/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include "i915_drv.h" #include "intel_drv.h" /* HDMI/DVI modes ignore everything but the last 2 items. So we share * them for both DP and FDI transports, allowing those ports to * automatically adapt to HDMI connections as well */ static const u32 hsw_ddi_translations_dp[] = { 0x00FFFFFF, 0x0006000E, /* DP parameters */ 0x00D75FFF, 0x0005000A, 0x00C30FFF, 0x00040006, 0x80AAAFFF, 0x000B0000, 0x00FFFFFF, 0x0005000A, 0x00D75FFF, 0x000C0004, 0x80C30FFF, 0x000B0000, 0x00FFFFFF, 0x00040006, 0x80D75FFF, 0x000B0000, }; static const u32 hsw_ddi_translations_fdi[] = { 0x00FFFFFF, 0x0007000E, /* FDI parameters */ 0x00D75FFF, 0x000F000A, 0x00C30FFF, 0x00060006, 0x00AAAFFF, 0x001E0000, 0x00FFFFFF, 0x000F000A, 0x00D75FFF, 0x00160004, 0x00C30FFF, 0x001E0000, 0x00FFFFFF, 0x00060006, 0x00D75FFF, 0x001E0000, }; static const u32 hsw_ddi_translations_hdmi[] = { /* Idx NT mV diff T mV diff db */ 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */ 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */ 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */ 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */ 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */ 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */ 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */ 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */ 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */ 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */ 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */ 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */ }; static const u32 bdw_ddi_translations_edp[] = { 0x00FFFFFF, 0x00000012, /* eDP parameters */ 0x00EBAFFF, 0x00020011, 0x00C71FFF, 0x0006000F, 0x00AAAFFF, 0x000E000A, 0x00FFFFFF, 0x00020011, 0x00DB6FFF, 0x0005000F, 0x00BEEFFF, 0x000A000C, 0x00FFFFFF, 0x0005000F, 0x00DB6FFF, 0x000A000C, 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/ }; static const u32 bdw_ddi_translations_dp[] = { 0x00FFFFFF, 0x0007000E, /* DP parameters */ 0x00D75FFF, 0x000E000A, 0x00BEFFFF, 0x00140006, 0x80B2CFFF, 0x001B0002, 0x00FFFFFF, 0x000E000A, 0x00D75FFF, 0x00180004, 0x80CB2FFF, 0x001B0002, 0x00F7DFFF, 0x00180004, 0x80D75FFF, 0x001B0002, 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/ }; static const u32 bdw_ddi_translations_fdi[] = { 0x00FFFFFF, 0x0001000E, /* FDI parameters */ 0x00D75FFF, 0x0004000A, 0x00C30FFF, 0x00070006, 0x00AAAFFF, 0x000C0000, 0x00FFFFFF, 0x0004000A, 0x00D75FFF, 0x00090004, 0x00C30FFF, 0x000C0000, 0x00FFFFFF, 0x00070006, 0x00D75FFF, 0x000C0000, 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/ }; enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; int type = intel_encoder->type; if (type == INTEL_OUTPUT_DP_MST) { struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary; return intel_dig_port->port; } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); return intel_dig_port->port; } else if (type == INTEL_OUTPUT_ANALOG) { return PORT_E; } else { DRM_ERROR("Invalid DDI encoder type %d\n", type); BUG(); } } /* * Starting with Haswell, DDI port buffers must be programmed with correct * values in advance. The buffer values are different for FDI and DP modes, * but the HDMI/DVI fields are shared among those. So we program the DDI * in either FDI or DP modes only, as HDMI connections will work with both * of those */ static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port) { struct drm_i915_private *dev_priv = dev->dev_private; u32 reg; int i; int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift; const u32 *ddi_translations_fdi; const u32 *ddi_translations_dp; const u32 *ddi_translations_edp; const u32 *ddi_translations; if (IS_BROADWELL(dev)) { ddi_translations_fdi = bdw_ddi_translations_fdi; ddi_translations_dp = bdw_ddi_translations_dp; ddi_translations_edp = bdw_ddi_translations_edp; } else if (IS_HASWELL(dev)) { ddi_translations_fdi = hsw_ddi_translations_fdi; ddi_translations_dp = hsw_ddi_translations_dp; ddi_translations_edp = hsw_ddi_translations_dp; } else { WARN(1, "ddi translation table missing\n"); ddi_translations_edp = bdw_ddi_translations_dp; ddi_translations_fdi = bdw_ddi_translations_fdi; ddi_translations_dp = bdw_ddi_translations_dp; } switch (port) { case PORT_A: ddi_translations = ddi_translations_edp; break; case PORT_B: case PORT_C: ddi_translations = ddi_translations_dp; break; case PORT_D: if (intel_dp_is_edp(dev, PORT_D)) ddi_translations = ddi_translations_edp; else ddi_translations = ddi_translations_dp; break; case PORT_E: ddi_translations = ddi_translations_fdi; break; default: BUG(); } for (i = 0, reg = DDI_BUF_TRANS(port); i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) { I915_WRITE(reg, ddi_translations[i]); reg += 4; } /* Entry 9 is for HDMI: */ for (i = 0; i < 2; i++) { I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]); reg += 4; } } /* Program DDI buffers translations for DP. By default, program ports A-D in DP * mode and port E for FDI. */ void intel_prepare_ddi(struct drm_device *dev) { int port; if (!HAS_DDI(dev)) return; for (port = PORT_A; port <= PORT_E; port++) intel_prepare_ddi_buffers(dev, port); } static const long hsw_ddi_buf_ctl_values[] = { DDI_BUF_EMP_400MV_0DB_HSW, DDI_BUF_EMP_400MV_3_5DB_HSW, DDI_BUF_EMP_400MV_6DB_HSW, DDI_BUF_EMP_400MV_9_5DB_HSW, DDI_BUF_EMP_600MV_0DB_HSW, DDI_BUF_EMP_600MV_3_5DB_HSW, DDI_BUF_EMP_600MV_6DB_HSW, DDI_BUF_EMP_800MV_0DB_HSW, DDI_BUF_EMP_800MV_3_5DB_HSW }; static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv, enum port port) { uint32_t reg = DDI_BUF_CTL(port); int i; for (i = 0; i < 8; i++) { udelay(1); if (I915_READ(reg) & DDI_BUF_IS_IDLE) return; } DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port)); } /* Starting with Haswell, different DDI ports can work in FDI mode for * connection to the PCH-located connectors. For this, it is necessary to train * both the DDI port and PCH receiver for the desired DDI buffer settings. * * The recommended port to work in FDI mode is DDI E, which we use here. Also, * please note that when FDI mode is active on DDI E, it shares 2 lines with * DDI A (which is used for eDP) */ void hsw_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 temp, i, rx_ctl_val; /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the * mode set "sequence for CRT port" document: * - TP1 to TP2 time with the default value * - FDI delay to 90h * * WaFDIAutoLinkSetTimingOverrride:hsw */ I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2) | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); /* Enable the PCH Receiver FDI PLL */ rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE | FDI_RX_PLL_ENABLE | FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); POSTING_READ(_FDI_RXA_CTL); udelay(220); /* Switch from Rawclk to PCDclk */ rx_ctl_val |= FDI_PCDCLK; I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); /* Configure Port Clock Select */ I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel); WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL); /* Start the training iterating through available voltages and emphasis, * testing each value twice. */ for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) { /* Configure DP_TP_CTL with auto-training */ I915_WRITE(DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_ENABLE); /* Configure and enable DDI_BUF_CTL for DDI E with next voltage. * DDI E does not support port reversal, the functionality is * achieved on the PCH side in FDI_RX_CTL, so no need to set the * port reversal bit */ I915_WRITE(DDI_BUF_CTL(PORT_E), DDI_BUF_CTL_ENABLE | ((intel_crtc->config.fdi_lanes - 1) << 1) | hsw_ddi_buf_ctl_values[i / 2]); POSTING_READ(DDI_BUF_CTL(PORT_E)); udelay(600); /* Program PCH FDI Receiver TU */ I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64)); /* Enable PCH FDI Receiver with auto-training */ rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO; I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); POSTING_READ(_FDI_RXA_CTL); /* Wait for FDI receiver lane calibration */ udelay(30); /* Unset FDI_RX_MISC pwrdn lanes */ temp = I915_READ(_FDI_RXA_MISC); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); I915_WRITE(_FDI_RXA_MISC, temp); POSTING_READ(_FDI_RXA_MISC); /* Wait for FDI auto training time */ udelay(5); temp = I915_READ(DP_TP_STATUS(PORT_E)); if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) { DRM_DEBUG_KMS("FDI link training done on step %d\n", i); /* Enable normal pixel sending for FDI */ I915_WRITE(DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_LINK_TRAIN_NORMAL | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_ENABLE); return; } temp = I915_READ(DDI_BUF_CTL(PORT_E)); temp &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(PORT_E), temp); POSTING_READ(DDI_BUF_CTL(PORT_E)); /* Disable DP_TP_CTL and FDI_RX_CTL and retry */ temp = I915_READ(DP_TP_CTL(PORT_E)); temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); temp |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(PORT_E), temp); POSTING_READ(DP_TP_CTL(PORT_E)); intel_wait_ddi_buf_idle(dev_priv, PORT_E); rx_ctl_val &= ~FDI_RX_ENABLE; I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); POSTING_READ(_FDI_RXA_CTL); /* Reset FDI_RX_MISC pwrdn lanes */ temp = I915_READ(_FDI_RXA_MISC); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); I915_WRITE(_FDI_RXA_MISC, temp); POSTING_READ(_FDI_RXA_MISC); } DRM_ERROR("FDI link training failed!\n"); } void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base); intel_dp->DP = intel_dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW; intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count); } static struct intel_encoder * intel_ddi_get_crtc_encoder(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *intel_encoder, *ret = NULL; int num_encoders = 0; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { ret = intel_encoder; num_encoders++; } if (num_encoders != 1) WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders, pipe_name(intel_crtc->pipe)); BUG_ON(ret == NULL); return ret; } #define LC_FREQ 2700 #define LC_FREQ_2K (LC_FREQ * 2000) #define P_MIN 2 #define P_MAX 64 #define P_INC 2 /* Constraints for PLL good behavior */ #define REF_MIN 48 #define REF_MAX 400 #define VCO_MIN 2400 #define VCO_MAX 4800 #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a)) struct wrpll_rnp { unsigned p, n2, r2; }; static unsigned wrpll_get_budget_for_freq(int clock) { unsigned budget; switch (clock) { case 25175000: case 25200000: case 27000000: case 27027000: case 37762500: case 37800000: case 40500000: case 40541000: case 54000000: case 54054000: case 59341000: case 59400000: case 72000000: case 74176000: case 74250000: case 81000000: case 81081000: case 89012000: case 89100000: case 108000000: case 108108000: case 111264000: case 111375000: case 148352000: case 148500000: case 162000000: case 162162000: case 222525000: case 222750000: case 296703000: case 297000000: budget = 0; break; case 233500000: case 245250000: case 247750000: case 253250000: case 298000000: budget = 1500; break; case 169128000: case 169500000: case 179500000: case 202000000: budget = 2000; break; case 256250000: case 262500000: case 270000000: case 272500000: case 273750000: case 280750000: case 281250000: case 286000000: case 291750000: budget = 4000; break; case 267250000: case 268500000: budget = 5000; break; default: budget = 1000; break; } return budget; } static void wrpll_update_rnp(uint64_t freq2k, unsigned budget, unsigned r2, unsigned n2, unsigned p, struct wrpll_rnp *best) { uint64_t a, b, c, d, diff, diff_best; /* No best (r,n,p) yet */ if (best->p == 0) { best->p = p; best->n2 = n2; best->r2 = r2; return; } /* * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to * freq2k. * * delta = 1e6 * * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / * freq2k; * * and we would like delta <= budget. * * If the discrepancy is above the PPM-based budget, always prefer to * improve upon the previous solution. However, if you're within the * budget, try to maximize Ref * VCO, that is N / (P * R^2). */ a = freq2k * budget * p * r2; b = freq2k * budget * best->p * best->r2; diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2)); diff_best = ABS_DIFF((freq2k * best->p * best->r2), (LC_FREQ_2K * best->n2)); c = 1000000 * diff; d = 1000000 * diff_best; if (a < c && b < d) { /* If both are above the budget, pick the closer */ if (best->p * best->r2 * diff < p * r2 * diff_best) { best->p = p; best->n2 = n2; best->r2 = r2; } } else if (a >= c && b < d) { /* If A is below the threshold but B is above it? Update. */ best->p = p; best->n2 = n2; best->r2 = r2; } else if (a >= c && b >= d) { /* Both are below the limit, so pick the higher n2/(r2*r2) */ if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { best->p = p; best->n2 = n2; best->r2 = r2; } } /* Otherwise a < c && b >= d, do nothing */ } static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg) { int refclk = LC_FREQ; int n, p, r; u32 wrpll; wrpll = I915_READ(reg); switch (wrpll & WRPLL_PLL_REF_MASK) { case WRPLL_PLL_SSC: case WRPLL_PLL_NON_SSC: /* * We could calculate spread here, but our checking * code only cares about 5% accuracy, and spread is a max of * 0.5% downspread. */ refclk = 135; break; case WRPLL_PLL_LCPLL: refclk = LC_FREQ; break; default: WARN(1, "bad wrpll refclk\n"); return 0; } r = wrpll & WRPLL_DIVIDER_REF_MASK; p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; /* Convert to KHz, p & r have a fixed point portion */ return (refclk * n * 100) / (p * r); } void intel_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; int link_clock = 0; u32 val, pll; val = pipe_config->ddi_pll_sel; switch (val & PORT_CLK_SEL_MASK) { case PORT_CLK_SEL_LCPLL_810: link_clock = 81000; break; case PORT_CLK_SEL_LCPLL_1350: link_clock = 135000; break; case PORT_CLK_SEL_LCPLL_2700: link_clock = 270000; break; case PORT_CLK_SEL_WRPLL1: link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1); break; case PORT_CLK_SEL_WRPLL2: link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2); break; case PORT_CLK_SEL_SPLL: pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK; if (pll == SPLL_PLL_FREQ_810MHz) link_clock = 81000; else if (pll == SPLL_PLL_FREQ_1350MHz) link_clock = 135000; else if (pll == SPLL_PLL_FREQ_2700MHz) link_clock = 270000; else { WARN(1, "bad spll freq\n"); return; } break; default: WARN(1, "bad port clock sel\n"); return; } pipe_config->port_clock = link_clock * 2; if (pipe_config->has_pch_encoder) pipe_config->adjusted_mode.crtc_clock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->fdi_m_n); else if (pipe_config->has_dp_encoder) pipe_config->adjusted_mode.crtc_clock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); else pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock; } static void intel_ddi_calculate_wrpll(int clock /* in Hz */, unsigned *r2_out, unsigned *n2_out, unsigned *p_out) { uint64_t freq2k; unsigned p, n2, r2; struct wrpll_rnp best = { 0, 0, 0 }; unsigned budget; freq2k = clock / 100; budget = wrpll_get_budget_for_freq(clock); /* Special case handling for 540 pixel clock: bypass WR PLL entirely * and directly pass the LC PLL to it. */ if (freq2k == 5400000) { *n2_out = 2; *p_out = 1; *r2_out = 2; return; } /* * Ref = LC_FREQ / R, where Ref is the actual reference input seen by * the WR PLL. * * We want R so that REF_MIN <= Ref <= REF_MAX. * Injecting R2 = 2 * R gives: * REF_MAX * r2 > LC_FREQ * 2 and * REF_MIN * r2 < LC_FREQ * 2 * * Which means the desired boundaries for r2 are: * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN * */ for (r2 = LC_FREQ * 2 / REF_MAX + 1; r2 <= LC_FREQ * 2 / REF_MIN; r2++) { /* * VCO = N * Ref, that is: VCO = N * LC_FREQ / R * * Once again we want VCO_MIN <= VCO <= VCO_MAX. * Injecting R2 = 2 * R and N2 = 2 * N, we get: * VCO_MAX * r2 > n2 * LC_FREQ and * VCO_MIN * r2 < n2 * LC_FREQ) * * Which means the desired boundaries for n2 are: * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ */ for (n2 = VCO_MIN * r2 / LC_FREQ + 1; n2 <= VCO_MAX * r2 / LC_FREQ; n2++) { for (p = P_MIN; p <= P_MAX; p += P_INC) wrpll_update_rnp(freq2k, budget, r2, n2, p, &best); } } *n2_out = best.n2; *p_out = best.p; *r2_out = best.r2; } /* * Tries to find a PLL for the CRTC. If it finds, it increases the refcount and * stores it in intel_crtc->ddi_pll_sel, so other mode sets won't be able to * steal the selected PLL. You need to call intel_ddi_pll_enable to actually * enable the PLL. */ bool intel_ddi_pll_select(struct intel_crtc *intel_crtc) { struct drm_crtc *crtc = &intel_crtc->base; struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); int type = intel_encoder->type; int clock = intel_crtc->config.port_clock; intel_put_shared_dpll(intel_crtc); if (type == INTEL_OUTPUT_HDMI) { struct intel_shared_dpll *pll; uint32_t val; unsigned p, n2, r2; intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p); val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL | WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | WRPLL_DIVIDER_POST(p); intel_crtc->config.dpll_hw_state.wrpll = val; pll = intel_get_shared_dpll(intel_crtc); if (pll == NULL) { DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", pipe_name(intel_crtc->pipe)); return false; } intel_crtc->config.ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id); } return true; } void intel_ddi_set_pipe_settings(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; int type = intel_encoder->type; uint32_t temp; if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) { temp = TRANS_MSA_SYNC_CLK; switch (intel_crtc->config.pipe_bpp) { case 18: temp |= TRANS_MSA_6_BPC; break; case 24: temp |= TRANS_MSA_8_BPC; break; case 30: temp |= TRANS_MSA_10_BPC; break; case 36: temp |= TRANS_MSA_12_BPC; break; default: BUG(); } I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp); } } void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; uint32_t temp; temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (state == true) temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC; else temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC; I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); } void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = intel_crtc->pipe; enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; uint32_t temp; /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */ temp = TRANS_DDI_FUNC_ENABLE; temp |= TRANS_DDI_SELECT_PORT(port); switch (intel_crtc->config.pipe_bpp) { case 18: temp |= TRANS_DDI_BPC_6; break; case 24: temp |= TRANS_DDI_BPC_8; break; case 30: temp |= TRANS_DDI_BPC_10; break; case 36: temp |= TRANS_DDI_BPC_12; break; default: BUG(); } if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DDI_PVSYNC; if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DDI_PHSYNC; if (cpu_transcoder == TRANSCODER_EDP) { switch (pipe) { case PIPE_A: /* On Haswell, can only use the always-on power well for * eDP when not using the panel fitter, and when not * using motion blur mitigation (which we don't * support). */ if (IS_HASWELL(dev) && (intel_crtc->config.pch_pfit.enabled || intel_crtc->config.pch_pfit.force_thru)) temp |= TRANS_DDI_EDP_INPUT_A_ONOFF; else temp |= TRANS_DDI_EDP_INPUT_A_ON; break; case PIPE_B: temp |= TRANS_DDI_EDP_INPUT_B_ONOFF; break; case PIPE_C: temp |= TRANS_DDI_EDP_INPUT_C_ONOFF; break; default: BUG(); break; } } if (type == INTEL_OUTPUT_HDMI) { if (intel_crtc->config.has_hdmi_sink) temp |= TRANS_DDI_MODE_SELECT_HDMI; else temp |= TRANS_DDI_MODE_SELECT_DVI; } else if (type == INTEL_OUTPUT_ANALOG) { temp |= TRANS_DDI_MODE_SELECT_FDI; temp |= (intel_crtc->config.fdi_lanes - 1) << 1; } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (intel_dp->is_mst) { temp |= TRANS_DDI_MODE_SELECT_DP_MST; } else temp |= TRANS_DDI_MODE_SELECT_DP_SST; temp |= DDI_PORT_WIDTH(intel_dp->lane_count); } else if (type == INTEL_OUTPUT_DP_MST) { struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp; if (intel_dp->is_mst) { temp |= TRANS_DDI_MODE_SELECT_DP_MST; } else temp |= TRANS_DDI_MODE_SELECT_DP_SST; temp |= DDI_PORT_WIDTH(intel_dp->lane_count); } else { WARN(1, "Invalid encoder type %d for pipe %c\n", intel_encoder->type, pipe_name(pipe)); } I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); } void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); uint32_t val = I915_READ(reg); val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC); val |= TRANS_DDI_PORT_NONE; I915_WRITE(reg, val); } bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector) { struct drm_device *dev = intel_connector->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder = intel_connector->encoder; int type = intel_connector->base.connector_type; enum port port = intel_ddi_get_encoder_port(intel_encoder); enum pipe pipe = 0; enum transcoder cpu_transcoder; enum intel_display_power_domain power_domain; uint32_t tmp; power_domain = intel_display_port_power_domain(intel_encoder); if (!intel_display_power_enabled(dev_priv, power_domain)) return false; if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) return false; if (port == PORT_A) cpu_transcoder = TRANSCODER_EDP; else cpu_transcoder = (enum transcoder) pipe; tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); switch (tmp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: case TRANS_DDI_MODE_SELECT_DVI: return (type == DRM_MODE_CONNECTOR_HDMIA); case TRANS_DDI_MODE_SELECT_DP_SST: if (type == DRM_MODE_CONNECTOR_eDP) return true; return (type == DRM_MODE_CONNECTOR_DisplayPort); case TRANS_DDI_MODE_SELECT_DP_MST: /* if the transcoder is in MST state then * connector isn't connected */ return false; case TRANS_DDI_MODE_SELECT_FDI: return (type == DRM_MODE_CONNECTOR_VGA); default: return false; } } bool intel_ddi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_ddi_get_encoder_port(encoder); enum intel_display_power_domain power_domain; u32 tmp; int i; power_domain = intel_display_port_power_domain(encoder); if (!intel_display_power_enabled(dev_priv, power_domain)) return false; tmp = I915_READ(DDI_BUF_CTL(port)); if (!(tmp & DDI_BUF_CTL_ENABLE)) return false; if (port == PORT_A) { tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { case TRANS_DDI_EDP_INPUT_A_ON: case TRANS_DDI_EDP_INPUT_A_ONOFF: *pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: *pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: *pipe = PIPE_C; break; } return true; } else { for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) { tmp = I915_READ(TRANS_DDI_FUNC_CTL(i)); if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) { if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST) return false; *pipe = i; return true; } } } DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port)); return false; } void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc) { struct drm_crtc *crtc = &intel_crtc->base; struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); enum port port = intel_ddi_get_encoder_port(intel_encoder); enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_PORT(port)); } void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_DISABLED); } static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(encoder->crtc); enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; if (crtc->config.has_audio) { DRM_DEBUG_DRIVER("Audio on pipe %c on DDI\n", pipe_name(crtc->pipe)); /* write eld */ DRM_DEBUG_DRIVER("DDI audio: write eld information\n"); intel_write_eld(encoder, &crtc->config.adjusted_mode); } if (type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_edp_panel_on(intel_dp); } WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE); I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel); if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_ddi_init_dp_buf_reg(intel_encoder); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); intel_dp_start_link_train(intel_dp); intel_dp_complete_link_train(intel_dp); if (port != PORT_A) intel_dp_stop_link_train(intel_dp); } else if (type == INTEL_OUTPUT_HDMI) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); intel_hdmi->set_infoframes(encoder, crtc->config.has_hdmi_sink, &crtc->config.adjusted_mode); } } static void intel_ddi_post_disable(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_i915_private *dev_priv = encoder->dev->dev_private; enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; uint32_t val; bool wait = false; val = I915_READ(DDI_BUF_CTL(port)); if (val & DDI_BUF_CTL_ENABLE) { val &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), val); wait = true; } val = I915_READ(DP_TP_CTL(port)); val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); val |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(port), val); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); intel_edp_panel_vdd_on(intel_dp); intel_edp_panel_off(intel_dp); } I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE); } static void intel_enable_ddi(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = encoder->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; enum port port = intel_ddi_get_encoder_port(intel_encoder); int type = intel_encoder->type; uint32_t tmp; if (type == INTEL_OUTPUT_HDMI) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); /* In HDMI/DVI mode, the port width, and swing/emphasis values * are ignored so nothing special needs to be done besides * enabling the port. */ I915_WRITE(DDI_BUF_CTL(port), intel_dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE); } else if (type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (port == PORT_A) intel_dp_stop_link_train(intel_dp); intel_edp_backlight_on(intel_dp); intel_edp_psr_enable(intel_dp); } if (intel_crtc->config.has_audio) { intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO); tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD); tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4)); I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp); } } static void intel_disable_ddi(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = encoder->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int type = intel_encoder->type; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp; /* We can't touch HSW_AUD_PIN_ELD_CP_VLD uncionditionally because this * register is part of the power well on Haswell. */ if (intel_crtc->config.has_audio) { tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD); tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4)); I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp); intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO); } if (type == INTEL_OUTPUT_EDP) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_edp_psr_disable(intel_dp); intel_edp_backlight_off(intel_dp); } } int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t lcpll = I915_READ(LCPLL_CTL); uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; if (lcpll & LCPLL_CD_SOURCE_FCLK) { return 800000; } else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) { return 450000; } else if (freq == LCPLL_CLK_FREQ_450) { return 450000; } else if (IS_HASWELL(dev)) { if (IS_ULT(dev)) return 337500; else return 540000; } else { if (freq == LCPLL_CLK_FREQ_54O_BDW) return 540000; else if (freq == LCPLL_CLK_FREQ_337_5_BDW) return 337500; else return 675000; } } static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { I915_WRITE(WRPLL_CTL(pll->id), pll->hw_state.wrpll); POSTING_READ(WRPLL_CTL(pll->id)); udelay(20); } static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t val; val = I915_READ(WRPLL_CTL(pll->id)); I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE); POSTING_READ(WRPLL_CTL(pll->id)); } static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(WRPLL_CTL(pll->id)); hw_state->wrpll = val; return val & WRPLL_PLL_ENABLE; } static char *hsw_ddi_pll_names[] = { "WRPLL 1", "WRPLL 2", }; void intel_ddi_pll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t val = I915_READ(LCPLL_CTL); int i; dev_priv->num_shared_dpll = 2; for (i = 0; i < dev_priv->num_shared_dpll; i++) { dev_priv->shared_dplls[i].id = i; dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i]; dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable; dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable; dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_pll_get_hw_state; } /* The LCPLL register should be turned on by the BIOS. For now let's * just check its state and print errors in case something is wrong. * Don't even try to turn it on. */ DRM_DEBUG_KMS("CDCLK running at %dKHz\n", intel_ddi_get_cdclk_freq(dev_priv)); if (val & LCPLL_CD_SOURCE_FCLK) DRM_ERROR("CDCLK source is not LCPLL\n"); if (val & LCPLL_PLL_DISABLE) DRM_ERROR("LCPLL is disabled\n"); } void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_dp *intel_dp = &intel_dig_port->dp; struct drm_i915_private *dev_priv = encoder->dev->dev_private; enum port port = intel_dig_port->port; uint32_t val; bool wait = false; if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) { val = I915_READ(DDI_BUF_CTL(port)); if (val & DDI_BUF_CTL_ENABLE) { val &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), val); wait = true; } val = I915_READ(DP_TP_CTL(port)); val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); val |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(port), val); POSTING_READ(DP_TP_CTL(port)); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); } val = DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE; if (intel_dp->is_mst) val |= DP_TP_CTL_MODE_MST; else { val |= DP_TP_CTL_MODE_SST; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE; } I915_WRITE(DP_TP_CTL(port), val); POSTING_READ(DP_TP_CTL(port)); intel_dp->DP |= DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP); POSTING_READ(DDI_BUF_CTL(port)); udelay(600); } void intel_ddi_fdi_disable(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); uint32_t val; intel_ddi_post_disable(intel_encoder); val = I915_READ(_FDI_RXA_CTL); val &= ~FDI_RX_ENABLE; I915_WRITE(_FDI_RXA_CTL, val); val = I915_READ(_FDI_RXA_MISC); val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); I915_WRITE(_FDI_RXA_MISC, val); val = I915_READ(_FDI_RXA_CTL); val &= ~FDI_PCDCLK; I915_WRITE(_FDI_RXA_CTL, val); val = I915_READ(_FDI_RXA_CTL); val &= ~FDI_RX_PLL_ENABLE; I915_WRITE(_FDI_RXA_CTL, val); } static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base); int type = intel_dig_port->base.type; if (type != INTEL_OUTPUT_DISPLAYPORT && type != INTEL_OUTPUT_EDP && type != INTEL_OUTPUT_UNKNOWN) { return; } intel_dp_hot_plug(intel_encoder); } void intel_ddi_get_config(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; u32 temp, flags = 0; temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (temp & TRANS_DDI_PHSYNC) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (temp & TRANS_DDI_PVSYNC) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; pipe_config->adjusted_mode.flags |= flags; switch (temp & TRANS_DDI_BPC_MASK) { case TRANS_DDI_BPC_6: pipe_config->pipe_bpp = 18; break; case TRANS_DDI_BPC_8: pipe_config->pipe_bpp = 24; break; case TRANS_DDI_BPC_10: pipe_config->pipe_bpp = 30; break; case TRANS_DDI_BPC_12: pipe_config->pipe_bpp = 36; break; default: break; } switch (temp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: pipe_config->has_hdmi_sink = true; case TRANS_DDI_MODE_SELECT_DVI: case TRANS_DDI_MODE_SELECT_FDI: break; case TRANS_DDI_MODE_SELECT_DP_SST: case TRANS_DDI_MODE_SELECT_DP_MST: pipe_config->has_dp_encoder = true; intel_dp_get_m_n(intel_crtc, pipe_config); break; default: break; } if (intel_display_power_enabled(dev_priv, POWER_DOMAIN_AUDIO)) { temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD); if (temp & (AUDIO_OUTPUT_ENABLE_A << (intel_crtc->pipe * 4))) pipe_config->has_audio = true; } if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; } intel_ddi_clock_get(encoder, pipe_config); } static void intel_ddi_destroy(struct drm_encoder *encoder) { /* HDMI has nothing special to destroy, so we can go with this. */ intel_dp_encoder_destroy(encoder); } static bool intel_ddi_compute_config(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { int type = encoder->type; int port = intel_ddi_get_encoder_port(encoder); WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n"); if (port == PORT_A) pipe_config->cpu_transcoder = TRANSCODER_EDP; if (type == INTEL_OUTPUT_HDMI) return intel_hdmi_compute_config(encoder, pipe_config); else return intel_dp_compute_config(encoder, pipe_config); } static const struct drm_encoder_funcs intel_ddi_funcs = { .destroy = intel_ddi_destroy, }; static struct intel_connector * intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port) { struct intel_connector *connector; enum port port = intel_dig_port->port; connector = kzalloc(sizeof(*connector), GFP_KERNEL); if (!connector) return NULL; intel_dig_port->dp.output_reg = DDI_BUF_CTL(port); if (!intel_dp_init_connector(intel_dig_port, connector)) { kfree(connector); return NULL; } return connector; } static struct intel_connector * intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port) { struct intel_connector *connector; enum port port = intel_dig_port->port; connector = kzalloc(sizeof(*connector), GFP_KERNEL); if (!connector) return NULL; intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port); intel_hdmi_init_connector(intel_dig_port, connector); return connector; } void intel_ddi_init(struct drm_device *dev, enum port port) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; bool init_hdmi, init_dp; init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi || dev_priv->vbt.ddi_port_info[port].supports_hdmi); init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp; if (!init_dp && !init_hdmi) { DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n", port_name(port)); init_hdmi = true; init_dp = true; } intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return; intel_encoder = &intel_dig_port->base; encoder = &intel_encoder->base; drm_encoder_init(dev, encoder, &intel_ddi_funcs, DRM_MODE_ENCODER_TMDS); intel_encoder->compute_config = intel_ddi_compute_config; intel_encoder->enable = intel_enable_ddi; intel_encoder->pre_enable = intel_ddi_pre_enable; intel_encoder->disable = intel_disable_ddi; intel_encoder->post_disable = intel_ddi_post_disable; intel_encoder->get_hw_state = intel_ddi_get_hw_state; intel_encoder->get_config = intel_ddi_get_config; intel_dig_port->port = port; intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) & (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES); intel_encoder->type = INTEL_OUTPUT_UNKNOWN; intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); intel_encoder->cloneable = 0; intel_encoder->hot_plug = intel_ddi_hot_plug; if (init_dp) { if (!intel_ddi_init_dp_connector(intel_dig_port)) goto err; intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; dev_priv->hpd_irq_port[port] = intel_dig_port; } /* In theory we don't need the encoder->type check, but leave it just in * case we have some really bad VBTs... */ if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) { if (!intel_ddi_init_hdmi_connector(intel_dig_port)) goto err; } return; err: drm_encoder_cleanup(encoder); kfree(intel_dig_port); }