(dso); internal_free(allocated_buf); return 0; } static int path_open(const char *name, const char *s, char *buf, size_t buf_size) { size_t l; int fd; for (;;) { s += strspn(s, ":\n"); l = strcspn(s, ":\n"); if (l-1 >= INT_MAX) return -1; if (snprintf(buf, buf_size, "%.*s/%s", (int)l, s, name) < buf_size) { if ((fd = open(buf, O_RDONLY|O_CLOEXEC))>=0) return fd; switch (errno) { case ENOENT: case ENOTDIR: case EACCES: case ENAMETOOLONG: break; default: /* Any negative value but -1 will inhibit * futher path search. */ return -2; } } s += l; } } static int fixup_rpath(struct dso *p, char *buf, size_t buf_size) { size_t n, l; const char *s, *t, *origin; char *d; if (p->rpath || !p->rpath_orig) return 0; if (!strchr(p->rpath_orig, '$')) { p->rpath = p->rpath_orig; return 0; } n = 0; s = p->rpath_orig; while ((t=strchr(s, '$'))) { if (strncmp(t, "$ORIGIN", 7) && strncmp(t, "${ORIGIN}", 9)) return 0; s = t+1; n++; } if (n > SSIZE_MAX/PATH_MAX) return 0; if (p->kernel_mapped) { /* $ORIGIN searches cannot be performed for the main program * when it is suid/sgid/AT_SECURE. This is because the * pathname is under the control of the caller of execve. * For libraries, however, $ORIGIN can be processed safely * since the library's pathname came from a trusted source * (either system paths or a call to dlopen). */ if (libc.secure) return 0; l = readlink("/proc/self/exe", buf, buf_size); if (l == -1) switch (errno) { case ENOENT: case ENOTDIR: case EACCES: break; default: return -1; } if (l >= buf_size) return 0; buf[l] = 0; origin = buf; } else { origin = p->name; } t = strrchr(origin, '/'); if (t) { l = t-origin; } else { /* Normally p->name will always be an absolute or relative * pathname containing at least one '/' character, but in the * case where ldso was invoked as a command to execute a * program in the working directory, app.name may not. Fix. */ origin = "."; l = 1; } /* Disallow non-absolute origins for suid/sgid/AT_SECURE. */ if (libc.secure && *origin != '/') return 0; p->rpath = internal_malloc(strlen(p->rpath_orig) + n*l + 1); if (!p->rpath) return -1; d = p->rpath; s = p->rpath_orig; while ((t=strchr(s, '$'))) { memcpy(d, s, t-s); d += t-s; memcpy(d, origin, l); d += l; /* It was determined previously that the '$' is followed * either by "ORIGIN" or "{ORIGIN}". */ s = t + 7 + 2*(t[1]=='{'); } strcpy(d, s); return 0; } static void decode_dyn(struct dso *p) { size_t dyn[DYN_CNT]; decode_vec(p->dynv, dyn, DYN_CNT); p->syms = laddr(p, dyn[DT_SYMTAB]); p->strings = laddr(p, dyn[DT_STRTAB]); if (dyn[0]&(1<hashtab = laddr(p, dyn[DT_HASH]); if (dyn[0]&(1<rpath_orig = p->strings + dyn[DT_RPATH]; if (dyn[0]&(1<rpath_orig = p->strings + dyn[DT_RUNPATH]; if (dyn[0]&(1<got = laddr(p, dyn[DT_PLTGOT]); if (search_vec(p->dynv, dyn, DT_GNU_HASH)) p->ghashtab = laddr(p, *dyn); if (search_vec(p->dynv, dyn, DT_VERSYM)) p->versym = laddr(p, *dyn); if (search_vec(p->dynv, dyn, DT_VERDEF)) p->verdef = laddr(p, *dyn); if (search_vec(p->dynv, dyn, DT_VERNEED)) p->verneed = laddr(p, *dyn); } static size_t count_syms(struct dso *p) { if (p->hashtab) return p->hashtab[1]; size_t nsym, i; uint32_t *buckets = p->ghashtab + 4 + (p->ghashtab[2]*sizeof(size_t)/4); uint32_t *hashval; for (i = nsym = 0; i < p->ghashtab[0]; i++) { if (buckets[i] > nsym) nsym = buckets[i]; } if (nsym) { hashval = buckets + p->ghashtab[0] + (nsym - p->ghashtab[1]); do nsym++; while (!(*hashval++ & 1)); } return nsym; } static void *dl_mmap(size_t n) { void *p; int prot = PROT_READ|PROT_WRITE, flags = MAP_ANONYMOUS|MAP_PRIVATE; #ifdef SYS_mmap2 p = (void *)__syscall(SYS_mmap2, 0, n, prot, flags, -1, 0); #else p = (void *)__syscall(SYS_mmap, 0, n, prot, flags, -1, 0); #endif return (unsigned long)p > -4096UL ? 0 : p; } static void makefuncdescs(struct dso *p) { static int self_done; size_t nsym = count_syms(p); size_t i, size = nsym * sizeof(*p->funcdescs); if (!self_done) { p->funcdescs = dl_mmap(size); self_done = 1; } else { p->funcdescs = internal_malloc(size); } if (!p->funcdescs) { if (!runtime) a_crash(); error("Error allocating function descriptors for %s", p->name); longjmp(*rtld_fail, 1); } for (i=0; isyms[i].st_info&0xf)==STT_FUNC && p->syms[i].st_shndx) { p->funcdescs[i].addr = laddr(p, p->syms[i].st_value); p->funcdescs[i].got = p->got; } else { p->funcdescs[i].addr = 0; p->funcdescs[i].got = 0; } } } static void get_sys_path(ns_configor *conf) { LD_LOGD("get_sys_path g_is_asan:%{public}d", g_is_asan); /* Use ini file's system paths when Asan is not enabled */ if (!g_is_asan) { sys_path = conf->get_sys_paths(); } else { /* Use ini file's asan system paths when the Asan is enabled * Merge two strings when both sys_paths and asan_sys_paths are valid */ sys_path = conf->get_asan_sys_paths(); char *sys_path_default = conf->get_sys_paths(); if (!sys_path) { sys_path = sys_path_default; } else if (sys_path_default) { size_t newlen = strlen(sys_path) + strlen(sys_path_default) + 2; char *new_syspath = internal_malloc(newlen); memset(new_syspath, 0, newlen); strcpy(new_syspath, sys_path); strcat(new_syspath, ":"); strcat(new_syspath, sys_path_default); sys_path = new_syspath; } } if (!sys_path) sys_path = "/lib:/usr/local/lib:/usr/lib:/lib64"; LD_LOGD("get_sys_path sys_path:%{public}s", sys_path); } static struct dso *search_dso_by_name(const char *name, const ns_t *ns) { LD_LOGD("search_dso_by_name name:%{public}s, ns_name:%{public}s", name, ns ? ns->ns_name: "NULL"); for (size_t i = 0; i < ns->ns_dsos->num; i++){ struct dso *p = ns->ns_dsos->dsos[i]; if (p->shortname && !strcmp(p->shortname, name)) { LD_LOGD("search_dso_by_name found name:%{public}s, ns_name:%{public}s", name, ns ? ns->ns_name: "NULL"); return p; } } return NULL; } static struct dso *search_dso_by_fstat(const struct stat *st, const ns_t *ns, uint64_t file_offset) { LD_LOGD("search_dso_by_fstat ns_name:%{public}s", ns ? ns->ns_name : "NULL"); for (size_t i = 0; i < ns->ns_dsos->num; i++){ struct dso *p = ns->ns_dsos->dsos[i]; if (p->dev == st->st_dev && p->ino == st->st_ino && p->file_offset == file_offset) { LD_LOGD("search_dso_by_fstat found dev:%{public}lu, ino:%{public}lu, ns_name:%{public}s", st->st_dev, st->st_ino, ns ? ns->ns_name : "NULL"); return p; } } return NULL; } /* Find loaded so by name */ static struct dso *find_library_by_name(const char *name, const ns_t *ns, bool check_inherited) { LD_LOGD("find_library_by_name name:%{public}s, ns_name:%{public}s, check_inherited:%{public}d", name, ns ? ns->ns_name : "NULL", !!check_inherited); struct dso *p = search_dso_by_name(name, ns); if (p) return p; if (check_inherited && ns->ns_inherits) { for (size_t i = 0; i < ns->ns_inherits->num; i++){ ns_inherit * inherit = ns->ns_inherits->inherits[i]; p = search_dso_by_name(name, inherit->inherited_ns); if (p && is_sharable(inherit, name)) return p; } } return NULL; } /* Find loaded so by file stat */ static struct dso *find_library_by_fstat(const struct stat *st, const ns_t *ns, bool check_inherited, uint64_t file_offset) { LD_LOGD("find_library_by_fstat ns_name:%{public}s, check_inherited :%{public}d", ns ? ns->ns_name : "NULL", !!check_inherited); struct dso *p = search_dso_by_fstat(st, ns, file_offset); if (p) return p; if (check_inherited && ns->ns_inherits) { for (size_t i = 0; i < ns->ns_inherits->num; i++){ ns_inherit *inherit = ns->ns_inherits->inherits[i]; p = search_dso_by_fstat(st, inherit->inherited_ns, file_offset); if (p && is_sharable(inherit, p->shortname)) return p; } } return NULL; } #ifndef LOAD_ORDER_RANDOMIZATION /* add namespace function */ struct dso *load_library( const char *name, struct dso *needed_by, ns_t *namespace, bool check_inherited, struct reserved_address_params *reserved_params) { char buf[PATH_MAX+1]; const char *pathname; unsigned char *map; struct dso *p, temp_dso = {0}; int fd; struct stat st; size_t alloc_size; int n_th = 0; int is_self = 0; if (!*name) { errno = EINVAL; return 0; } /* Catch and block attempts to reload the implementation itself */ if (name[0]=='l' && name[1]=='i' && name[2]=='b') { static const char reserved[] = "c.pthread.rt.m.dl.util.xnet."; const char *rp, *next; for (rp=reserved; *rp; rp=next) { next = strchr(rp, '.') + 1; if (strncmp(name+3, rp, next-rp) == 0) break; } if (*rp) { if (ldd_mode) { /* Track which names have been resolved * and only report each one once. */ static unsigned reported; unsigned mask = 1U<<(rp-reserved); if (!(reported & mask)) { reported |= mask; dprintf(1, "\t%s => %s (%p)\n", name, ldso.name, ldso.base); } } is_self = 1; } } if (!strcmp(name, ldso.name)) is_self = 1; if (is_self) { if (!ldso.prev) { tail->next = &ldso; ldso.prev = tail; tail = &ldso; ldso.namespace = namespace; ns_add_dso(namespace, &ldso); } return &ldso; } if (strchr(name, '/')) { pathname = name; if (!is_accessible(namespace, pathname, g_is_asan, check_inherited)) { fd = -1; LD_LOGD("load_library is_accessible return false,fd = -1"); } else { fd = open(name, O_RDONLY|O_CLOEXEC); LD_LOGD("load_library is_accessible return true, open file fd:%{public}d .", fd); } } else { /* Search for the name to see if it's already loaded */ /* Search in namespace */ p = find_library_by_name(name, namespace, check_inherited); if (p) { LD_LOGD("load_library find_library_by_name found p, return it!"); return p; } if (strlen(name) > NAME_MAX) { LD_LOGE("load_library name exceeding the maximum length, return 0!"); return 0; } fd = -1; if (namespace->env_paths) fd = path_open(name, namespace->env_paths, buf, sizeof buf); for (p = needed_by; fd == -1 && p; p = p->needed_by) { if (fixup_rpath(p, buf, sizeof buf) < 0) { LD_LOGD("load_library Inhibit further search,fd = -2."); fd = -2; /* Inhibit further search. */ } if (p->rpath) { fd = path_open(name, p->rpath, buf, sizeof buf); LD_LOGD("load_library p->rpath path_open fd:%{public}d.", fd); } } if (g_is_asan) { fd = handle_asan_path_open(fd, name, namespace, buf, sizeof buf); LD_LOGD("load_library handle_asan_path_open fd:%{public}d.", fd); } else { if (fd == -1 && namespace->lib_paths) { fd = path_open(name, namespace->lib_paths, buf, sizeof buf); LD_LOGD("load_library no asan lib_paths path_open fd:%{public}d.", fd); } } pathname = buf; LD_LOGD("load_library lib_paths pathname:%{public}s.", pathname); } if (fd < 0) { if (!check_inherited || !namespace->ns_inherits) return 0; /* Load lib in inherited namespace. Do not check inherited again.*/ for (size_t i = 0; i < namespace->ns_inherits->num; i++) { ns_inherit *inherit = namespace->ns_inherits->inherits[i]; if (strchr(name, '/')==0 && !is_sharable(inherit, name)) continue; p = load_library(name, needed_by, inherit->inherited_ns, false, reserved_params); if (p) { LD_LOGD("load_library search in inherited, found p ,inherited_ns name:%{public}s", inherit->inherited_ns->ns_name); return p; } } return 0; } if (fstat(fd, &st) < 0) { close(fd); LD_LOGE("load_library fstat < 0,return 0!"); return 0; } /* Search in namespace */ p = find_library_by_fstat(&st, namespace, check_inherited, 0); if (p) { /* If this library was previously loaded with a * pathname but a search found the same inode, * setup its shortname so it can be found by name. */ if (!p->shortname && pathname != name) p->shortname = strrchr(p->name, '/')+1; close(fd); LD_LOGD("load_library find_library_by_fstat, found p and return it!"); return p; } map = noload ? 0 : map_library(fd, &temp_dso, reserved_params); close(fd); if (!map) return 0; /* Avoid the danger of getting two versions of libc mapped into the * same process when an absolute pathname was used. The symbols * checked are chosen to catch both musl and glibc, and to avoid * false positives from interposition-hack libraries. */ decode_dyn(&temp_dso); if (find_sym(&temp_dso, "__libc_start_main", 1).sym && find_sym(&temp_dso, "stdin", 1).sym) { unmap_library(&temp_dso); return load_library("libc.so", needed_by, namespace, true, reserved_params); } /* Past this point, if we haven't reached runtime yet, ldso has * committed either to use the mapped library or to abort execution. * Unmapping is not possible, so we can safely reclaim gaps. */ if (!runtime) reclaim_gaps(&temp_dso); /* Allocate storage for the new DSO. When there is TLS, this * storage must include a reservation for all pre-existing * threads to obtain copies of both the new TLS, and an * extended DTV capable of storing an additional slot for * the newly-loaded DSO. */ alloc_size = sizeof *p + strlen(pathname) + 1; if (runtime && temp_dso.tls.image) { size_t per_th = temp_dso.tls.size + temp_dso.tls.align + sizeof(void *) * (tls_cnt+3); n_th = libc.threads_minus_1 + 1; if (n_th > SSIZE_MAX / per_th) alloc_size = SIZE_MAX; else alloc_size += n_th * per_th; } p = internal_calloc(1, alloc_size); if (!p) { unmap_library(&temp_dso); return 0; } memcpy(p, &temp_dso, sizeof temp_dso); p->dev = st.st_dev; p->ino = st.st_ino; p->needed_by = needed_by; p->name = p->buf; p->runtime_loaded = runtime; strcpy(p->name, pathname); /* Add a shortname only if name arg was not an explicit pathname. */ if (pathname != name) p->shortname = strrchr(p->name, '/')+1; if (p->tls.image) { p->tls_id = ++tls_cnt; tls_align = MAXP2(tls_align, p->tls.align); #ifdef TLS_ABOVE_TP p->tls.offset = tls_offset + ( (p->tls.align-1) & (-tls_offset + (uintptr_t)p->tls.image) ); tls_offset = p->tls.offset + p->tls.size; #else tls_offset += p->tls.size + p->tls.align - 1; tls_offset -= (tls_offset + (uintptr_t)p->tls.image) & (p->tls.align-1); p->tls.offset = tls_offset; #endif p->new_dtv = (void *)(-sizeof(size_t) & (uintptr_t)(p->name+strlen(p->name)+sizeof(size_t))); p->new_tls = (void *)(p->new_dtv + n_th*(tls_cnt+1)); if (tls_tail) tls_tail->next = &p->tls; else libc.tls_head = &p->tls; tls_tail = &p->tls; } tail->next = p; p->prev = tail; tail = p; /* Add dso to namespace */ p->namespace = namespace; ns_add_dso(namespace, p); if (runtime) p->by_dlopen = 1; if (DL_FDPIC) makefuncdescs(p); if (ldd_mode) dprintf(1, "\t%s => %s (%p)\n", name, pathname, p->base); return p; } static void load_direct_deps(struct dso *p, ns_t *namespace, struct reserved_address_params *reserved_params) { size_t i, cnt=0; if (p->deps) return; /* For head, all preloads are direct pseudo-dependencies. * Count and include them now to avoid realloc later. */ if (p==head) for (struct dso *q=p->next; q; q=q->next) cnt++; for (i=0; p->dynv[i]; i+=2) if (p->dynv[i] == DT_NEEDED) cnt++; /* Use builtin buffer for apps with no external deps, to * preserve property of no runtime failure paths. */ p->deps = (p==head && cnt<2) ? builtin_deps : internal_calloc(cnt+1, sizeof *p->deps); if (!p->deps) { error("Error loading dependencies for %s", p->name); if (runtime) longjmp(*rtld_fail, 1); } cnt=0; if (p==head) for (struct dso *q=p->next; q; q=q->next) p->deps[cnt++] = q; for (i=0; p->dynv[i]; i+=2) { if (p->dynv[i] != DT_NEEDED) continue; struct dso *dep = load_library(p->strings + p->dynv[i+1], p, namespace, true, reserved_params); LD_LOGD("loading shared library %{public}s: (needed by %{public}s)", p->strings + p->dynv[i+1], p->name); if (!dep) { error("Error loading shared library %s: %m (needed by %s)", p->strings + p->dynv[i+1], p->name); if (runtime) longjmp(*rtld_fail, 1); continue; } p->deps[cnt++] = dep; } p->deps[cnt] = 0; p->ndeps_direct = cnt; for (i = 0; i < p->ndeps_direct; i++) { add_dso_parent(p->deps[i], p); } } static void load_deps(struct dso *p, struct reserved_address_params *reserved_params) { if (p->deps) return; for (; p; p=p->next) load_direct_deps(p, p->namespace, reserved_params); } #endif static void extend_bfs_deps(struct dso *p) { size_t i, j, cnt, ndeps_all; struct dso **tmp; /* Can't use realloc if the original p->deps was allocated at * program entry and malloc has been replaced, or if it's * the builtin non-allocated trivial main program deps array. */ int no_realloc = (__malloc_replaced && !p->runtime_loaded) || p->deps == builtin_deps; if (p->bfs_built) return; ndeps_all = p->ndeps_direct; /* Mark existing (direct) deps so they won't be duplicated. */ for (i=0; p->deps[i]; i++) p->deps[i]->mark = 1; /* For each dependency already in the list, copy its list of direct * dependencies to the list, excluding any items already in the * list. Note that the list this loop iterates over will grow during * the loop, but since duplicates are excluded, growth is bounded. */ for (i=0; p->deps[i]; i++) { struct dso *dep = p->deps[i]; for (j=cnt=0; jndeps_direct; j++) if (!dep->deps[j]->mark) cnt++; tmp = no_realloc ? internal_malloc(sizeof(*tmp) * (ndeps_all+cnt+1)) : internal_realloc(p->deps, sizeof(*tmp) * (ndeps_all+cnt+1)); if (!tmp) { error("Error recording dependencies for %s", p->name); if (runtime) longjmp(*rtld_fail, 1); continue; } if (no_realloc) { memcpy(tmp, p->deps, sizeof(*tmp) * (ndeps_all+1)); no_realloc = 0; } p->deps = tmp; for (j=0; jndeps_direct; j++) { if (dep->deps[j]->mark) continue; dep->deps[j]->mark = 1; p->deps[ndeps_all++] = dep->deps[j]; } p->deps[ndeps_all] = 0; } p->bfs_built = 1; for (p=head; p; p=p->next) p->mark = 0; } #ifndef LOAD_ORDER_RANDOMIZATION static void load_preload(char *s, ns_t *ns) { int tmp; char *z; for (z=s; *z; s=z) { for ( ; *s && (isspace(*s) || *s==':'); s++); for (z=s; *z && !isspace(*z) && *z!=':'; z++); tmp = *z; *z = 0; load_library(s, 0, ns, true, NULL); *z = tmp; } } #endif static void add_syms(struct dso *p) { if (!p->syms_next && syms_tail != p) { syms_tail->syms_next = p; syms_tail = p; } } static void revert_syms(struct dso *old_tail) { struct dso *p, *next; /* Chop off the tail of the list of dsos that participate in * the global symbol table, reverting them to RTLD_LOCAL. */ for (p=old_tail; p; p=next) { next = p->syms_next; p->syms_next = 0; } syms_tail = old_tail; } static void do_mips_relocs(struct dso *p, size_t *got) { size_t i, j, rel[2]; unsigned char *base = p->base; i=0; search_vec(p->dynv, &i, DT_MIPS_LOCAL_GOTNO); if (p==&ldso) { got += i; } else { while (i--) *got++ += (size_t)base; } j=0; search_vec(p->dynv, &j, DT_MIPS_GOTSYM); i=0; search_vec(p->dynv, &i, DT_MIPS_SYMTABNO); Sym *sym = p->syms + j; rel[0] = (unsigned char *)got - base; for (i-=j; i; i--, sym++, rel[0]+=sizeof(size_t)) { rel[1] = R_INFO(sym-p->syms, R_MIPS_JUMP_SLOT); do_relocs(p, rel, sizeof rel, 2); } } static uint8_t* sleb128_decoder(uint8_t* current, uint8_t* end, size_t* value) { size_t result = 0; static const size_t size = CHAR_BIT * sizeof(result); size_t shift = 0; uint8_t byte; do { if (current >= end) { a_crash(); } byte = *current++; result |= ((size_t)(byte & 127) << shift); shift += 7; } while (byte & 128); if (shift < size && (byte & 64)) { result |= -((size_t)(1) << shift); } *value = result; return current; } static void do_android_relocs(struct dso *p, size_t dt_name, size_t dt_size) { size_t android_rel_addr = 0, android_rel_size = 0; uint8_t *android_rel_curr, *android_rel_end; search_vec(p->dynv, &android_rel_addr, dt_name); search_vec(p->dynv, &android_rel_size, dt_size); if (!android_rel_addr || (android_rel_size < 4)) { return; } android_rel_curr = laddr(p, android_rel_addr); if (memcmp(android_rel_curr, "APS2", ANDROID_REL_SIGN_SIZE)) { return; } android_rel_curr += ANDROID_REL_SIGN_SIZE; android_rel_size -= ANDROID_REL_SIGN_SIZE; android_rel_end = android_rel_curr + android_rel_size; size_t relocs_num; size_t rel[3] = {0}; android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &relocs_num); android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &rel[0]); for (size_t i = 0; i < relocs_num;) { size_t group_size, group_flags; android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &group_size); android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &group_flags); size_t group_r_offset_delta = 0; if (group_flags & RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG) { android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &group_r_offset_delta); } if (group_flags & RELOCATION_GROUPED_BY_INFO_FLAG) { android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &rel[1]); } const size_t addend_flags = group_flags & (RELOCATION_GROUP_HAS_ADDEND_FLAG | RELOCATION_GROUPED_BY_ADDEND_FLAG); if (addend_flags == RELOCATION_GROUP_HAS_ADDEND_FLAG) { } else if (addend_flags == (RELOCATION_GROUP_HAS_ADDEND_FLAG | RELOCATION_GROUPED_BY_ADDEND_FLAG)) { size_t addend; android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &addend); rel[2] += addend; } else { rel[2] = 0; } for (size_t j = 0; j < group_size; j++) { if (group_flags & RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG) { rel[0] += group_r_offset_delta; } else { size_t offset_detla; android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &offset_detla); rel[0] += offset_detla; } if ((group_flags & RELOCATION_GROUPED_BY_INFO_FLAG) == 0) { android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &rel[1]); } if (addend_flags == RELOCATION_GROUP_HAS_ADDEND_FLAG) { size_t addend; android_rel_curr = sleb128_decoder(android_rel_curr, android_rel_end, &addend); rel[2] += addend; } if (dt_name == DT_ANDROID_REL) { LD_LOGI("do_android_relocs REL %{public}x %{public}x", rel[0], rel[1]); do_relocs(p, rel, sizeof(size_t)*2, 2); } else { LD_LOGI("do_android_relocs RELA %{public}x %{public}x %{public}x", rel[0], rel[1], rel[2]); do_relocs(p, rel, sizeof(size_t)*3, 3); } } i += group_size; } } static void do_relr_relocs(struct dso *dso, size_t *relr, size_t relr_size) { unsigned char *base = dso->base; size_t *reloc_addr; for (; relr_size; relr++, relr_size-=sizeof(size_t)) if ((relr[0]&1) == 0) { reloc_addr = laddr(dso, relr[0]); *reloc_addr++ += (size_t)base; } else { int i = 0; for (size_t bitmap=relr[0]; (bitmap>>=1); i++) if (bitmap&1) reloc_addr[i] += (size_t)base; reloc_addr += 8*sizeof(size_t)-1; } } static void reloc_all(struct dso *p, const dl_extinfo *extinfo) { ssize_t relro_fd_offset = 0; size_t dyn[DYN_CNT]; for (; p; p=p->next) { if (p->relocated) continue; if (p != &ldso) { add_can_search_so_list_in_dso(p, head); } decode_vec(p->dynv, dyn, DYN_CNT); if (NEED_MIPS_GOT_RELOCS) do_mips_relocs(p, laddr(p, dyn[DT_PLTGOT])); do_relocs(p, laddr(p, dyn[DT_JMPREL]), dyn[DT_PLTRELSZ], 2+(dyn[DT_PLTREL]==DT_RELA)); do_relocs(p, laddr(p, dyn[DT_REL]), dyn[DT_RELSZ], 2); do_relocs(p, laddr(p, dyn[DT_RELA]), dyn[DT_RELASZ], 3); if (!DL_FDPIC) do_relr_relocs(p, laddr(p, dyn[DT_RELR]), dyn[DT_RELRSZ]); do_android_relocs(p, DT_ANDROID_REL, DT_ANDROID_RELSZ); do_android_relocs(p, DT_ANDROID_RELA, DT_ANDROID_RELASZ); if (head != &ldso && p->relro_start != p->relro_end && mprotect(laddr(p, p->relro_start), p->relro_end-p->relro_start, PROT_READ) && errno != ENOSYS) { error("Error relocating %s: RELRO protection failed: %m", p->name); if (runtime) longjmp(*rtld_fail, 1); } /* Handle serializing/mapping the RELRO segment */ handle_relro_sharing(p, extinfo, &relro_fd_offset); p->relocated = 1; free_reloc_can_search_dso(p); } } static void kernel_mapped_dso(struct dso *p) { size_t min_addr = -1, max_addr = 0, cnt; Phdr *ph = p->phdr; for (cnt = p->phnum; cnt--; ph = (void *)((char *)ph + p->phentsize)) { if (ph->p_type == PT_DYNAMIC) { p->dynv = laddr(p, ph->p_vaddr); } else if (ph->p_type == PT_GNU_RELRO) { p->relro_start = ph->p_vaddr & -PAGE_SIZE; p->relro_end = (ph->p_vaddr + ph->p_memsz) & -PAGE_SIZE; } else if (ph->p_type == PT_GNU_STACK) { if (!runtime && ph->p_memsz > __default_stacksize) { __default_stacksize = ph->p_memsz < DEFAULT_STACK_MAX ? ph->p_memsz : DEFAULT_STACK_MAX; } } if (ph->p_type != PT_LOAD) continue; if (ph->p_vaddr < min_addr) min_addr = ph->p_vaddr; if (ph->p_vaddr+ph->p_memsz > max_addr) max_addr = ph->p_vaddr+ph->p_memsz; } min_addr &= -PAGE_SIZE; max_addr = (max_addr + PAGE_SIZE-1) & -PAGE_SIZE; p->map = p->base + min_addr; p->map_len = max_addr - min_addr; p->kernel_mapped = 1; } void __libc_exit_fini() { struct dso *p; size_t dyn[DYN_CNT]; int self = __pthread_self()->tid; /* Take both locks before setting shutting_down, so that * either lock is sufficient to read its value. The lock * order matches that in dlopen to avoid deadlock. */ pthread_rwlock_wrlock(&lock); pthread_mutex_lock(&init_fini_lock); shutting_down = 1; pthread_rwlock_unlock(&lock); for (p=fini_head; p; p=p->fini_next) { while (p->ctor_visitor && p->ctor_visitor!=self) pthread_cond_wait(&ctor_cond, &init_fini_lock); if (!p->constructed) continue; decode_vec(p->dynv, dyn, DYN_CNT); if (dyn[0] & (1<bfs_built) { for (cnt=0; dso->deps[cnt]; cnt++) dso->deps[cnt]->mark = 0; cnt++; /* self, not included in deps */ } else { for (cnt=0, p=head; p; cnt++, p=p->next) p->mark = 0; } cnt++; /* termination slot */ if (dso==head && cnt <= countof(builtin_ctor_queue)) queue = builtin_ctor_queue; else queue = internal_calloc(cnt, sizeof *queue); if (!queue) { error("Error allocating constructor queue: %m\n"); if (runtime) longjmp(*rtld_fail, 1); return 0; } /* Opposite ends of the allocated buffer serve as an output queue * and a working stack. Setup initial stack with just the argument * dso and initial queue empty... */ stack = queue; qpos = 0; spos = cnt; stack[--spos] = dso; dso->next_dep = 0; dso->mark = 1; /* Then perform pseudo-DFS sort, but ignoring circular deps. */ while (sposnext_dep < p->ndeps_direct) { if (p->deps[p->next_dep]->mark) { p->next_dep++; } else { stack[--spos] = p; p = p->deps[p->next_dep]; p->next_dep = 0; p->mark = 1; } } queue[qpos++] = p; } queue[qpos] = 0; for (i=0; imark = 0; return queue; } static void do_init_fini(struct dso **queue) { struct dso *p; size_t dyn[DYN_CNT], i; int self = __pthread_self()->tid; pthread_mutex_lock(&init_fini_lock); for (i=0; (p=queue[i]); i++) { while ((p->ctor_visitor && p->ctor_visitor!=self) || shutting_down) pthread_cond_wait(&ctor_cond, &init_fini_lock); if (p->ctor_visitor || p->constructed) continue; p->ctor_visitor = self; decode_vec(p->dynv, dyn, DYN_CNT); if (dyn[0] & ((1<fini_next = fini_head; fini_head = p; } pthread_mutex_unlock(&init_fini_lock); #ifndef NO_LEGACY_INITFINI if ((dyn[0] & (1<ctor_visitor = 0; p->constructed = 1; pthread_cond_broadcast(&ctor_cond); } pthread_mutex_unlock(&init_fini_lock); } void __libc_start_init(void) { do_init_fini(main_ctor_queue); if (!__malloc_replaced && main_ctor_queue != builtin_ctor_queue) internal_free(main_ctor_queue); main_ctor_queue = 0; } static void dl_debug_state(void) { } weak_alias(dl_debug_state, _dl_debug_state); void __init_tls(size_t *auxv) { } static void update_tls_size() { libc.tls_cnt = tls_cnt; libc.tls_align = tls_align; libc.tls_size = ALIGN( (1+tls_cnt) * sizeof(void *) + tls_offset + sizeof(struct pthread) + tls_align * 2, tls_align); } static void install_new_tls(void) { sigset_t set; pthread_t self = __pthread_self(), td; struct dso *dtv_provider = container_of(tls_tail, struct dso, tls); uintptr_t (*newdtv)[tls_cnt+1] = (void *)dtv_provider->new_dtv; struct dso *p; size_t i, j; size_t old_cnt = self->dtv[0]; __block_app_sigs(&set); __tl_lock(); /* Copy existing dtv contents from all existing threads. */ for (i=0, td=self; !i || td!=self; i++, td=td->next) { memcpy(newdtv+i, td->dtv, (old_cnt+1)*sizeof(uintptr_t)); newdtv[i][0] = tls_cnt; } /* Install new dtls into the enlarged, uninstalled dtv copies. */ for (p=head; ; p=p->next) { if (p->tls_id <= old_cnt) continue; unsigned char *mem = p->new_tls; for (j=0; jtls.image - (uintptr_t)mem) & (p->tls.align-1); memcpy(new, p->tls.image, p->tls.len); newdtv[j][p->tls_id] = (uintptr_t)new + DTP_OFFSET; mem += p->tls.size + p->tls.align; } if (p->tls_id == tls_cnt) break; } /* Broadcast barrier to ensure contents of new dtv is visible * if the new dtv pointer is. The __membarrier function has a * fallback emulation using signals for kernels that lack the * feature at the syscall level. */ __membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED, 0); /* Install new dtv for each thread. */ for (j=0, td=self; !j || td!=self; j++, td=td->next) { td->dtv = td->dtv_copy = newdtv[j]; } __tl_unlock(); __restore_sigs(&set); } /* Stage 1 of the dynamic linker is defined in dlstart.c. It calls the * following stage 2 and stage 3 functions via primitive symbolic lookup * since it does not have access to their addresses to begin with. */ /* Stage 2 of the dynamic linker is called after relative relocations * have been processed. It can make function calls to static functions * and access string literals and static data, but cannot use extern * symbols. Its job is to perform symbolic relocations on the dynamic * linker itself, but some of the relocations performed may need to be * replaced later due to copy relocations in the main program. */ hidden void __dls2(unsigned char *base, size_t *sp) { size_t *auxv; for (auxv=sp+1+*sp+1; *auxv; auxv++); auxv++; if (DL_FDPIC) { void *p1 = (void *)sp[-2]; void *p2 = (void *)sp[-1]; if (!p1) { size_t aux[AUX_CNT]; decode_vec(auxv, aux, AUX_CNT); if (aux[AT_BASE]) ldso.base = (void *)aux[AT_BASE]; else ldso.base = (void *)(aux[AT_PHDR] & -4096); } app_loadmap = p2 ? p1 : 0; ldso.loadmap = p2 ? p2 : p1; ldso.base = laddr(&ldso, 0); } else { ldso.base = base; } Ehdr *ehdr = (void *)ldso.base; ldso.name = ldso.shortname = "libc.so"; ldso.phnum = ehdr->e_phnum; ldso.phdr = laddr(&ldso, ehdr->e_phoff); ldso.phentsize = ehdr->e_phentsize; ldso.is_global = true; kernel_mapped_dso(&ldso); decode_dyn(&ldso); if (DL_FDPIC) makefuncdescs(&ldso); /* Prepare storage for to save clobbered REL addends so they * can be reused in stage 3. There should be very few. If * something goes wrong and there are a huge number, abort * instead of risking stack overflow. */ size_t dyn[DYN_CNT]; decode_vec(ldso.dynv, dyn, DYN_CNT); size_t *rel = laddr(&ldso, dyn[DT_REL]); size_t rel_size = dyn[DT_RELSZ]; size_t symbolic_rel_cnt = 0; apply_addends_to = rel; for (; rel_size; rel+=2, rel_size-=2*sizeof(size_t)) if (!IS_RELATIVE(rel[1], ldso.syms)) symbolic_rel_cnt++; if (symbolic_rel_cnt >= ADDEND_LIMIT) a_crash(); size_t addends[symbolic_rel_cnt+1]; saved_addends = addends; head = &ldso; reloc_all(&ldso, NULL); ldso.relocated = 0; /* Call dynamic linker stage-2b, __dls2b, looking it up * symbolically as a barrier against moving the address * load across the above relocation processing. */ struct symdef dls2b_def = find_sym(&ldso, "__dls2b", 0); if (DL_FDPIC) ((stage3_func)&ldso.funcdescs[dls2b_def.sym-ldso.syms])(sp, auxv); else ((stage3_func)laddr(&ldso, dls2b_def.sym->st_value))(sp, auxv); } /* Stage 2b sets up a valid thread pointer, which requires relocations * completed in stage 2, and on which stage 3 is permitted to depend. * This is done as a separate stage, with symbolic lookup as a barrier, * so that loads of the thread pointer and &errno can be pure/const and * thereby hoistable. */ void __dls2b(size_t *sp, size_t *auxv) { /* Setup early thread pointer in builtin_tls for ldso/libc itself to * use during dynamic linking. If possible it will also serve as the * thread pointer at runtime. */ search_vec(auxv, &__hwcap, AT_HWCAP); libc.auxv = auxv; libc.tls_size = sizeof builtin_tls; libc.tls_align = tls_align; if (__init_tp(__copy_tls((void *)builtin_tls)) < 0) { a_crash(); } struct symdef dls3_def = find_sym(&ldso, "__dls3", 0); if (DL_FDPIC) ((stage3_func)&ldso.funcdescs[dls3_def.sym-ldso.syms])(sp, auxv); else ((stage3_func)laddr(&ldso, dls3_def.sym->st_value))(sp, auxv); } /* Stage 3 of the dynamic linker is called with the dynamic linker/libc * fully functional. Its job is to load (if not already loaded) and * process dependencies and relocations for the main application and * transfer control to its entry point. */ void __dls3(size_t *sp, size_t *auxv) { static struct dso app, vdso; size_t aux[AUX_CNT]; size_t i; char *env_preload=0; char *replace_argv0=0; size_t vdso_base; int argc = *sp; char **argv = (void *)(sp+1); char **argv_orig = argv; char **envp = argv+argc+1; /* Find aux vector just past environ[] and use it to initialize * global data that may be needed before we can make syscalls. */ __environ = envp; decode_vec(auxv, aux, AUX_CNT); search_vec(auxv, &__sysinfo, AT_SYSINFO); __pthread_self()->sysinfo = __sysinfo; libc.page_size = aux[AT_PAGESZ]; libc.secure = ((aux[0]&0x7800)!=0x7800 || aux[AT_UID]!=aux[AT_EUID] || aux[AT_GID]!=aux[AT_EGID] || aux[AT_SECURE]); /* Only trust user/env if kernel says we're not suid/sgid */ if (!libc.secure) { env_path = getenv("LD_LIBRARY_PATH"); env_preload = getenv("LD_PRELOAD"); } #ifdef OHOS_ENABLE_PARAMETER InitParameterClient(); #endif /* If the main program was already loaded by the kernel, * AT_PHDR will point to some location other than the dynamic * linker's program headers. */ if (aux[AT_PHDR] != (size_t)ldso.phdr) { size_t interp_off = 0; size_t tls_image = 0; /* Find load address of the main program, via AT_PHDR vs PT_PHDR. */ Phdr *phdr = app.phdr = (void *)aux[AT_PHDR]; app.phnum = aux[AT_PHNUM]; app.phentsize = aux[AT_PHENT]; for (i=aux[AT_PHNUM]; i; i--, phdr=(void *)((char *)phdr + aux[AT_PHENT])) { if (phdr->p_type == PT_PHDR) app.base = (void *)(aux[AT_PHDR] - phdr->p_vaddr); else if (phdr->p_type == PT_INTERP) interp_off = (size_t)phdr->p_vaddr; else if (phdr->p_type == PT_TLS) { tls_image = phdr->p_vaddr; app.tls.len = phdr->p_filesz; app.tls.size = phdr->p_memsz; app.tls.align = phdr->p_align; } } if (DL_FDPIC) app.loadmap = app_loadmap; if (app.tls.size) app.tls.image = laddr(&app, tls_image); if (interp_off) ldso.name = laddr(&app, interp_off); if ((aux[0] & (1UL<= 3 && !strcmp(ldname+l-3, "ldd")) ldd_mode = 1; argv++; while (argv[0] && argv[0][0]=='-' && argv[0][1]=='-') { char *opt = argv[0]+2; *argv++ = (void *)-1; if (!*opt) { break; } else if (!memcmp(opt, "list", 5)) { ldd_mode = 1; } else if (!memcmp(opt, "library-path", 12)) { if (opt[12]=='=') env_path = opt+13; else if (opt[12]) *argv = 0; else if (*argv) env_path = *argv++; } else if (!memcmp(opt, "preload", 7)) { if (opt[7]=='=') env_preload = opt+8; else if (opt[7]) *argv = 0; else if (*argv) env_preload = *argv++; } else if (!memcmp(opt, "argv0", 5)) { if (opt[5]=='=') replace_argv0 = opt+6; else if (opt[5]) *argv = 0; else if (*argv) replace_argv0 = *argv++; } else { argv[0] = 0; } } argv[-1] = (void *)(argc - (argv-argv_orig)); if (!argv[0]) { dprintf(2, "musl libc (" LDSO_ARCH ")\n" "Version %s\n" "Dynamic Program Loader\n" "Usage: %s [options] [--] pathname%s\n", __libc_version, ldname, ldd_mode ? "" : " [args]"); _exit(1); } fd = open(argv[0], O_RDONLY); if (fd < 0) { dprintf(2, "%s: cannot load %s: %s\n", ldname, argv[0], strerror(errno)); _exit(1); } Ehdr *ehdr = (void *)map_library(fd, &app, NULL); if (!ehdr) { dprintf(2, "%s: %s: Not a valid dynamic program\n", ldname, argv[0]); _exit(1); } close(fd); ldso.name = ldname; app.name = argv[0]; aux[AT_ENTRY] = (size_t)laddr(&app, ehdr->e_entry); /* Find the name that would have been used for the dynamic * linker had ldd not taken its place. */ if (ldd_mode) { for (i=0; insegs = 1; app.loadmap->segs[0].addr = (size_t)app.map; app.loadmap->segs[0].p_vaddr = (size_t)app.map - (size_t)app.base; app.loadmap->segs[0].p_memsz = app.map_len; } argv[-3] = (void *)app.loadmap; } app.is_global = true; /* Initial dso chain consists only of the app. */ head = tail = syms_tail = &app; /* Donate unused parts of app and library mapping to malloc */ reclaim_gaps(&app); reclaim_gaps(&ldso); /* Load preload/needed libraries, add symbols to global namespace. */ ldso.deps = (struct dso **)no_deps; /* Init g_is_asan */ g_is_asan = false; LD_LOGD("__dls3 ldso.name:%{public}s.", ldso.name); /* Through ldso Name to judge whether the Asan function is enabled */ if (strstr(ldso.name, "-asan")) { g_is_asan = true; LD_LOGD("__dls3 g_is_asan is true."); } /* Init all namespaces by config file. there is a default namespace always*/ init_namespace(&app); #ifdef LOAD_ORDER_RANDOMIZATION struct loadtasks *tasks = create_loadtasks(); if (!tasks) { _exit(1); } if (env_preload) { load_preload(env_preload, get_default_ns(), tasks); } for (struct dso *q=head; q; q=q->next) { q->is_global = true; } preload_deps(&app, tasks); unmap_preloaded_sections(tasks); shuffle_loadtasks(tasks); run_loadtasks(tasks, NULL); free_loadtasks(tasks); assign_tls(app.next); #else if (env_preload) load_preload(env_preload, get_default_ns()); for (struct dso *q=head; q; q=q->next) { q->is_global = true; } load_deps(&app, NULL); #endif /* Set is_reloc_head_so_dep to true for all direct and indirect dependent sos of app, including app self. */ for (struct dso *p=head; p; p=p->next) { p->is_reloc_head_so_dep = true; add_syms(p); } /* Attach to vdso, if provided by the kernel, last so that it does * not become part of the global namespace. */ if (search_vec(auxv, &vdso_base, AT_SYSINFO_EHDR) && vdso_base) { Ehdr *ehdr = (void *)vdso_base; Phdr *phdr = vdso.phdr = (void *)(vdso_base + ehdr->e_phoff); vdso.phnum = ehdr->e_phnum; vdso.phentsize = ehdr->e_phentsize; for (i=ehdr->e_phnum; i; i--, phdr=(void *)((char *)phdr + ehdr->e_phentsize)) { if (phdr->p_type == PT_DYNAMIC) vdso.dynv = (void *)(vdso_base + phdr->p_offset); if (phdr->p_type == PT_LOAD) vdso.base = (void *)(vdso_base - phdr->p_vaddr + phdr->p_offset); } vdso.name = ""; vdso.shortname = "linux-gate.so.1"; vdso.relocated = 1; vdso.deps = (struct dso **)no_deps; decode_dyn(&vdso); vdso.prev = tail; tail->next = &vdso; tail = &vdso; vdso.namespace = get_default_ns(); ns_add_dso(vdso.namespace, &vdso); } for (i=0; app.dynv[i]; i+=2) { if (!DT_DEBUG_INDIRECT && app.dynv[i]==DT_DEBUG) app.dynv[i+1] = (size_t)&debug; if (DT_DEBUG_INDIRECT && app.dynv[i]==DT_DEBUG_INDIRECT) { size_t *ptr = (size_t *) app.dynv[i+1]; *ptr = (size_t)&debug; } } /* This must be done before final relocations, since it calls * malloc, which may be provided by the application. Calling any * application code prior to the jump to its entry point is not * valid in our model and does not work with FDPIC, where there * are additional relocation-like fixups that only the entry point * code can see to perform. */ main_ctor_queue = queue_ctors(&app); /* Initial TLS must also be allocated before final relocations * might result in calloc being a call to application code. */ update_tls_size(); void *initial_tls = builtin_tls; if (libc.tls_size > sizeof builtin_tls || tls_align > MIN_TLS_ALIGN) { initial_tls = internal_calloc(libc.tls_size, 1); if (!initial_tls) { dprintf(2, "%s: Error getting %zu bytes thread-local storage: %m\n", argv[0], libc.tls_size); _exit(127); } } static_tls_cnt = tls_cnt; /* The main program must be relocated LAST since it may contain * copy relocations which depend on libraries' relocations. */ reloc_all(app.next, NULL); reloc_all(&app, NULL); for (struct dso *q=head; q; q=q->next) { q->is_reloc_head_so_dep = false; } /* Actual copying to new TLS needs to happen after relocations, * since the TLS images might have contained relocated addresses. */ if (initial_tls != builtin_tls) { pthread_t self = __pthread_self(); pthread_t td = __copy_tls(initial_tls); if (__init_tp(td) < 0) { a_crash(); } td->tsd = self->tsd; } else { size_t tmp_tls_size = libc.tls_size; pthread_t self = __pthread_self(); /* Temporarily set the tls size to the full size of * builtin_tls so that __copy_tls will use the same layout * as it did for before. Then check, just to be safe. */ libc.tls_size = sizeof builtin_tls; if (__copy_tls((void*)builtin_tls) != self) a_crash(); libc.tls_size = tmp_tls_size; } if (init_cfi_shadow(head, ldso.name) == CFI_FAILED) { error("[%s] init_cfi_shadow failed: %m", __FUNCTION__); } if (ldso_fail) _exit(127); if (ldd_mode) _exit(0); /* Determine if malloc was interposed by a replacement implementation * so that calloc and the memalign family can harden against the * possibility of incomplete replacement. */ if (find_sym(head, "malloc", 1).dso != &ldso) __malloc_replaced = 1; /* Switch to runtime mode: any further failures in the dynamic * linker are a reportable failure rather than a fatal startup * error. */ runtime = 1; debug.ver = 1; debug.bp = dl_debug_state; debug.head = head; debug.base = ldso.base; debug.state = RT_CONSISTENT; _dl_debug_state(); if (replace_argv0) argv[0] = replace_argv0; #ifdef DFX_SIGNAL_LIBC DFX_InstallSignalHandler(); #endif errno = 0; CRTJMP((void *)aux[AT_ENTRY], argv-1); for(;;); } static void prepare_lazy(struct dso *p) { size_t dyn[DYN_CNT], n, flags1=0; decode_vec(p->dynv, dyn, DYN_CNT); search_vec(p->dynv, &flags1, DT_FLAGS_1); if (dyn[DT_BIND_NOW] || (dyn[DT_FLAGS] & DF_BIND_NOW) || (flags1 & DF_1_NOW)) return; n = dyn[DT_RELSZ]/2 + dyn[DT_RELASZ]/3 + dyn[DT_PLTRELSZ]/2 + 1; if (NEED_MIPS_GOT_RELOCS) { size_t j=0; search_vec(p->dynv, &j, DT_MIPS_GOTSYM); size_t i=0; search_vec(p->dynv, &i, DT_MIPS_SYMTABNO); n += i-j; } p->lazy = internal_calloc(n, 3*sizeof(size_t)); if (!p->lazy) { error("Error preparing lazy relocation for %s: %m", p->name); longjmp(*rtld_fail, 1); } p->lazy_next = lazy_head; lazy_head = p; } static void *dlopen_post(struct dso* p, int mode) { if (p == NULL) { return p; } p->nr_dlopen++; if (p->bfs_built) { for (int i = 0; p->deps[i]; i++) { p->deps[i]->nr_dlopen++; if (mode & RTLD_NODELETE) { p->deps[i]->flags |= DSO_FLAGS_NODELETE; } } } #ifdef HANDLE_RANDOMIZATION void *handle = assign_valid_handle(p); if (handle == NULL) { LD_LOGE("dlopen_post: generate random handle failed"); do_dlclose(p); } return handle; #endif return p; } /* add namespace function */ static void *dlopen_impl( const char *file, int mode, const char *namespace, const void *caller_addr, const dl_extinfo *extinfo) { struct dso *volatile p, *orig_tail, *orig_syms_tail, *orig_lazy_head, *next; struct tls_module *orig_tls_tail; size_t orig_tls_cnt, orig_tls_offset, orig_tls_align; size_t i; int cs; jmp_buf jb; struct dso **volatile ctor_queue = 0; ns_t *ns; struct dso *caller; bool reserved_address = false; bool reserved_address_recursive = false; struct reserved_address_params reserved_params = {0}; #ifdef LOAD_ORDER_RANDOMIZATION struct loadtasks *tasks = NULL; struct loadtask *task = NULL; bool is_task_appended = false; #endif if (!file) { LD_LOGD("dlopen_impl file is null, return head."); return dlopen_post(head, mode); } if (extinfo) { reserved_address_recursive = extinfo->flag & DL_EXT_RESERVED_ADDRESS_RECURSIVE; if (extinfo->flag & DL_EXT_RESERVED_ADDRESS) { reserved_address = true; reserved_params.start_addr = extinfo->reserved_addr; reserved_params.reserved_size = extinfo->reserved_size; reserved_params.must_use_reserved = true; reserved_params.reserved_address_recursive = reserved_address_recursive; } else if (extinfo->flag & DL_EXT_RESERVED_ADDRESS_HINT) { reserved_address = true; reserved_params.start_addr = extinfo->reserved_addr; reserved_params.reserved_size = extinfo->reserved_size; reserved_params.must_use_reserved = false; reserved_params.reserved_address_recursive = reserved_address_recursive; } } pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cs); pthread_rwlock_wrlock(&lock); __inhibit_ptc(); debug.state = RT_ADD; _dl_debug_state(); /* When namespace does not exist, use caller's namespce * and when caller does not exist, use default namespce. */ caller = (struct dso *)addr2dso((size_t)caller_addr); ns = find_ns_by_name(namespace); if (!ns) ns = ((caller && caller->namespace) ? caller->namespace : get_default_ns()); p = 0; if (shutting_down) { error("Cannot dlopen while program is exiting."); goto end; } orig_tls_tail = tls_tail; orig_tls_cnt = tls_cnt; orig_tls_offset = tls_offset; orig_tls_align = tls_align; orig_lazy_head = lazy_head; orig_syms_tail = syms_tail; orig_tail = tail; noload = mode & RTLD_NOLOAD; rtld_fail = &jb; if (setjmp(*rtld_fail)) { /* Clean up anything new that was (partially) loaded */ revert_syms(orig_syms_tail); for (p=orig_tail->next; p; p=next) { next = p->next; while (p->td_index) { void *tmp = p->td_index->next; internal_free(p->td_index); p->td_index = tmp; } internal_free(p->funcdescs); if (p->rpath != p->rpath_orig) internal_free(p->rpath); if (p->deps) { for (int i = 0; i < p->ndeps_direct; i++) { remove_dso_parent(p->deps[i], p); } } internal_free(p->deps); dlclose_ns(p); unmap_library(p); if (p->parents) { internal_free(p->parents); } free_reloc_can_search_dso(p); internal_free(p); } internal_free(ctor_queue); ctor_queue = 0; if (!orig_tls_tail) libc.tls_head = 0; tls_tail = orig_tls_tail; if (tls_tail) tls_tail->next = 0; tls_cnt = orig_tls_cnt; tls_offset = orig_tls_offset; tls_align = orig_tls_align; lazy_head = orig_lazy_head; tail = orig_tail; tail->next = 0; p = 0; goto end; } else { #ifdef LOAD_ORDER_RANDOMIZATION tasks = create_loadtasks(); if (!tasks) { LD_LOGE("dlopen_impl create loadtasks failed"); goto end; } task = create_loadtask(file, head, ns, true); if (!task) { LD_LOGE("dlopen_impl create loadtask failed"); goto end; } if (!load_library_header(task)) { error(noload ? "Library %s is not already loaded" : "Error loading shared library %s: %m", file); LD_LOGE("dlopen_impl load library header failed for %{public}s", task->name); goto end; } if (reserved_address) { reserved_params.target = task->p; } } if (!task->p) { LD_LOGE("dlopen_impl load library failed for %{public}s", task->name); error(noload ? "Library %s is not already loaded" : "Error loading shared library %s: %m", file); goto end; } if (!task->isloaded) { is_task_appended = append_loadtasks(tasks, task); } preload_deps(task->p, tasks); unmap_preloaded_sections(tasks); if (!reserved_address_recursive) { shuffle_loadtasks(tasks); } run_loadtasks(tasks, reserved_address ? &reserved_params : NULL); p = task->p; if (!task->isloaded) { assign_tls(p); } if (!is_task_appended) { free_task(task); task = NULL; } free_loadtasks(tasks); tasks = NULL; #else p = load_library(file, head, ns, true, reserved_address ? &reserved_params : NULL); } if (!p) { error(noload ? "Library %s is not already loaded" : "Error loading shared library %s: %m", file); goto end; } /* First load handling */ load_deps(p, reserved_address && reserved_address_recursive ? &reserved_params : NULL); #endif extend_bfs_deps(p); pthread_mutex_lock(&init_fini_lock); if (!p->constructed) ctor_queue = queue_ctors(p); pthread_mutex_unlock(&init_fini_lock); if (!p->relocated && (mode & RTLD_LAZY)) { prepare_lazy(p); for (i=0; p->deps[i]; i++) if (!p->deps[i]->relocated) prepare_lazy(p->deps[i]); } if (!p->relocated || (mode & RTLD_GLOBAL)) { /* Make new symbols global, at least temporarily, so we can do * relocations. If not RTLD_GLOBAL, this is reverted below. */ add_syms(p); /* Set is_reloc_head_so_dep to true for all direct and indirect dependent sos of p, including p self. */ p->is_reloc_head_so_dep = true; for (i=0; p->deps[i]; i++) { p->deps[i]->is_reloc_head_so_dep = true; add_syms(p->deps[i]); } } struct dso *reloc_head_so = p; if (!p->relocated) { reloc_all(p, extinfo); } reloc_head_so->is_reloc_head_so_dep = false; for (size_t i=0; reloc_head_so->deps[i]; i++) { reloc_head_so->deps[i]->is_reloc_head_so_dep = false; } /* If RTLD_GLOBAL was not specified, undo any new additions * to the global symbol table. This is a nop if the library was * previously loaded and already global. */ if (!(mode & RTLD_GLOBAL)) revert_syms(orig_syms_tail); /* Processing of deferred lazy relocations must not happen until * the new libraries are committed; otherwise we could end up with * relocations resolved to symbol definitions that get removed. */ redo_lazy_relocs(); if (map_dso_to_cfi_shadow(p) == CFI_FAILED) { error("[%s] map_dso_to_cfi_shadow failed: %m", __FUNCTION__); longjmp(*rtld_fail, 1); } if (mode & RTLD_NODELETE) { p->flags |= DSO_FLAGS_NODELETE; } update_tls_size(); if (tls_cnt != orig_tls_cnt) install_new_tls(); orig_tail = tail; p = dlopen_post(p, mode); end: debug.state = RT_CONSISTENT; _dl_debug_state(); #ifdef LOAD_ORDER_RANDOMIZATION if (!is_task_appended) { free_task(task); } free_loadtasks(tasks); #endif __release_ptc(); if (p) gencnt++; pthread_rwlock_unlock(&lock); if (ctor_queue) { do_init_fini(ctor_queue); internal_free(ctor_queue); } pthread_setcancelstate(cs, 0); return p; } void *dlopen(const char *file, int mode) { const void *caller_addr = __builtin_return_address(0); musl_log_reset(); ld_log_reset(); LD_LOGI("dlopen file:%{public}s, mode:%{public}x ,caller_addr:%{public}p .", file, mode, caller_addr); return dlopen_impl(file, mode, NULL, caller_addr, NULL); } void dlns_init(Dl_namespace *dlns, const char *name) { if (!dlns) { LD_LOGE("dlns_init dlns is null."); return; } if (!name) { LD_LOGE("dlns_init name is null."); dlns->name[0] = 0; return; } snprintf(dlns->name, sizeof dlns->name, name); LD_LOGI("dlns_init dlns->name:%{public}s .", dlns->name); } int dlns_get(const char *name, Dl_namespace *dlns) { if (!dlns) { LD_LOGE("dlns_get dlns is null."); return EINVAL; } int ret = 0; ns_t *ns = NULL; pthread_rwlock_rdlock(&lock); if (!name) { struct dso *caller; const void *caller_addr = __builtin_return_address(0); caller = (struct dso *)addr2dso((size_t)caller_addr); ns = ((caller && caller->namespace) ? caller->namespace : get_default_ns()); (void)snprintf(dlns->name, sizeof dlns->name, ns->ns_name); LD_LOGI("dlns_get name is null, current dlns dlns->name:%{public}s.", dlns->name); } else { ns = find_ns_by_name(name); if (ns) { (void)snprintf(dlns->name, sizeof dlns->name, ns->ns_name); LD_LOGI("dlns_get found ns, current dlns dlns->name:%{public}s.", dlns->name); } else { LD_LOGI("dlns_get not found ns! name:%{public}s.", name); ret = ENOKEY; } } pthread_rwlock_unlock(&lock); return ret; } void *dlopen_ns(Dl_namespace *dlns, const char *file, int mode) { const void *caller_addr = __builtin_return_address(0); musl_log_reset(); ld_log_reset(); LD_LOGI("dlopen_ns file:%{public}s, mode:%{public}x , caller_addr:%{public}p , dlns->name:%{public}s.", file, mode, caller_addr, dlns ? dlns->name : "NULL"); return dlopen_impl(file, mode, dlns->name, caller_addr, NULL); } void *dlopen_ns_ext(Dl_namespace *dlns, const char *file, int mode, const dl_extinfo *extinfo) { const void *caller_addr = __builtin_return_address(0); musl_log_reset(); ld_log_reset(); LD_LOGI("dlopen_ns_ext file:%{public}s, mode:%{public}x , caller_addr:%{public}p , " "dlns->name:%{public}s. , extinfo->flag:%{public}x", file, mode, caller_addr, dlns->name, extinfo ? extinfo->flag : 0); return dlopen_impl(file, mode, dlns->name, caller_addr, extinfo); } int dlns_create2(Dl_namespace *dlns, const char *lib_path, int flags) { if (!dlns) { LD_LOGE("dlns_create2 dlns is null."); return EINVAL; } ns_t *ns; pthread_rwlock_wrlock(&lock); ns = find_ns_by_name(dlns->name); if (ns) { LD_LOGE("dlns_create2 ns is exist."); pthread_rwlock_unlock(&lock); return EEXIST; } ns = ns_alloc(); if (!ns) { LD_LOGE("dlns_create2 no memery."); pthread_rwlock_unlock(&lock); return ENOMEM; } ns_set_name(ns, dlns->name); ns_add_dso(ns, get_default_ns()->ns_dsos->dsos[0]); /* add main app to this namespace*/ nslist_add_ns(ns); /* add ns to list*/ ns_set_lib_paths(ns, lib_path); if ((flags & CREATE_INHERIT_DEFAULT) != 0) { ns_add_inherit(ns, get_default_ns(), NULL); } if ((flags & CREATE_INHERIT_CURRENT) != 0) { struct dso *caller; const void *caller_addr = __builtin_return_address(0); caller = (struct dso *)addr2dso((size_t)caller_addr); if (caller && caller->namespace) { ns_add_inherit(ns, caller->namespace, NULL); } } LD_LOGI("dlns_create2:" "ns_name: %{public}s ," "separated:%{public}d ," "lib_paths:%{public}s ", ns->ns_name, ns->separated, ns->lib_paths); pthread_rwlock_unlock(&lock); return 0; } int dlns_create(Dl_namespace *dlns, const char *lib_path) { LD_LOGI("dlns_create lib_paths:%{public}s", lib_path); return dlns_create2(dlns, lib_path, CREATE_INHERIT_DEFAULT); } int dlns_inherit(Dl_namespace *dlns, Dl_namespace *inherited, const char *shared_libs) { if (!dlns || !inherited) { LD_LOGE("dlns_inherit dlns or inherited is null."); return EINVAL; } pthread_rwlock_wrlock(&lock); ns_t* ns = find_ns_by_name(dlns->name); ns_t* ns_inherited = find_ns_by_name(inherited->name); if (!ns || !ns_inherited) { LD_LOGE("dlns_inherit ns or ns_inherited is not found."); pthread_rwlock_unlock(&lock); return ENOKEY; } ns_add_inherit(ns, ns_inherited, shared_libs); pthread_rwlock_unlock(&lock); return 0; } static void dlclose_ns(struct dso *p) { if (!p) return; ns_t * ns = p->namespace; if (!ns||!ns->ns_dsos) return; for (size_t i=0; ins_dsos->num; i++) { if (p == ns->ns_dsos->dsos[i]) { for (size_t j=i+1; jns_dsos->num; j++) { ns->ns_dsos->dsos[j-1] = ns->ns_dsos->dsos[j]; } ns->ns_dsos->num--; return; } } } hidden int __dl_invalid_handle(void *h) { struct dso *p; for (p=head; p; p=p->next) if (h==p) return 0; error("Invalid library handle %p", (void *)h); return 1; } void *addr2dso(size_t a) { struct dso *p; size_t i; if (DL_FDPIC) for (p=head; p; p=p->next) { i = count_syms(p); if (a-(size_t)p->funcdescs < i*sizeof(*p->funcdescs)) return p; } for (p=head; p; p=p->next) { if (DL_FDPIC && p->loadmap) { for (i=0; iloadmap->nsegs; i++) { if (a-p->loadmap->segs[i].p_vaddr < p->loadmap->segs[i].p_memsz) return p; } } else { Phdr *ph = p->phdr; size_t phcnt = p->phnum; size_t entsz = p->phentsize; size_t base = (size_t)p->base; for (; phcnt--; ph=(void *)((char *)ph+entsz)) { if (ph->p_type != PT_LOAD) continue; if (a-base-ph->p_vaddr < ph->p_memsz) return p; } if (a-(size_t)p->map < p->map_len) return 0; } } return 0; } static void *do_dlsym(struct dso *p, const char *s, const char *v, void *ra) { int use_deps = 0; bool ra2dso = false; ns_t *ns = NULL; struct dso *caller = NULL; if (p == head || p == RTLD_DEFAULT) { p = head; ra2dso = true; } else if (p == RTLD_NEXT) { p = addr2dso((size_t)ra); if (!p) p=head; p = p->next; ra2dso = true; #ifndef HANDLE_RANDOMIZATION } else if (__dl_invalid_handle(p)) { return 0; #endif } else { use_deps = 1; ns = p->namespace; } if (ra2dso) { caller = (struct dso *)addr2dso((size_t)ra); if (caller && caller->namespace) { ns = caller->namespace; } } struct verinfo verinfo = { .s = s, .v = v, .use_vna_hash = false }; struct symdef def = find_sym2(p, &verinfo, 0, use_deps, ns); if (!def.sym) { LD_LOGE("do_dlsym failed: symbol not found. so=%{public}s s=%{public}s v=%{public}s", p->name, s, v); error("Symbol not found: %s, version: %s", s, strlen(v) > 0 ? v : "null"); return 0; } if ((def.sym->st_info&0xf) == STT_TLS) return __tls_get_addr((tls_mod_off_t []){def.dso->tls_id, def.sym->st_value-DTP_OFFSET}); if (DL_FDPIC && (def.sym->st_info&0xf) == STT_FUNC) return def.dso->funcdescs + (def.sym - def.dso->syms); return laddr(def.dso, def.sym->st_value); } static int dlclose_impl(struct dso *p) { size_t n; struct dso *d; if (__dl_invalid_handle(p)) return -1; if (!p->by_dlopen) { error("Library %s is not loaded by dlopen", p->name); return -1; } /* dso is marked as RTLD_NODELETE library, do nothing here. */ if ((p->flags & DSO_FLAGS_NODELETE) != 0) { return 0; } if (--(p->nr_dlopen) > 0) return 0; /* call destructors if needed */ if (p->constructed) { size_t dyn[DYN_CNT]; decode_vec(p->dynv, dyn, DYN_CNT); if (dyn[0] & (1<constructed = 0; } /* remove dso symbols from global list */ if (p->syms_next) { for (d = head; d->syms_next != p; d = d->syms_next) ; /* NOP */ d->syms_next = p->syms_next; } else if (p == syms_tail) { for (d = head; d->syms_next != p; d = d->syms_next) ; /* NOP */ d->syms_next = NULL; syms_tail = d; } /* remove dso from lazy list if needed */ if (p == lazy_head) { lazy_head = p->lazy_next; } else if (p->lazy_next) { for (d = lazy_head; d->lazy_next != p; d = d->lazy_next) ; /* NOP */ d->lazy_next = p->lazy_next; } /* remove dso from fini list */ if (p == fini_head) { fini_head = p->fini_next; } else if (p->fini_next) { for (d = fini_head; d->fini_next != p; d = d->fini_next) ; /* NOP */ d->fini_next = p->fini_next; } /* empty tls image */ if (p->tls.size != 0) { p->tls.image = NULL; } /* remove dso from global dso list */ if (p == tail) { tail = p->prev; tail->next = NULL; } else { p->next->prev = p->prev; p->prev->next = p->next; } /* remove dso from namespace */ dlclose_ns(p); unmap_dso_from_cfi_shadow(p); if (p->lazy != NULL) internal_free(p->lazy); if (p->deps) { for (int i = 0; i < p->ndeps_direct; i++) { remove_dso_parent(p->deps[i], p); } } if (p->deps != no_deps) internal_free(p->deps); unmap_library(p); if (p->parents) { internal_free(p->parents); } free_reloc_can_search_dso(p); if (p->tls.size == 0) { internal_free(p); } return 0; } static char* dlclose_deps_black_list[] = { "/system/lib/libhidebug.so", "/system/lib64/libhidebug.so", "/system/lib64/libmsdp_neardetect_algorithm.z.so", "/vendor/lib64/libhril_hdf.z.so" }; static int do_dlclose(struct dso *p) { bool ldclose_deps = true; for (int i = 0; i < sizeof(dlclose_deps_black_list)/sizeof(char*); i++) { if (!strcmp(dlclose_deps_black_list[i], p->name)) { ldclose_deps = false; break; } } size_t deps_num; for (deps_num = 0; p->deps[deps_num]; deps_num++); struct dso **deps_bak = internal_malloc(deps_num*sizeof(struct dso*)); if (deps_bak != NULL) { memcpy(deps_bak, p->deps, deps_num*sizeof(struct dso*)); } LD_LOGI("do_dlclose name=%{public}s count=%{public}d by_dlopen=%{public}d", p->name, p->nr_dlopen, p->by_dlopen); dlclose_impl(p); if (ldclose_deps) { for (size_t i = 0; i < deps_num; i++) { LD_LOGI("do_dlclose name=%{public}s count=%{public}d by_dlopen=%{public}d", deps_bak[i]->name, deps_bak[i]->nr_dlopen, deps_bak[i]->by_dlopen); dlclose_impl(deps_bak[i]); } } internal_free(deps_bak); return 0; } hidden int __dlclose(void *p) { int rc; pthread_rwlock_wrlock(&lock); __inhibit_ptc(); #ifdef HANDLE_RANDOMIZATION struct dso *dso = find_dso_by_handle(p); if (dso == NULL) { errno = EINVAL; error("Handle is invalid."); LD_LOGE("Handle is not find."); __release_ptc(); pthread_rwlock_unlock(&lock); return -1; } rc = do_dlclose(dso); if (!rc) { struct dso *t = head; for (; t && t != dso; t = t->next) { ; } if (t == NULL) { remove_handle_node(p); } } #else rc = do_dlclose(p); #endif __release_ptc(); pthread_rwlock_unlock(&lock); return rc; } int dladdr(const void *addr_arg, Dl_info *info) { size_t addr = (size_t)addr_arg; struct dso *p; Sym *sym, *bestsym; uint32_t nsym; char *strings; size_t best = 0; size_t besterr = -1; pthread_rwlock_rdlock(&lock); p = addr2dso(addr); pthread_rwlock_unlock(&lock); if (!p) return 0; sym = p->syms; strings = p->strings; nsym = count_syms(p); if (DL_FDPIC) { size_t idx = (addr-(size_t)p->funcdescs) / sizeof(*p->funcdescs); if (idx < nsym && (sym[idx].st_info&0xf) == STT_FUNC) { best = (size_t)(p->funcdescs + idx); bestsym = sym + idx; besterr = 0; } } if (!best) for (; nsym; nsym--, sym++) { if (sym->st_value && (1<<(sym->st_info&0xf) & OK_TYPES) && (1<<(sym->st_info>>4) & OK_BINDS)) { size_t symaddr = (size_t)laddr(p, sym->st_value); if (symaddr > addr || symaddr <= best) continue; best = symaddr; bestsym = sym; besterr = addr - symaddr; if (addr == symaddr) break; } } if (best && besterr > bestsym->st_size-1) { best = 0; bestsym = 0; } info->dli_fname = p->name; info->dli_fbase = p->map; if (!best) { info->dli_sname = 0; info->dli_saddr = 0; return 1; } if (DL_FDPIC && (bestsym->st_info&0xf) == STT_FUNC) best = (size_t)(p->funcdescs + (bestsym - p->syms)); info->dli_sname = strings + bestsym->st_name; info->dli_saddr = (void *)best; return 1; } hidden void *__dlsym(void *restrict p, const char *restrict s, void *restrict ra) { void *res; pthread_rwlock_rdlock(&lock); #ifdef HANDLE_RANDOMIZATION if ((p != RTLD_DEFAULT) && (p != RTLD_NEXT)) { struct dso *dso = find_dso_by_handle(p); if (dso == NULL) { pthread_rwlock_unlock(&lock); return 0; } res = do_dlsym(dso, s, "", ra); } else { res = do_dlsym(p, s, "", ra); } #else res = do_dlsym(p, s, "", ra); #endif pthread_rwlock_unlock(&lock); return res; } hidden void *__dlvsym(void *restrict p, const char *restrict s, const char *restrict v, void *restrict ra) { void *res; pthread_rwlock_rdlock(&lock); #ifdef HANDLE_RANDOMIZATION if ((p != RTLD_DEFAULT) && (p != RTLD_NEXT)) { struct dso *dso = find_dso_by_handle(p); if (dso == NULL) { pthread_rwlock_unlock(&lock); return 0; } res = do_dlsym(dso, s, v, ra); } else { res = do_dlsym(p, s, v, ra); } #else res = do_dlsym(p, s, v, ra); #endif pthread_rwlock_unlock(&lock); return res; } hidden void *__dlsym_redir_time64(void *restrict p, const char *restrict s, void *restrict ra) { #if _REDIR_TIME64 const char *suffix, *suffix2 = ""; char redir[36]; /* Map the symbol name to a time64 version of itself according to the * pattern used for naming the redirected time64 symbols. */ size_t l = strnlen(s, sizeof redir); if (l<4 || l==sizeof redir) goto no_redir; if (s[l-2]=='_' && s[l-1]=='r') { l -= 2; suffix2 = s+l; } if (l<4) goto no_redir; if (!strcmp(s+l-4, "time")) suffix = "64"; else suffix = "_time64"; /* Use the presence of the remapped symbol name in libc to determine * whether it's one that requires time64 redirection; replace if so. */ snprintf(redir, sizeof redir, "__%.*s%s%s", (int)l, s, suffix, suffix2); if (find_sym(&ldso, redir, 1).sym) s = redir; no_redir: #endif return __dlsym(p, s, ra); } int dl_iterate_phdr(int(*callback)(struct dl_phdr_info *info, size_t size, void *data), void *data) { struct dso *current; struct dl_phdr_info info; int ret = 0; for(current = head; current;) { info.dlpi_addr = (uintptr_t)current->base; info.dlpi_name = current->name; info.dlpi_phdr = current->phdr; info.dlpi_phnum = current->phnum; info.dlpi_adds = gencnt; info.dlpi_subs = 0; info.dlpi_tls_modid = current->tls_id; info.dlpi_tls_data = current->tls.image; ret = (callback)(&info, sizeof (info), data); if (ret != 0) break; pthread_rwlock_rdlock(&lock); current = current->next; pthread_rwlock_unlock(&lock); } return ret; } static void error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (!runtime) { vdprintf(2, fmt, ap); dprintf(2, "\n"); ldso_fail = 1; va_end(ap); return; } __dl_vseterr(fmt, ap); va_end(ap); } int dlns_set_namespace_lib_path(const char * name, const char * lib_path) { if (!name || !lib_path) { LD_LOGE("dlns_set_namespace_lib_path name or lib_path is null."); return EINVAL; } pthread_rwlock_wrlock(&lock); ns_t* ns = find_ns_by_name(name); if (!ns) { pthread_rwlock_unlock(&lock); LD_LOGE("dlns_set_namespace_lib_path fail, input ns name : [%{public}s] is not found.", name); return ENOKEY; } ns_set_lib_paths(ns, lib_path); pthread_rwlock_unlock(&lock); return 0; } int dlns_set_namespace_separated(const char * name, const bool separated) { if (!name) { LD_LOGE("dlns_set_namespace_separated name is null."); return EINVAL; } pthread_rwlock_wrlock(&lock); ns_t* ns = find_ns_by_name(name); if (!ns) { pthread_rwlock_unlock(&lock); LD_LOGE("dlns_set_namespace_separated fail, input ns name : [%{public}s] is not found.", name); return ENOKEY; } ns_set_separated(ns, separated); pthread_rwlock_unlock(&lock); return 0; } int dlns_set_namespace_permitted_paths(const char * name, const char * permitted_paths) { if (!name || !permitted_paths) { LD_LOGE("dlns_set_namespace_permitted_paths name or permitted_paths is null."); return EINVAL; } pthread_rwlock_wrlock(&lock); ns_t* ns = find_ns_by_name(name); if (!ns) { pthread_rwlock_unlock(&lock); LD_LOGE("dlns_set_namespace_permitted_paths fail, input ns name : [%{public}s] is not found.", name); return ENOKEY; } ns_set_permitted_paths(ns, permitted_paths); pthread_rwlock_unlock(&lock); return 0; } int dlns_set_namespace_allowed_libs(const char * name, const char * allowed_libs) { if (!name || !allowed_libs) { LD_LOGE("dlns_set_namespace_allowed_libs name or allowed_libs is null."); return EINVAL; } pthread_rwlock_wrlock(&lock); ns_t* ns = find_ns_by_name(name); if (!ns) { pthread_rwlock_unlock(&lock); LD_LOGE("dlns_set_namespace_allowed_libs fail, input ns name : [%{public}s] is not found.", name); return ENOKEY; } ns_set_allowed_libs(ns, allowed_libs); pthread_rwlock_unlock(&lock); return 0; } int handle_asan_path_open(int fd, const char *name, ns_t *namespace, char *buf, size_t buf_size) { LD_LOGD("handle_asan_path_open fd:%{public}d, name:%{public}s , namespace:%{public}s .", fd, name, namespace ? namespace->ns_name : "NULL"); int fd_tmp = fd; if (fd == -1 && (namespace->asan_lib_paths || namespace->lib_paths)) { if (namespace->lib_paths && namespace->asan_lib_paths) { size_t newlen = strlen(namespace->asan_lib_paths) + strlen(namespace->lib_paths) + 2; char *new_lib_paths = internal_malloc(newlen); memset(new_lib_paths, 0, newlen); strcpy(new_lib_paths, namespace->asan_lib_paths); strcat(new_lib_paths, ":"); strcat(new_lib_paths, namespace->lib_paths); fd_tmp = path_open(name, new_lib_paths, buf, buf_size); LD_LOGD("handle_asan_path_open path_open new_lib_paths:%{public}s ,fd: %{public}d.", new_lib_paths, fd_tmp); internal_free(new_lib_paths); } else if (namespace->asan_lib_paths) { fd_tmp = path_open(name, namespace->asan_lib_paths, buf, buf_size); LD_LOGD("handle_asan_path_open path_open asan_lib_paths:%{public}s ,fd: %{public}d.", namespace->asan_lib_paths, fd_tmp); } else { fd_tmp = path_open(name, namespace->lib_paths, buf, buf_size); LD_LOGD( "handle_asan_path_open path_open lib_paths:%{public}s ,fd: %{public}d.", namespace->lib_paths, fd_tmp); } } return fd_tmp; } void* dlopen_ext(const char *file, int mode, const dl_extinfo *extinfo) { const void *caller_addr = __builtin_return_address(0); musl_log_reset(); ld_log_reset(); if (extinfo != NULL) { if ((extinfo->flag & ~(DL_EXT_VALID_FLAG_BITS)) != 0) { LD_LOGE("Error dlopen_ext %{public}s: invalid flag %{public}x", file, extinfo->flag); return NULL; } } LD_LOGI("dlopen_ext file:%{public}s, mode:%{public}x , caller_addr:%{public}p , extinfo->flag:%{public}x", file, mode, caller_addr, extinfo ? extinfo->flag : 0); return dlopen_impl(file, mode, NULL, caller_addr, extinfo); } #ifdef LOAD_ORDER_RANDOMIZATION static void open_library_by_path(const char *name, const char *s, struct loadtask *task, struct zip_info *z_info) { char *buf = task->buf; size_t buf_size = sizeof task->buf; size_t l; for (;;) { s += strspn(s, ":\n"); l = strcspn(s, ":\n"); if (l-1 >= INT_MAX) return; if (snprintf(buf, buf_size, "%.*s/%s", (int)l, s, name) < buf_size) { char *separator = strstr(buf, ZIP_FILE_PATH_SEPARATOR); if (separator != NULL) { int res = open_uncompressed_library_in_zipfile(buf, z_info, separator); if (res == 0) { task->fd = z_info->fd; task->file_offset = z_info->file_offset; break; } else { memset(z_info->path_buf, 0, sizeof(z_info->path_buf)); } } else { if ((task->fd = open(buf, O_RDONLY|O_CLOEXEC))>=0) break; } } s += l; } return; } static void handle_asan_path_open_by_task(int fd, const char *name, ns_t *namespace, struct loadtask *task, struct zip_info *z_info) { LD_LOGD("handle_asan_path_open_by_task fd:%{public}d, name:%{public}s , namespace:%{public}s .", fd, name, namespace ? namespace->ns_name : "NULL"); if (fd == -1 && (namespace->asan_lib_paths || namespace->lib_paths)) { if (namespace->lib_paths && namespace->asan_lib_paths) { size_t newlen = strlen(namespace->asan_lib_paths) + strlen(namespace->lib_paths) + 2; char *new_lib_paths = internal_malloc(newlen); memset(new_lib_paths, 0, newlen); strcpy(new_lib_paths, namespace->asan_lib_paths); strcat(new_lib_paths, ":"); strcat(new_lib_paths, namespace->lib_paths); open_library_by_path(name, new_lib_paths, task, z_info); LD_LOGD("handle_asan_path_open_by_task open_library_by_path new_lib_paths:%{public}s ,fd: %{public}d.", new_lib_paths, task->fd); internal_free(new_lib_paths); } else if (namespace->asan_lib_paths) { open_library_by_path(name, namespace->asan_lib_paths, task, z_info); LD_LOGD("handle_asan_path_open_by_task open_library_by_path asan_lib_paths:%{public}s ,fd: %{public}d.", namespace->asan_lib_paths, task->fd); } else { open_library_by_path(name, namespace->lib_paths, task, z_info); LD_LOGD("handle_asan_path_open_by_task open_library_by_path lib_paths:%{public}s ,fd: %{public}d.", namespace->lib_paths, task->fd); } } return; } /* Used to get an uncompress library offset in zip file, then we can use the offset to mmap the library directly. */ int open_uncompressed_library_in_zipfile(const char *path, struct zip_info *z_info, char *separator) { struct local_file_header zip_file_header; struct central_dir_entry c_dir_entry; struct zip_end_locator end_locator; /* Use "'!/' to split the path into zipfile path and library path in zipfile. * For example: * - path: x/xx/xxx.zip!/x/xx/xxx.so * - zipfile path: x/xx/xxx.zip * - library path in zipfile: x/xx/xxx.so */ if (strlcpy(z_info->path_buf, path, PATH_BUF_SIZE) >= PATH_BUF_SIZE) { LD_LOGE("Open uncompressed library: input path %{public}s is too long.", path); return -1; } z_info->path_buf[separator - path] = '\0'; z_info->file_path_index = separator - path + 2; char *zip_file_path = z_info->path_buf; char *lib_path = &z_info->path_buf[z_info->file_path_index]; if (zip_file_path == NULL || lib_path == NULL) { LD_LOGE("Open uncompressed library: get zip and lib path failed."); return -1; } LD_LOGD("Open uncompressed library: input path: %{public}s, zip file path: %{public}s, library path: %{public}s.", path, zip_file_path, lib_path); // Get zip file length FILE *zip_file = fopen(zip_file_path, "re"); if (zip_file == NULL) { LD_LOGE("Open uncompressed library: fopen %{public}s failed.", zip_file_path); return -1; } if (fseek(zip_file, 0, SEEK_END) != 0) { LD_LOGE("Open uncompressed library: fseek SEEK_END failed."); fclose(zip_file); return -1; } int64_t zip_file_len = ftell(zip_file); if (zip_file_len == -1) { LD_LOGE("Open uncompressed library: get zip file length failed."); fclose(zip_file); return -1; } // Read end of central directory record. size_t end_locator_len = sizeof(end_locator); size_t end_locator_pos = zip_file_len - end_locator_len; if (fseek(zip_file, end_locator_pos, SEEK_SET) != 0) { LD_LOGE("Open uncompressed library: fseek end locator position failed."); fclose(zip_file); return -1; } if (fread(&end_locator, sizeof(end_locator), 1, zip_file) != 1 || end_locator.signature != EOCD_SIGNATURE) { LD_LOGE("Open uncompressed library: fread end locator failed."); fclose(zip_file); return -1; } char file_name[PATH_BUF_SIZE]; uint64_t current_dir_pos = end_locator.offset; for (uint16_t i = 0; i < end_locator.total_entries; i++) { // Read central dir entry. if (fseek(zip_file, current_dir_pos, SEEK_SET) != 0) { LD_LOGE("Open uncompressed library: fseek current centra dir entry position failed."); fclose(zip_file); return -1; } if (fread(&c_dir_entry, sizeof(c_dir_entry), 1, zip_file) != 1 || c_dir_entry.signature != CENTRAL_SIGNATURE) { LD_LOGE("Open uncompressed library: fread centra dir entry failed."); fclose(zip_file); return -1; } if (fread(file_name, c_dir_entry.name_size, 1, zip_file) != 1) { LD_LOGE("Open uncompressed library: fread file name failed."); fclose(zip_file); return -1; } if (strcmp(file_name, lib_path) == 0) { // Read local file header. if (fseek(zip_file, c_dir_entry.local_header_offset, SEEK_SET) != 0) { LD_LOGE("Open uncompressed library: fseek local file header failed."); fclose(zip_file); return -1; } if (fread(&zip_file_header, sizeof(zip_file_header), 1, zip_file) != 1) { LD_LOGE("Open uncompressed library: fread local file header failed."); fclose(zip_file); return -1; } if (zip_file_header.signature != LOCAL_FILE_HEADER_SIGNATURE) { LD_LOGE("Open uncompressed library: read local file header signature error."); fclose(zip_file); return -1; } z_info->file_offset = c_dir_entry.local_header_offset + sizeof(zip_file_header) + zip_file_header.name_size + zip_file_header.extra_size; if (zip_file_header.compression_method != COMPRESS_STORED || z_info->file_offset % PAGE_SIZE != 0) { LD_LOGE("Open uncompressed library: open %{public}s in %{public}s failed because of misalignment or saved with compression." "compress method %{public}d, file offset %{public}lu", lib_path, zip_file_path, zip_file_header.compression_method, z_info->file_offset); fclose(zip_file); return -2; } z_info->found = true; break; } memset(file_name, 0, sizeof(file_name)); current_dir_pos += sizeof(c_dir_entry); current_dir_pos += c_dir_entry.name_size + c_dir_entry.extra_size + c_dir_entry.comment_size; } if(!z_info->found) { LD_LOGE("Open uncompressed library: %{public}s was not found in %{public}s.", lib_path, zip_file_path); fclose(zip_file); return -3; } z_info->fd = fileno(zip_file); return 0; } static bool map_library_header(struct loadtask *task) { off_t off_start; Phdr *ph; size_t i; ssize_t l = pread(task->fd, task->ehdr_buf, sizeof task->ehdr_buf, task->file_offset); task->eh = task->ehdr_buf; if (l < 0) { LD_LOGE("Error mapping header %{public}s: failed to read fd", task->name); return false; } if (l < sizeof(Ehdr) || (task->eh->e_type != ET_DYN && task->eh->e_type != ET_EXEC)) { LD_LOGE("Error mapping header %{public}s: invaliled Ehdr", task->name); goto noexec; } task->phsize = task->eh->e_phentsize * task->eh->e_phnum; if (task->phsize > sizeof task->ehdr_buf - sizeof(Ehdr)) { task->allocated_buf = internal_malloc(task->phsize); if (!task->allocated_buf) { LD_LOGE("Error mapping header %{public}s: failed to alloc memory", task->name); return false; } l = pread(task->fd, task->allocated_buf, task->phsize, task->eh->e_phoff + task->file_offset); if (l < 0) { LD_LOGE("Error mapping header %{public}s: failed to pread", task->name); goto error; } if (l != task->phsize) { LD_LOGE("Error mapping header %{public}s: unmatched phsize", task->name); goto noexec; } ph = task->ph0 = task->allocated_buf; } else if (task->eh->e_phoff + task->phsize > l) { l = pread(task->fd, task->ehdr_buf + 1, task->phsize, task->eh->e_phoff + task->file_offset); if (l < 0) { LD_LOGE("Error mapping header %{public}s: failed to pread", task->name); goto error; } if (l != task->phsize) { LD_LOGE("Error mapping header %{public}s: unmatched phsize", task->name); goto noexec; } ph = task->ph0 = (void *)(task->ehdr_buf + 1); } else { ph = task->ph0 = (void *)((char *)task->ehdr_buf + task->eh->e_phoff); } for (i = task->eh->e_phnum; i; i--, ph = (void *)((char *)ph + task->eh->e_phentsize)) { if (ph->p_type == PT_DYNAMIC) { task->dyn = ph->p_vaddr; } else if (ph->p_type == PT_TLS) { task->tls_image = ph->p_vaddr; task->tls.align = ph->p_align; task->tls.len = ph->p_filesz; task->tls.size = ph->p_memsz; } if (ph->p_type != PT_DYNAMIC) { continue; } // map the dynamic segment and the string table of the library off_start = ph->p_offset; off_start &= -PAGE_SIZE; task->dyn_map_len = ph->p_memsz + (ph->p_offset - off_start); /* The default value of file_offset is 0. * The value of file_offset may be greater than 0 when opening library from zip file. * The value of file_offset ensures PAGE_SIZE aligned. */ task->dyn_map = mmap(0, task->dyn_map_len, PROT_READ, MAP_PRIVATE, task->fd, off_start + task->file_offset); if (task->dyn_map == MAP_FAILED) { LD_LOGE("Error mapping header %{public}s: failed to map dynamic section", task->name); goto error; } task->dyn_addr = (size_t *)((unsigned char *)task->dyn_map + (ph->p_offset - off_start)); size_t dyn_tmp; off_t str_table; size_t str_size; if (search_vec(task->dyn_addr, &dyn_tmp, DT_STRTAB)) { str_table = dyn_tmp; } else { LD_LOGE("Error mapping header %{public}s: DT_STRTAB not found", task->name); goto error; } if (search_vec(task->dyn_addr, &dyn_tmp, DT_STRSZ)) { str_size = dyn_tmp; } else { LD_LOGE("Error mapping header %{public}s: DT_STRSZ not found", task->name); goto error; } off_start = str_table; off_start &= -PAGE_SIZE; task->str_map_len = str_size + (str_table - off_start); task->str_map = mmap(0, task->str_map_len, PROT_READ, MAP_PRIVATE, task->fd, off_start + task->file_offset); if (task->str_map == MAP_FAILED) { LD_LOGE("Error mapping header %{public}s: failed to map string section", task->name); goto error; } task->str_addr = (char *)task->str_map + str_table - off_start; } if (!task->dyn) { LD_LOGE("Error mapping header %{public}s: dynamic section not found", task->name); goto noexec; } return true; noexec: errno = ENOEXEC; error: internal_free(task->allocated_buf); task->allocated_buf = NULL; return false; } static bool task_map_library(struct loadtask *task, struct reserved_address_params *reserved_params) { size_t addr_min = SIZE_MAX, addr_max = 0, map_len; size_t this_min, this_max; size_t nsegs = 0; off_t off_start; Phdr *ph = task->ph0; unsigned prot; unsigned char *map = MAP_FAILED, *base; size_t i; int map_flags = MAP_PRIVATE; size_t start_addr; for (i = task->eh->e_phnum; i; i--, ph = (void *)((char *)ph + task->eh->e_phentsize)) { if (ph->p_type == PT_GNU_RELRO) { task->p->relro_start = ph->p_vaddr & -PAGE_SIZE; task->p->relro_end = (ph->p_vaddr + ph->p_memsz) & -PAGE_SIZE; } else if (ph->p_type == PT_GNU_STACK) { if (!runtime && ph->p_memsz > __default_stacksize) { __default_stacksize = ph->p_memsz < DEFAULT_STACK_MAX ? ph->p_memsz : DEFAULT_STACK_MAX; } } if (ph->p_type != PT_LOAD) { continue; } nsegs++; if (ph->p_vaddr < addr_min) { addr_min = ph->p_vaddr; off_start = ph->p_offset; prot = (((ph->p_flags & PF_R) ? PROT_READ : 0) | ((ph->p_flags & PF_W) ? PROT_WRITE : 0) | ((ph->p_flags & PF_X) ? PROT_EXEC : 0)); } if (ph->p_vaddr + ph->p_memsz > addr_max) { addr_max = ph->p_vaddr + ph->p_memsz; } } if (!task->dyn) { LD_LOGE("Error mapping library %{public}s: dynamic section not found", task->name); goto noexec; } if (DL_FDPIC && !(task->eh->e_flags & FDPIC_CONSTDISP_FLAG)) { task->p->loadmap = internal_calloc(1, sizeof(struct fdpic_loadmap) + nsegs * sizeof(struct fdpic_loadseg)); if (!task->p->loadmap) { goto error; } task->p->loadmap->nsegs = nsegs; for (ph = task->ph0, i = 0; i < nsegs; ph = (void *)((char *)ph + task->eh->e_phentsize)) { if (ph->p_type != PT_LOAD) { continue; } prot = (((ph->p_flags & PF_R) ? PROT_READ : 0) | ((ph->p_flags & PF_W) ? PROT_WRITE : 0) | ((ph->p_flags & PF_X) ? PROT_EXEC : 0)); map = mmap(0, ph->p_memsz + (ph->p_vaddr & PAGE_SIZE - 1), prot, MAP_PRIVATE, task->fd, ph->p_offset & -PAGE_SIZE + task->file_offset); if (map == MAP_FAILED) { unmap_library(task->p); goto error; } task->p->loadmap->segs[i].addr = (size_t)map + (ph->p_vaddr & PAGE_SIZE - 1); task->p->loadmap->segs[i].p_vaddr = ph->p_vaddr; task->p->loadmap->segs[i].p_memsz = ph->p_memsz; i++; if (prot & PROT_WRITE) { size_t brk = (ph->p_vaddr & PAGE_SIZE - 1) + ph->p_filesz; size_t pgbrk = (brk + PAGE_SIZE - 1) & -PAGE_SIZE; size_t pgend = (brk + ph->p_memsz - ph->p_filesz + PAGE_SIZE - 1) & -PAGE_SIZE; if (pgend > pgbrk && mmap_fixed(map + pgbrk, pgend - pgbrk, prot, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, off_start) == MAP_FAILED) goto error; memset(map + brk, 0, pgbrk - brk); } } map = (void *)task->p->loadmap->segs[0].addr; map_len = 0; goto done_mapping; } addr_max += PAGE_SIZE - 1; addr_max &= -PAGE_SIZE; addr_min &= -PAGE_SIZE; off_start &= -PAGE_SIZE; map_len = addr_max - addr_min + off_start; start_addr = addr_min; if (reserved_params) { if (map_len > reserved_params->reserved_size) { if (reserved_params->must_use_reserved) { LD_LOGE("Error mapping library %{public}s: map len is larger than reserved address", task->name); goto error; } } else { start_addr = ((size_t)reserved_params->start_addr - 1 + PAGE_SIZE) & -PAGE_SIZE; map_flags |= MAP_FIXED; } } /* we will find a LIBRARY_ALIGNMENT aligned address as the start of dso * so we need a tmp_map_len as map_len + LIBRARY_ALIGNMENT to make sure * we have enough space to shift the dso to the correct location*/ size_t tmp_map_len = ALIGN(map_len, LIBRARY_ALIGNMENT) + LIBRARY_ALIGNMENT - PAGE_SIZE; /* if reserved_params exists, we should use start_addr as prefered result to do the mmap operation */ if (reserved_params) { map = DL_NOMMU_SUPPORT ? mmap((void *)start_addr, map_len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) : mmap((void *)start_addr, map_len, prot, map_flags, task->fd, off_start + task->file_offset); if (map == MAP_FAILED) { goto error; } if (reserved_params && map_len < reserved_params->reserved_size) { reserved_params->reserved_size -= (map_len + (start_addr - (size_t)reserved_params->start_addr)); reserved_params->start_addr = (void *)((uint8_t *)map + map_len); } /* if reserved_params does not exist, we should use real_map as prefered result to do the mmap operation */ } else { /* use tmp_map_len to mmap enough space for the dso with anonymous mapping */ unsigned char *temp_map = mmap((void *)NULL, tmp_map_len, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (temp_map == MAP_FAILED) { goto error; } /* find the LIBRARY_ALIGNMENT aligned address */ unsigned char *real_map = (unsigned char*)ALIGN((uintptr_t)temp_map, LIBRARY_ALIGNMENT); /* mummap the space we mmap before so that we can mmap correct space again */ munmap(temp_map, tmp_map_len); map = DL_NOMMU_SUPPORT ? mmap(real_map, map_len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) /* use map_len to mmap correct space for the dso with file mapping */ : mmap(real_map, map_len, prot, map_flags, task->fd, off_start + task->file_offset); if (map == MAP_FAILED) { goto error; } } task->p->map = map; task->p->map_len = map_len; /* If the loaded file is not relocatable and the requested address is * not available, then the load operation must fail. */ if (task->eh->e_type != ET_DYN && addr_min && map != (void *)addr_min) { LD_LOGE("Error mapping library %{public}s: device or resource busy", task->name); errno = EBUSY; goto error; } base = map - addr_min; task->p->phdr = 0; task->p->phnum = 0; for (ph = task->ph0, i = task->eh->e_phnum; i; i--, ph = (void *)((char *)ph + task->eh->e_phentsize)) { if (ph->p_type == PT_OHOS_RANDOMDATA) { fill_random_data((void *)(ph->p_vaddr + base), ph->p_memsz); continue; } if (ph->p_type != PT_LOAD) { continue; } /* Check if the programs headers are in this load segment, and * if so, record the address for use by dl_iterate_phdr. */ if (!task->p->phdr && task->eh->e_phoff >= ph->p_offset && task->eh->e_phoff + task->phsize <= ph->p_offset + ph->p_filesz) { task->p->phdr = (void *)(base + ph->p_vaddr + (task->eh->e_phoff - ph->p_offset)); task->p->phnum = task->eh->e_phnum; task->p->phentsize = task->eh->e_phentsize; } this_min = ph->p_vaddr & -PAGE_SIZE; this_max = ph->p_vaddr + ph->p_memsz + PAGE_SIZE - 1 & -PAGE_SIZE; off_start = ph->p_offset & -PAGE_SIZE; prot = (((ph->p_flags & PF_R) ? PROT_READ : 0) | ((ph->p_flags & PF_W) ? PROT_WRITE : 0) | ((ph->p_flags & PF_X) ? PROT_EXEC : 0)); /* Reuse the existing mapping for the lowest-address LOAD */ if ((ph->p_vaddr & -PAGE_SIZE) != addr_min || DL_NOMMU_SUPPORT) { if (mmap_fixed( base + this_min, this_max - this_min, prot, MAP_PRIVATE | MAP_FIXED, task->fd, off_start + task->file_offset) == MAP_FAILED) { LD_LOGE("Error mapping library %{public}s: mmap fix failed, errno: %{public}d", task->name, errno); goto error; } } if (ph->p_memsz > ph->p_filesz && (ph->p_flags & PF_W)) { size_t brk = (size_t)base + ph->p_vaddr + ph->p_filesz; size_t pgbrk = brk + PAGE_SIZE - 1 & -PAGE_SIZE; memset((void *)brk, 0, pgbrk - brk & PAGE_SIZE - 1); if (pgbrk - (size_t)base < this_max && mmap_fixed( (void *)pgbrk, (size_t)base + this_max - pgbrk, prot, MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0) == MAP_FAILED) { LD_LOGE("Error mapping library: mmap fix failed"); goto error; } } } for (i = 0; ((size_t *)(base + task->dyn))[i]; i += NEXT_DYNAMIC_INDEX) { if (((size_t *)(base + task->dyn))[i] == DT_TEXTREL) { if (mprotect(map, map_len, PROT_READ | PROT_WRITE | PROT_EXEC) && errno != ENOSYS) { LD_LOGE("Error mapping library %{public}s: mprotect failed", task->name); goto error; } break; } } done_mapping: task->p->base = base; task->p->dynv = laddr(task->p, task->dyn); if (task->p->tls.size) { task->p->tls.image = laddr(task->p, task->tls_image); } internal_free(task->allocated_buf); task->allocated_buf = NULL; return true; noexec: errno = ENOEXEC; error: if (map != MAP_FAILED) { unmap_library(task->p); } internal_free(task->allocated_buf); task->allocated_buf = NULL; return false; } static bool load_library_header(struct loadtask *task) { const char *name = task->name; struct dso *needed_by = task->needed_by; ns_t *namespace = task->namespace; bool check_inherited = task->check_inherited; struct zip_info z_info; bool map = false; struct stat st; size_t alloc_size; int n_th = 0; int is_self = 0; if (!*name) { errno = EINVAL; return false; } /* Catch and block attempts to reload the implementation itself */ if (name[NAME_INDEX_ZERO] == 'l' && name[NAME_INDEX_ONE] == 'i' && name[NAME_INDEX_TWO] == 'b') { static const char reserved[] = "c.pthread.rt.m.dl.util.xnet."; const char *rp, *next; for (rp = reserved; *rp; rp = next) { next = strchr(rp, '.') + 1; if (strncmp(name + NAME_INDEX_THREE, rp, next - rp) == 0) { break; } } if (*rp) { if (ldd_mode) { /* Track which names have been resolved * and only report each one once. */ static unsigned reported; unsigned mask = 1U << (rp - reserved); if (!(reported & mask)) { reported |= mask; dprintf(1, "\t%s => %s (%p)\n", name, ldso.name, ldso.base); } } is_self = 1; } } if (!strcmp(name, ldso.name)) { is_self = 1; } if (is_self) { if (!ldso.prev) { tail->next = &ldso; ldso.prev = tail; tail = &ldso; ldso.namespace = namespace; ns_add_dso(namespace, &ldso); } task->isloaded = true; task->p = &ldso; return true; } if (strchr(name, '/')) { char *separator = strstr(name, ZIP_FILE_PATH_SEPARATOR); if (separator != NULL) { int res = open_uncompressed_library_in_zipfile(name, &z_info, separator); if (!res) { task->pathname = name; if (!is_accessible(namespace, task->pathname, g_is_asan, check_inherited)) { LD_LOGE("Open uncompressed library: check ns accessible failed, pathname %{public}s namespace %{public}s.", task->pathname, namespace ? namespace->ns_name : "NULL"); task->fd = -1; } else { task->fd = z_info.fd; task->file_offset = z_info.file_offset; } } else { LD_LOGE("Open uncompressed library in zip file failed, name:%{public}s res:%{public}d", name, res); return false; } } else { task->pathname = name; if (!is_accessible(namespace, task->pathname, g_is_asan, check_inherited)) { task->fd = -1; } else { task->fd = open(name, O_RDONLY | O_CLOEXEC); } } } else { /* Search for the name to see if it's already loaded */ /* Search in namespace */ task->p = find_library_by_name(name, namespace, check_inherited); if (task->p) { task->isloaded = true; return true; } if (strlen(name) > NAME_MAX) { LD_LOGE("load_library name length is larger than NAME_MAX:%{public}s.", name); return false; } task->fd = -1; if (namespace->env_paths) { open_library_by_path(name, namespace->env_paths, task, &z_info); } for (task->p = needed_by; task->fd == -1 && task->p; task->p = task->p->needed_by) { if (fixup_rpath(task->p, task->buf, sizeof task->buf) < 0) { task->fd = INVALID_FD_INHIBIT_FURTHER_SEARCH; /* Inhibit further search. */ } if (task->p->rpath) { open_library_by_path(name, task->p->rpath, task, &z_info); } } if (g_is_asan) { handle_asan_path_open_by_task(task->fd, name, namespace, task, &z_info); LD_LOGD("load_library handle_asan_path_open_by_task fd:%{public}d.", task->fd); } else { if (task->fd == -1 && namespace->lib_paths) { open_library_by_path(name, namespace->lib_paths, task, &z_info); LD_LOGD("load_library no asan lib_paths path_open fd:%{public}d.", task->fd); } } task->pathname = task->buf; } if (task->fd < 0) { if (!check_inherited || !namespace->ns_inherits) { return false; } /* Load lib in inherited namespace. Do not check inherited again.*/ for (size_t i = 0; i < namespace->ns_inherits->num; i++) { ns_inherit *inherit = namespace->ns_inherits->inherits[i]; if (strchr(name, '/') == 0 && !is_sharable(inherit, name)) { continue; } task->namespace = inherit->inherited_ns; task->check_inherited = false; if (load_library_header(task)) { return true; } } return false; } if (fstat(task->fd, &st) < 0) { LD_LOGE("Error loading header %{public}s: failed to get file state", task->name); close(task->fd); task->fd = -1; return false; } /* Search in namespace */ task->p = find_library_by_fstat(&st, namespace, check_inherited, task->file_offset); if (task->p) { /* If this library was previously loaded with a * pathname but a search found the same inode, * setup its shortname so it can be found by name. */ if (!task->p->shortname && task->pathname != name) { task->p->shortname = strrchr(task->p->name, '/') + 1; } close(task->fd); task->fd = -1; task->isloaded = true; return true; } map = noload ? 0 : map_library_header(task); if (!map) { LD_LOGE("Error loading header %{public}s: failed to map header", task->name); close(task->fd); task->fd = -1; return false; } /* Allocate storage for the new DSO. When there is TLS, this * storage must include a reservation for all pre-existing * threads to obtain copies of both the new TLS, and an * extended DTV capable of storing an additional slot for * the newly-loaded DSO. */ alloc_size = sizeof(struct dso) + strlen(task->pathname) + 1; if (runtime && task->tls.size) { size_t per_th = task->tls.size + task->tls.align + sizeof(void *) * (tls_cnt + TLS_CNT_INCREASE); n_th = libc.threads_minus_1 + 1; if (n_th > SSIZE_MAX / per_th) { alloc_size = SIZE_MAX; } else { alloc_size += n_th * per_th; } } task->p = internal_calloc(1, alloc_size); if (!task->p) { LD_LOGE("Error loading header %{public}s: failed to allocate dso", task->name); close(task->fd); task->fd = -1; return false; } task->p->dev = st.st_dev; task->p->ino = st.st_ino; task->p->file_offset = task->file_offset; task->p->needed_by = needed_by; task->p->name = task->p->buf; strcpy(task->p->name, task->pathname); task->p->tls = task->tls; task->p->dynv = task->dyn_addr; task->p->strings = task->str_addr; /* Add a shortname only if name arg was not an explicit pathname. */ if (task->pathname != name) { task->p->shortname = strrchr(task->p->name, '/') + 1; } if (task->p->tls.size) { task->p->tls_id = ++tls_cnt; task->p->new_dtv = (void *)(-sizeof(size_t) & (uintptr_t)(task->p->name + strlen(task->p->name) + sizeof(size_t))); task->p->new_tls = (void *)(task->p->new_dtv + n_th * (tls_cnt + 1)); } tail->next = task->p; task->p->prev = tail; tail = task->p; /* Add dso to namespace */ task->p->namespace = namespace; ns_add_dso(namespace, task->p); return true; } static void task_load_library(struct loadtask *task, struct reserved_address_params *reserved_params) { bool map = noload ? 0 : task_map_library(task, reserved_params); close(task->fd); task->fd = -1; if (!map) { LD_LOGE("Error loading library %{public}s: failed to map library", task->name); error("Error loading library %s: failed to map library", task->name); if (runtime) { longjmp(*rtld_fail, 1); } return; }; /* Avoid the danger of getting two versions of libc mapped into the * same process when an absolute pathname was used. The symbols * checked are chosen to catch both musl and glibc, and to avoid * false positives from interposition-hack libraries. */ decode_dyn(task->p); if (find_sym(task->p, "__libc_start_main", 1).sym && find_sym(task->p, "stdin", 1).sym) { do_dlclose(task->p); task->p = NULL; internal_free((void*)task->name); task->name = ld_strdup("libc.so"); task->check_inherited = true; if (!load_library_header(task)) { LD_LOGE("Error loading library %{public}s: failed to load libc.so", task->name); error("Error loading library %s: failed to load libc.so", task->name); if (runtime) { longjmp(*rtld_fail, 1); } } return; } /* Past this point, if we haven't reached runtime yet, ldso has * committed either to use the mapped library or to abort execution. * Unmapping is not possible, so we can safely reclaim gaps. */ if (!runtime) { reclaim_gaps(task->p); } task->p->runtime_loaded = runtime; if (runtime) task->p->by_dlopen = 1; if (DL_FDPIC) { makefuncdescs(task->p); } if (ldd_mode) { dprintf(1, "\t%s => %s (%p)\n", task->name, task->pathname, task->p->base); } } static void preload_direct_deps(struct dso *p, ns_t *namespace, struct loadtasks *tasks) { size_t i, cnt = 0; if (p->deps) { return; } /* For head, all preloads are direct pseudo-dependencies. * Count and include them now to avoid realloc later. */ if (p == head) { for (struct dso *q = p->next; q; q = q->next) { cnt++; } } for (i = 0; p->dynv[i]; i += NEXT_DYNAMIC_INDEX) { if (p->dynv[i] == DT_NEEDED) { cnt++; } } /* Use builtin buffer for apps with no external deps, to * preserve property of no runtime failure paths. */ p->deps = (p == head && cnt < MIN_DEPS_COUNT) ? builtin_deps : internal_calloc(cnt + 1, sizeof *p->deps); if (!p->deps) { LD_LOGE("Error loading dependencies for %{public}s", p->name); error("Error loading dependencies for %s", p->name); if (runtime) { longjmp(*rtld_fail, 1); } } cnt = 0; if (p == head) { for (struct dso *q = p->next; q; q = q->next) { p->deps[cnt++] = q; } } for (i = 0; p->dynv[i]; i += NEXT_DYNAMIC_INDEX) { if (p->dynv[i] != DT_NEEDED) { continue; } struct loadtask *task = create_loadtask(p->strings + p->dynv[i + 1], p, namespace, true); if (!task) { LD_LOGE("Error loading dependencies %{public}s : create load task failed", p->name); error("Error loading dependencies for %s : create load task failed", p->name); if (runtime) { longjmp(*rtld_fail, 1); } continue; } LD_LOGD("loading shared library %{public}s: (needed by %{public}s)", p->strings + p->dynv[i+1], p->name); if (!load_library_header(task)) { free_task(task); task = NULL; LD_LOGE("Error loading shared library %{public}s: (needed by %{public}s)", p->strings + p->dynv[i + 1], p->name); error("Error loading shared library %s: %m (needed by %s)", p->strings + p->dynv[i + 1], p->name); if (runtime) { longjmp(*rtld_fail, 1); } continue; } p->deps[cnt++] = task->p; if (task->isloaded) { free_task(task); task = NULL; } else { append_loadtasks(tasks, task); } } p->deps[cnt] = 0; p->ndeps_direct = cnt; for (i = 0; i < p->ndeps_direct; i++) { add_dso_parent(p->deps[i], p); } } static void unmap_preloaded_sections(struct loadtasks *tasks) { struct loadtask *task = NULL; for (size_t i = 0; i < tasks->length; i++) { task = get_loadtask(tasks, i); if (!task) { continue; } if (task->dyn_map_len) { munmap(task->dyn_map, task->dyn_map_len); task->dyn_map = NULL; task->dyn_map_len = 0; if (task->p) { task->p->dynv = NULL; } } if (task->str_map_len) { munmap(task->str_map, task->str_map_len); task->str_map = NULL; task->str_map_len = 0; if (task->p) { task->p->strings = NULL; } } } } static void preload_deps(struct dso *p, struct loadtasks *tasks) { if (p->deps) { return; } for (; p; p = p->next) { preload_direct_deps(p, p->namespace, tasks); } } static void run_loadtasks(struct loadtasks *tasks, struct reserved_address_params *reserved_params) { struct loadtask *task = NULL; bool reserved_address = false; for (size_t i = 0; i < tasks->length; i++) { task = get_loadtask(tasks, i); if (task) { if (reserved_params) { reserved_address = reserved_params->reserved_address_recursive || (reserved_params->target == task->p); } task_load_library(task, reserved_address ? reserved_params : NULL); } } } static void assign_tls(struct dso *p) { while (p) { if (p->tls.image) { tls_align = MAXP2(tls_align, p->tls.align); #ifdef TLS_ABOVE_TP p->tls.offset = tls_offset + ((p->tls.align - 1) & (-tls_offset + (uintptr_t)p->tls.image)); tls_offset = p->tls.offset + p->tls.size; #else tls_offset += p->tls.size + p->tls.align - 1; tls_offset -= (tls_offset + (uintptr_t)p->tls.image) & (p->tls.align - 1); p->tls.offset = tls_offset; #endif if (tls_tail) { tls_tail->next = &p->tls; } else { libc.tls_head = &p->tls; } tls_tail = &p->tls; } p = p->next; } } static void load_preload(char *s, ns_t *ns, struct loadtasks *tasks) { int tmp; char *z; struct loadtask *task = NULL; for (z = s; *z; s = z) { for (; *s && (isspace(*s) || *s == ':'); s++) { ; } for (z = s; *z && !isspace(*z) && *z != ':'; z++) { ; } tmp = *z; *z = 0; task = create_loadtask(s, NULL, ns, true); if (!task) { continue; } if (load_library_header(task)) { if (!task->isloaded) { append_loadtasks(tasks, task); task = NULL; } } if (task) { free_task(task); } *z = tmp; } } #endif static int serialize_gnu_relro(int fd, struct dso *dso, ssize_t *file_offset) { ssize_t count = dso->relro_end - dso->relro_start; ssize_t offset = 0; while (count > 0) { ssize_t write_size = TEMP_FAILURE_RETRY(write(fd, laddr(dso, dso->relro_start + offset), count)); if (-1 == write_size) { LD_LOGE("Error serializing relro %{public}s: failed to write GNU_RELRO", dso->name); return -1; } offset += write_size; count -= write_size; } ssize_t size = dso->relro_end - dso->relro_start; void *map = mmap( laddr(dso, dso->relro_start), size, PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, *file_offset); if (map == MAP_FAILED) { LD_LOGE("Error serializing relro %{public}s: failed to map GNU_RELRO", dso->name); return -1; } *file_offset += size; return 0; } static int map_gnu_relro(int fd, struct dso *dso, ssize_t *file_offset) { ssize_t ext_fd_file_size = 0; struct stat ext_fd_file_stat; if (TEMP_FAILURE_RETRY(fstat(fd, &ext_fd_file_stat)) != 0) { LD_LOGE("Error mapping relro %{public}s: failed to get file state", dso->name); return -1; } ext_fd_file_size = ext_fd_file_stat.st_size; void *ext_temp_map = MAP_FAILED; ext_temp_map = mmap(NULL, ext_fd_file_size, PROT_READ, MAP_PRIVATE, fd, 0); if (ext_temp_map == MAP_FAILED) { LD_LOGE("Error mapping relro %{public}s: failed to map fd", dso->name); return -1; } char *file_base = (char *)(ext_temp_map) + *file_offset; char *mem_base = (char *)(laddr(dso, dso->relro_start)); ssize_t start_offset = 0; ssize_t size = dso->relro_end - dso->relro_start; if (size > ext_fd_file_size - *file_offset) { LD_LOGE("Error mapping relro %{public}s: invalid file size", dso->name); return -1; } while (start_offset < size) { // Find start location. while (start_offset < size) { if (memcmp(mem_base + start_offset, file_base + start_offset, PAGE_SIZE) == 0) { break; } start_offset += PAGE_SIZE; } // Find end location. ssize_t end_offset = start_offset; while (end_offset < size) { if (memcmp(mem_base + end_offset, file_base + end_offset, PAGE_SIZE) != 0) { break; } end_offset += PAGE_SIZE; } // Map pages. ssize_t map_length = end_offset - start_offset; ssize_t map_offset = *file_offset + start_offset; if (map_length > 0) { void *map = mmap( mem_base + start_offset, map_length, PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, map_offset); if (map == MAP_FAILED) { LD_LOGE("Error mapping relro %{public}s: failed to map GNU_RELRO", dso->name); munmap(ext_temp_map, ext_fd_file_size); return -1; } } start_offset = end_offset; } *file_offset += size; munmap(ext_temp_map, ext_fd_file_size); return 0; } static void handle_relro_sharing(struct dso *p, const dl_extinfo *extinfo, ssize_t *relro_fd_offset) { if (extinfo == NULL) { return; } if (extinfo->flag & DL_EXT_WRITE_RELRO) { LD_LOGD("Serializing GNU_RELRO %{public}s", p->name); if (serialize_gnu_relro(extinfo->relro_fd, p, relro_fd_offset) < 0) { LD_LOGE("Error serializing GNU_RELRO %{public}s", p->name); error("Error serializing GNU_RELRO"); if (runtime) longjmp(*rtld_fail, 1); } } else if (extinfo->flag & DL_EXT_USE_RELRO) { LD_LOGD("Mapping GNU_RELRO %{public}s", p->name); if (map_gnu_relro(extinfo->relro_fd, p, relro_fd_offset) < 0) { LD_LOGE("Error mapping GNU_RELRO %{public}s", p->name); error("Error mapping GNU_RELRO"); if (runtime) longjmp(*rtld_fail, 1); } } }