/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_clnt.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_alloc.h" #include "xfs_dmapi.h" #include "xfs_quota.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_bmap.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_itable.h" #include "xfs_fsops.h" #include "xfs_rw.h" #include "xfs_acl.h" #include "xfs_attr.h" #include "xfs_buf_item.h" #include "xfs_utils.h" #include "xfs_vnodeops.h" #include "xfs_vfsops.h" #include "xfs_version.h" #include "xfs_log_priv.h" #include "xfs_trans_priv.h" #include "xfs_filestream.h" #include #include #include #include #include #include #include static struct quotactl_ops xfs_quotactl_operations; static struct super_operations xfs_super_operations; static kmem_zone_t *xfs_vnode_zone; static kmem_zone_t *xfs_ioend_zone; mempool_t *xfs_ioend_pool; STATIC struct xfs_mount_args * xfs_args_allocate( struct super_block *sb, int silent) { struct xfs_mount_args *args; args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP); args->logbufs = args->logbufsize = -1; strncpy(args->fsname, sb->s_id, MAXNAMELEN); /* Copy the already-parsed mount(2) flags we're interested in */ if (sb->s_flags & MS_DIRSYNC) args->flags |= XFSMNT_DIRSYNC; if (sb->s_flags & MS_SYNCHRONOUS) args->flags |= XFSMNT_WSYNC; if (silent) args->flags |= XFSMNT_QUIET; args->flags |= XFSMNT_32BITINODES; return args; } #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */ #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */ #define MNTOPT_LOGDEV "logdev" /* log device */ #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */ #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */ #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */ #define MNTOPT_INO64 "ino64" /* force inodes into 64-bit range */ #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */ #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */ #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */ #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */ #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */ #define MNTOPT_MTPT "mtpt" /* filesystem mount point */ #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */ #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */ #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */ #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */ #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */ #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */ #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and * unwritten extent conversion */ #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */ #define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */ #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */ #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */ #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */ #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */ #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes * in stat(). */ #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */ #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */ #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */ #define MNTOPT_QUOTA "quota" /* disk quotas (user) */ #define MNTOPT_NOQUOTA "noquota" /* no quotas */ #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */ #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */ #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */ #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */ #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */ #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */ #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */ #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */ #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */ #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */ #define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */ #define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */ #define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */ STATIC unsigned long suffix_strtoul(char *s, char **endp, unsigned int base) { int last, shift_left_factor = 0; char *value = s; last = strlen(value) - 1; if (value[last] == 'K' || value[last] == 'k') { shift_left_factor = 10; value[last] = '\0'; } if (value[last] == 'M' || value[last] == 'm') { shift_left_factor = 20; value[last] = '\0'; } if (value[last] == 'G' || value[last] == 'g') { shift_left_factor = 30; value[last] = '\0'; } return simple_strtoul((const char *)s, endp, base) << shift_left_factor; } STATIC int xfs_parseargs( struct xfs_mount *mp, char *options, struct xfs_mount_args *args, int update) { char *this_char, *value, *eov; int dsunit, dswidth, vol_dsunit, vol_dswidth; int iosize; int dmapi_implies_ikeep = 1; args->flags |= XFSMNT_BARRIER; args->flags2 |= XFSMNT2_COMPAT_IOSIZE; if (!options) goto done; iosize = dsunit = dswidth = vol_dsunit = vol_dswidth = 0; while ((this_char = strsep(&options, ",")) != NULL) { if (!*this_char) continue; if ((value = strchr(this_char, '=')) != NULL) *value++ = 0; if (!strcmp(this_char, MNTOPT_LOGBUFS)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } args->logbufs = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } args->logbufsize = suffix_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_LOGDEV)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } strncpy(args->logname, value, MAXNAMELEN); } else if (!strcmp(this_char, MNTOPT_MTPT)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } strncpy(args->mtpt, value, MAXNAMELEN); } else if (!strcmp(this_char, MNTOPT_RTDEV)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } strncpy(args->rtname, value, MAXNAMELEN); } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } iosize = simple_strtoul(value, &eov, 10); args->flags |= XFSMNT_IOSIZE; args->iosizelog = (uint8_t) iosize; } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } iosize = suffix_strtoul(value, &eov, 10); args->flags |= XFSMNT_IOSIZE; args->iosizelog = ffs(iosize) - 1; } else if (!strcmp(this_char, MNTOPT_GRPID) || !strcmp(this_char, MNTOPT_BSDGROUPS)) { mp->m_flags |= XFS_MOUNT_GRPID; } else if (!strcmp(this_char, MNTOPT_NOGRPID) || !strcmp(this_char, MNTOPT_SYSVGROUPS)) { mp->m_flags &= ~XFS_MOUNT_GRPID; } else if (!strcmp(this_char, MNTOPT_WSYNC)) { args->flags |= XFSMNT_WSYNC; } else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) { args->flags |= XFSMNT_OSYNCISOSYNC; } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) { args->flags |= XFSMNT_NORECOVERY; } else if (!strcmp(this_char, MNTOPT_INO64)) { args->flags |= XFSMNT_INO64; #if !XFS_BIG_INUMS cmn_err(CE_WARN, "XFS: %s option not allowed on this system", this_char); return EINVAL; #endif } else if (!strcmp(this_char, MNTOPT_NOALIGN)) { args->flags |= XFSMNT_NOALIGN; } else if (!strcmp(this_char, MNTOPT_SWALLOC)) { args->flags |= XFSMNT_SWALLOC; } else if (!strcmp(this_char, MNTOPT_SUNIT)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } dsunit = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_SWIDTH)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } dswidth = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_64BITINODE)) { args->flags &= ~XFSMNT_32BITINODES; #if !XFS_BIG_INUMS cmn_err(CE_WARN, "XFS: %s option not allowed on this system", this_char); return EINVAL; #endif } else if (!strcmp(this_char, MNTOPT_NOUUID)) { args->flags |= XFSMNT_NOUUID; } else if (!strcmp(this_char, MNTOPT_BARRIER)) { args->flags |= XFSMNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) { args->flags &= ~XFSMNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_IKEEP)) { args->flags |= XFSMNT_IKEEP; } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) { dmapi_implies_ikeep = 0; args->flags &= ~XFSMNT_IKEEP; } else if (!strcmp(this_char, MNTOPT_LARGEIO)) { args->flags2 &= ~XFSMNT2_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) { args->flags2 |= XFSMNT2_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_ATTR2)) { args->flags |= XFSMNT_ATTR2; } else if (!strcmp(this_char, MNTOPT_NOATTR2)) { args->flags &= ~XFSMNT_ATTR2; args->flags |= XFSMNT_NOATTR2; } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) { args->flags2 |= XFSMNT2_FILESTREAMS; } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) { args->flags &= ~(XFSMNT_UQUOTAENF|XFSMNT_UQUOTA); args->flags &= ~(XFSMNT_GQUOTAENF|XFSMNT_GQUOTA); } else if (!strcmp(this_char, MNTOPT_QUOTA) || !strcmp(this_char, MNTOPT_UQUOTA) || !strcmp(this_char, MNTOPT_USRQUOTA)) { args->flags |= XFSMNT_UQUOTA | XFSMNT_UQUOTAENF; } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) || !strcmp(this_char, MNTOPT_UQUOTANOENF)) { args->flags |= XFSMNT_UQUOTA; args->flags &= ~XFSMNT_UQUOTAENF; } else if (!strcmp(this_char, MNTOPT_PQUOTA) || !strcmp(this_char, MNTOPT_PRJQUOTA)) { args->flags |= XFSMNT_PQUOTA | XFSMNT_PQUOTAENF; } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) { args->flags |= XFSMNT_PQUOTA; args->flags &= ~XFSMNT_PQUOTAENF; } else if (!strcmp(this_char, MNTOPT_GQUOTA) || !strcmp(this_char, MNTOPT_GRPQUOTA)) { args->flags |= XFSMNT_GQUOTA | XFSMNT_GQUOTAENF; } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) { args->flags |= XFSMNT_GQUOTA; args->flags &= ~XFSMNT_GQUOTAENF; } else if (!strcmp(this_char, MNTOPT_DMAPI)) { args->flags |= XFSMNT_DMAPI; } else if (!strcmp(this_char, MNTOPT_XDSM)) { args->flags |= XFSMNT_DMAPI; } else if (!strcmp(this_char, MNTOPT_DMI)) { args->flags |= XFSMNT_DMAPI; } else if (!strcmp(this_char, "ihashsize")) { cmn_err(CE_WARN, "XFS: ihashsize no longer used, option is deprecated."); } else if (!strcmp(this_char, "osyncisdsync")) { /* no-op, this is now the default */ cmn_err(CE_WARN, "XFS: osyncisdsync is now the default, option is deprecated."); } else if (!strcmp(this_char, "irixsgid")) { cmn_err(CE_WARN, "XFS: irixsgid is now a sysctl(2) variable, option is deprecated."); } else { cmn_err(CE_WARN, "XFS: unknown mount option [%s].", this_char); return EINVAL; } } if (args->flags & XFSMNT_NORECOVERY) { if ((mp->m_flags & XFS_MOUNT_RDONLY) == 0) { cmn_err(CE_WARN, "XFS: no-recovery mounts must be read-only."); return EINVAL; } } if ((args->flags & XFSMNT_NOALIGN) && (dsunit || dswidth)) { cmn_err(CE_WARN, "XFS: sunit and swidth options incompatible with the noalign option"); return EINVAL; } if ((args->flags & XFSMNT_GQUOTA) && (args->flags & XFSMNT_PQUOTA)) { cmn_err(CE_WARN, "XFS: cannot mount with both project and group quota"); return EINVAL; } if ((args->flags & XFSMNT_DMAPI) && *args->mtpt == '\0') { printk("XFS: %s option needs the mount point option as well\n", MNTOPT_DMAPI); return EINVAL; } if ((dsunit && !dswidth) || (!dsunit && dswidth)) { cmn_err(CE_WARN, "XFS: sunit and swidth must be specified together"); return EINVAL; } if (dsunit && (dswidth % dsunit != 0)) { cmn_err(CE_WARN, "XFS: stripe width (%d) must be a multiple of the stripe unit (%d)", dswidth, dsunit); return EINVAL; } /* * Applications using DMI filesystems often expect the * inode generation number to be monotonically increasing. * If we delete inode chunks we break this assumption, so * keep unused inode chunks on disk for DMI filesystems * until we come up with a better solution. * Note that if "ikeep" or "noikeep" mount options are * supplied, then they are honored. */ if ((args->flags & XFSMNT_DMAPI) && dmapi_implies_ikeep) args->flags |= XFSMNT_IKEEP; if ((args->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) { if (dsunit) { args->sunit = dsunit; args->flags |= XFSMNT_RETERR; } else { args->sunit = vol_dsunit; } dswidth ? (args->swidth = dswidth) : (args->swidth = vol_dswidth); } else { args->sunit = args->swidth = 0; } done: if (args->flags & XFSMNT_32BITINODES) mp->m_flags |= XFS_MOUNT_SMALL_INUMS; if (args->flags2) args->flags |= XFSMNT_FLAGS2; return 0; } struct proc_xfs_info { int flag; char *str; }; STATIC int xfs_showargs( struct xfs_mount *mp, struct seq_file *m) { static struct proc_xfs_info xfs_info_set[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP }, { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC }, { XFS_MOUNT_INO64, "," MNTOPT_INO64 }, { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN }, { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC }, { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID }, { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY }, { XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC }, { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 }, { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM }, { XFS_MOUNT_DMAPI, "," MNTOPT_DMAPI }, { XFS_MOUNT_GRPID, "," MNTOPT_GRPID }, { 0, NULL } }; static struct proc_xfs_info xfs_info_unset[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO }, { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER }, { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE }, { 0, NULL } }; struct proc_xfs_info *xfs_infop; for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { if (mp->m_flags & xfs_infop->flag) seq_puts(m, xfs_infop->str); } for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) { if (!(mp->m_flags & xfs_infop->flag)) seq_puts(m, xfs_infop->str); } if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk", (int)(1 << mp->m_writeio_log) >> 10); if (mp->m_logbufs > 0) seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs); if (mp->m_logbsize > 0) seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10); if (mp->m_logname) seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname); if (mp->m_rtname) seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname); if (mp->m_dalign > 0) seq_printf(m, "," MNTOPT_SUNIT "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); if (mp->m_swidth > 0) seq_printf(m, "," MNTOPT_SWIDTH "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) seq_puts(m, "," MNTOPT_USRQUOTA); else if (mp->m_qflags & XFS_UQUOTA_ACCT) seq_puts(m, "," MNTOPT_UQUOTANOENF); if (mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD)) seq_puts(m, "," MNTOPT_PRJQUOTA); else if (mp->m_qflags & XFS_PQUOTA_ACCT) seq_puts(m, "," MNTOPT_PQUOTANOENF); if (mp->m_qflags & (XFS_GQUOTA_ACCT|XFS_OQUOTA_ENFD)) seq_puts(m, "," MNTOPT_GRPQUOTA); else if (mp->m_qflags & XFS_GQUOTA_ACCT) seq_puts(m, "," MNTOPT_GQUOTANOENF); if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) seq_puts(m, "," MNTOPT_NOQUOTA); return 0; } __uint64_t xfs_max_file_offset( unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_prepare_write does this in an [unsigned] long... * page->index << (PAGE_CACHE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). * Note1: get_block_t takes a long (implicit cast from above) * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch * can optionally convert the [unsigned] long from above into * an [unsigned] long long. */ #if BITS_PER_LONG == 32 # if defined(CONFIG_LBD) ASSERT(sizeof(sector_t) == 8); pagefactor = PAGE_CACHE_SIZE; bitshift = BITS_PER_LONG; # else pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); # endif #endif return (((__uint64_t)pagefactor) << bitshift) - 1; } STATIC_INLINE void xfs_set_inodeops( struct inode *inode) { switch (inode->i_mode & S_IFMT) { case S_IFREG: inode->i_op = &xfs_inode_operations; inode->i_fop = &xfs_file_operations; inode->i_mapping->a_ops = &xfs_address_space_operations; break; case S_IFDIR: inode->i_op = &xfs_dir_inode_operations; inode->i_fop = &xfs_dir_file_operations; break; case S_IFLNK: inode->i_op = &xfs_symlink_inode_operations; if (!(XFS_I(inode)->i_df.if_flags & XFS_IFINLINE)) inode->i_mapping->a_ops = &xfs_address_space_operations; break; default: inode->i_op = &xfs_inode_operations; init_special_inode(inode, inode->i_mode, inode->i_rdev); break; } } STATIC_INLINE void xfs_revalidate_inode( xfs_mount_t *mp, bhv_vnode_t *vp, xfs_inode_t *ip) { struct inode *inode = vn_to_inode(vp); inode->i_mode = ip->i_d.di_mode; inode->i_nlink = ip->i_d.di_nlink; inode->i_uid = ip->i_d.di_uid; inode->i_gid = ip->i_d.di_gid; switch (inode->i_mode & S_IFMT) { case S_IFBLK: case S_IFCHR: inode->i_rdev = MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff, sysv_minor(ip->i_df.if_u2.if_rdev)); break; default: inode->i_rdev = 0; break; } inode->i_generation = ip->i_d.di_gen; i_size_write(inode, ip->i_d.di_size); inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec; inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec; inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec; inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec; inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec; inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec; if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) inode->i_flags |= S_SYNC; else inode->i_flags &= ~S_SYNC; if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) inode->i_flags |= S_NOATIME; else inode->i_flags &= ~S_NOATIME; xfs_iflags_clear(ip, XFS_IMODIFIED); } void xfs_initialize_vnode( struct xfs_mount *mp, bhv_vnode_t *vp, struct xfs_inode *ip) { struct inode *inode = vn_to_inode(vp); if (!ip->i_vnode) { ip->i_vnode = vp; inode->i_private = ip; } /* * We need to set the ops vectors, and unlock the inode, but if * we have been called during the new inode create process, it is * too early to fill in the Linux inode. We will get called a * second time once the inode is properly set up, and then we can * finish our work. */ if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) { xfs_revalidate_inode(mp, vp, ip); xfs_set_inodeops(inode); xfs_iflags_clear(ip, XFS_INEW); barrier(); unlock_new_inode(inode); } } int xfs_blkdev_get( xfs_mount_t *mp, const char *name, struct block_device **bdevp) { int error = 0; *bdevp = open_bdev_excl(name, 0, mp); if (IS_ERR(*bdevp)) { error = PTR_ERR(*bdevp); printk("XFS: Invalid device [%s], error=%d\n", name, error); } return -error; } void xfs_blkdev_put( struct block_device *bdev) { if (bdev) close_bdev_excl(bdev); } /* * Try to write out the superblock using barriers. */ STATIC int xfs_barrier_test( xfs_mount_t *mp) { xfs_buf_t *sbp = xfs_getsb(mp, 0); int error; XFS_BUF_UNDONE(sbp); XFS_BUF_UNREAD(sbp); XFS_BUF_UNDELAYWRITE(sbp); XFS_BUF_WRITE(sbp); XFS_BUF_UNASYNC(sbp); XFS_BUF_ORDERED(sbp); xfsbdstrat(mp, sbp); error = xfs_iowait(sbp); /* * Clear all the flags we set and possible error state in the * buffer. We only did the write to try out whether barriers * worked and shouldn't leave any traces in the superblock * buffer. */ XFS_BUF_DONE(sbp); XFS_BUF_ERROR(sbp, 0); XFS_BUF_UNORDERED(sbp); xfs_buf_relse(sbp); return error; } void xfs_mountfs_check_barriers(xfs_mount_t *mp) { int error; if (mp->m_logdev_targp != mp->m_ddev_targp) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, not supported with external log device"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered == QUEUE_ORDERED_NONE) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, not supported by the underlying device"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } if (xfs_readonly_buftarg(mp->m_ddev_targp)) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, underlying device is readonly"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } error = xfs_barrier_test(mp); if (error) { xfs_fs_cmn_err(CE_NOTE, mp, "Disabling barriers, trial barrier write failed"); mp->m_flags &= ~XFS_MOUNT_BARRIER; return; } } void xfs_blkdev_issue_flush( xfs_buftarg_t *buftarg) { blkdev_issue_flush(buftarg->bt_bdev, NULL); } STATIC void xfs_close_devices( struct xfs_mount *mp) { if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { xfs_free_buftarg(mp->m_logdev_targp); xfs_blkdev_put(mp->m_logdev_targp->bt_bdev); } if (mp->m_rtdev_targp) { xfs_free_buftarg(mp->m_rtdev_targp); xfs_blkdev_put(mp->m_rtdev_targp->bt_bdev); } xfs_free_buftarg(mp->m_ddev_targp); } /* * The file system configurations are: * (1) device (partition) with data and internal log * (2) logical volume with data and log subvolumes. * (3) logical volume with data, log, and realtime subvolumes. * * We only have to handle opening the log and realtime volumes here if * they are present. The data subvolume has already been opened by * get_sb_bdev() and is stored in sb->s_bdev. */ STATIC int xfs_open_devices( struct xfs_mount *mp, struct xfs_mount_args *args) { struct block_device *ddev = mp->m_super->s_bdev; struct block_device *logdev = NULL, *rtdev = NULL; int error; /* * Open real time and log devices - order is important. */ if (args->logname[0]) { error = xfs_blkdev_get(mp, args->logname, &logdev); if (error) goto out; } if (args->rtname[0]) { error = xfs_blkdev_get(mp, args->rtname, &rtdev); if (error) goto out_close_logdev; if (rtdev == ddev || rtdev == logdev) { cmn_err(CE_WARN, "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev."); error = EINVAL; goto out_close_rtdev; } } /* * Setup xfs_mount buffer target pointers */ error = ENOMEM; mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0); if (!mp->m_ddev_targp) goto out_close_rtdev; if (rtdev) { mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1); if (!mp->m_rtdev_targp) goto out_free_ddev_targ; } if (logdev && logdev != ddev) { mp->m_logdev_targp = xfs_alloc_buftarg(logdev, 1); if (!mp->m_logdev_targp) goto out_free_rtdev_targ; } else { mp->m_logdev_targp = mp->m_ddev_targp; } return 0; out_free_rtdev_targ: if (mp->m_rtdev_targp) xfs_free_buftarg(mp->m_rtdev_targp); out_free_ddev_targ: xfs_free_buftarg(mp->m_ddev_targp); out_close_rtdev: if (rtdev) xfs_blkdev_put(rtdev); out_close_logdev: if (logdev && logdev != ddev) xfs_blkdev_put(logdev); out: return error; } /* * Setup xfs_mount buffer target pointers based on superblock */ STATIC int xfs_setup_devices( struct xfs_mount *mp) { int error; error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize, mp->m_sb.sb_sectsize); if (error) return error; if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { unsigned int log_sector_size = BBSIZE; if (xfs_sb_version_hassector(&mp->m_sb)) log_sector_size = mp->m_sb.sb_logsectsize; error = xfs_setsize_buftarg(mp->m_logdev_targp, mp->m_sb.sb_blocksize, log_sector_size); if (error) return error; } if (mp->m_rtdev_targp) { error = xfs_setsize_buftarg(mp->m_rtdev_targp, mp->m_sb.sb_blocksize, mp->m_sb.sb_sectsize); if (error) return error; } return 0; } /* * XFS AIL push thread support */ void xfsaild_wakeup( xfs_mount_t *mp, xfs_lsn_t threshold_lsn) { mp->m_ail.xa_target = threshold_lsn; wake_up_process(mp->m_ail.xa_task); } int xfsaild( void *data) { xfs_mount_t *mp = (xfs_mount_t *)data; xfs_lsn_t last_pushed_lsn = 0; long tout = 0; while (!kthread_should_stop()) { if (tout) schedule_timeout_interruptible(msecs_to_jiffies(tout)); tout = 1000; /* swsusp */ try_to_freeze(); ASSERT(mp->m_log); if (XFS_FORCED_SHUTDOWN(mp)) continue; tout = xfsaild_push(mp, &last_pushed_lsn); } return 0; } /* xfsaild */ int xfsaild_start( xfs_mount_t *mp) { mp->m_ail.xa_target = 0; mp->m_ail.xa_task = kthread_run(xfsaild, mp, "xfsaild"); if (IS_ERR(mp->m_ail.xa_task)) return -PTR_ERR(mp->m_ail.xa_task); return 0; } void xfsaild_stop( xfs_mount_t *mp) { kthread_stop(mp->m_ail.xa_task); } STATIC struct inode * xfs_fs_alloc_inode( struct super_block *sb) { bhv_vnode_t *vp; vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP); if (unlikely(!vp)) return NULL; return vn_to_inode(vp); } STATIC void xfs_fs_destroy_inode( struct inode *inode) { kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode)); } STATIC void xfs_fs_inode_init_once( void *vnode) { inode_init_once(vn_to_inode((bhv_vnode_t *)vnode)); } STATIC int __init xfs_init_zones(void) { xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode", KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD, xfs_fs_inode_init_once); if (!xfs_vnode_zone) goto out; xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend"); if (!xfs_ioend_zone) goto out_destroy_vnode_zone; xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE, xfs_ioend_zone); if (!xfs_ioend_pool) goto out_free_ioend_zone; return 0; out_free_ioend_zone: kmem_zone_destroy(xfs_ioend_zone); out_destroy_vnode_zone: kmem_zone_destroy(xfs_vnode_zone); out: return -ENOMEM; } STATIC void xfs_destroy_zones(void) { mempool_destroy(xfs_ioend_pool); kmem_zone_destroy(xfs_vnode_zone); kmem_zone_destroy(xfs_ioend_zone); } /* * Attempt to flush the inode, this will actually fail * if the inode is pinned, but we dirty the inode again * at the point when it is unpinned after a log write, * since this is when the inode itself becomes flushable. */ STATIC int xfs_fs_write_inode( struct inode *inode, int sync) { int error = 0; int flags = 0; xfs_itrace_entry(XFS_I(inode)); if (sync) { filemap_fdatawait(inode->i_mapping); flags |= FLUSH_SYNC; } error = xfs_inode_flush(XFS_I(inode), flags); /* * if we failed to write out the inode then mark * it dirty again so we'll try again later. */ if (error) mark_inode_dirty_sync(inode); return -error; } STATIC void xfs_fs_clear_inode( struct inode *inode) { xfs_inode_t *ip = XFS_I(inode); /* * ip can be null when xfs_iget_core calls xfs_idestroy if we * find an inode with di_mode == 0 but without IGET_CREATE set. */ if (ip) { xfs_itrace_entry(ip); XFS_STATS_INC(vn_rele); XFS_STATS_INC(vn_remove); XFS_STATS_INC(vn_reclaim); XFS_STATS_DEC(vn_active); xfs_inactive(ip); xfs_iflags_clear(ip, XFS_IMODIFIED); if (xfs_reclaim(ip)) panic("%s: cannot reclaim 0x%p\n", __func__, inode); } ASSERT(XFS_I(inode) == NULL); } /* * Enqueue a work item to be picked up by the vfs xfssyncd thread. * Doing this has two advantages: * - It saves on stack space, which is tight in certain situations * - It can be used (with care) as a mechanism to avoid deadlocks. * Flushing while allocating in a full filesystem requires both. */ STATIC void xfs_syncd_queue_work( struct xfs_mount *mp, void *data, void (*syncer)(struct xfs_mount *, void *)) { struct bhv_vfs_sync_work *work; work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP); INIT_LIST_HEAD(&work->w_list); work->w_syncer = syncer; work->w_data = data; work->w_mount = mp; spin_lock(&mp->m_sync_lock); list_add_tail(&work->w_list, &mp->m_sync_list); spin_unlock(&mp->m_sync_lock); wake_up_process(mp->m_sync_task); } /* * Flush delayed allocate data, attempting to free up reserved space * from existing allocations. At this point a new allocation attempt * has failed with ENOSPC and we are in the process of scratching our * heads, looking about for more room... */ STATIC void xfs_flush_inode_work( struct xfs_mount *mp, void *arg) { struct inode *inode = arg; filemap_flush(inode->i_mapping); iput(inode); } void xfs_flush_inode( xfs_inode_t *ip) { struct inode *inode = ip->i_vnode; igrab(inode); xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work); delay(msecs_to_jiffies(500)); } /* * This is the "bigger hammer" version of xfs_flush_inode_work... * (IOW, "If at first you don't succeed, use a Bigger Hammer"). */ STATIC void xfs_flush_device_work( struct xfs_mount *mp, void *arg) { struct inode *inode = arg; sync_blockdev(mp->m_super->s_bdev); iput(inode); } void xfs_flush_device( xfs_inode_t *ip) { struct inode *inode = vn_to_inode(XFS_ITOV(ip)); igrab(inode); xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work); delay(msecs_to_jiffies(500)); xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); } STATIC void xfs_sync_worker( struct xfs_mount *mp, void *unused) { int error; if (!(mp->m_flags & XFS_MOUNT_RDONLY)) error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR); mp->m_sync_seq++; wake_up(&mp->m_wait_single_sync_task); } STATIC int xfssyncd( void *arg) { struct xfs_mount *mp = arg; long timeleft; bhv_vfs_sync_work_t *work, *n; LIST_HEAD (tmp); set_freezable(); timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); for (;;) { timeleft = schedule_timeout_interruptible(timeleft); /* swsusp */ try_to_freeze(); if (kthread_should_stop() && list_empty(&mp->m_sync_list)) break; spin_lock(&mp->m_sync_lock); /* * We can get woken by laptop mode, to do a sync - * that's the (only!) case where the list would be * empty with time remaining. */ if (!timeleft || list_empty(&mp->m_sync_list)) { if (!timeleft) timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); INIT_LIST_HEAD(&mp->m_sync_work.w_list); list_add_tail(&mp->m_sync_work.w_list, &mp->m_sync_list); } list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list) list_move(&work->w_list, &tmp); spin_unlock(&mp->m_sync_lock); list_for_each_entry_safe(work, n, &tmp, w_list) { (*work->w_syncer)(mp, work->w_data); list_del(&work->w_list); if (work == &mp->m_sync_work) continue; kmem_free(work); } } return 0; } STATIC void xfs_fs_put_super( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); struct xfs_inode *rip = mp->m_rootip; int unmount_event_flags = 0; int error; kthread_stop(mp->m_sync_task); xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI); #ifdef HAVE_DMAPI if (mp->m_flags & XFS_MOUNT_DMAPI) { unmount_event_flags = (mp->m_dmevmask & (1 << DM_EVENT_UNMOUNT)) ? 0 : DM_FLAGS_UNWANTED; /* * Ignore error from dmapi here, first unmount is not allowed * to fail anyway, and second we wouldn't want to fail a * unmount because of dmapi. */ XFS_SEND_PREUNMOUNT(mp, rip, DM_RIGHT_NULL, rip, DM_RIGHT_NULL, NULL, NULL, 0, 0, unmount_event_flags); } #endif /* * Blow away any referenced inode in the filestreams cache. * This can and will cause log traffic as inodes go inactive * here. */ xfs_filestream_unmount(mp); XFS_bflush(mp->m_ddev_targp); error = xfs_unmount_flush(mp, 0); WARN_ON(error); IRELE(rip); /* * If we're forcing a shutdown, typically because of a media error, * we want to make sure we invalidate dirty pages that belong to * referenced vnodes as well. */ if (XFS_FORCED_SHUTDOWN(mp)) { error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE); ASSERT(error != EFSCORRUPTED); } if (mp->m_flags & XFS_MOUNT_DMAPI) { XFS_SEND_UNMOUNT(mp, rip, DM_RIGHT_NULL, 0, 0, unmount_event_flags); } xfs_unmountfs(mp); xfs_close_devices(mp); xfs_qmops_put(mp); xfs_dmops_put(mp); kmem_free(mp); } STATIC void xfs_fs_write_super( struct super_block *sb) { if (!(sb->s_flags & MS_RDONLY)) xfs_sync(XFS_M(sb), SYNC_FSDATA); sb->s_dirt = 0; } STATIC int xfs_fs_sync_super( struct super_block *sb, int wait) { struct xfs_mount *mp = XFS_M(sb); int error; int flags; /* * Treat a sync operation like a freeze. This is to work * around a race in sync_inodes() which works in two phases * - an asynchronous flush, which can write out an inode * without waiting for file size updates to complete, and a * synchronous flush, which wont do anything because the * async flush removed the inode's dirty flag. Also * sync_inodes() will not see any files that just have * outstanding transactions to be flushed because we don't * dirty the Linux inode until after the transaction I/O * completes. */ if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) { /* * First stage of freeze - no more writers will make progress * now we are here, so we flush delwri and delalloc buffers * here, then wait for all I/O to complete. Data is frozen at * that point. Metadata is not frozen, transactions can still * occur here so don't bother flushing the buftarg (i.e * SYNC_QUIESCE) because it'll just get dirty again. */ flags = SYNC_DATA_QUIESCE; } else flags = SYNC_FSDATA; error = xfs_sync(mp, flags); sb->s_dirt = 0; if (unlikely(laptop_mode)) { int prev_sync_seq = mp->m_sync_seq; /* * The disk must be active because we're syncing. * We schedule xfssyncd now (now that the disk is * active) instead of later (when it might not be). */ wake_up_process(mp->m_sync_task); /* * We have to wait for the sync iteration to complete. * If we don't, the disk activity caused by the sync * will come after the sync is completed, and that * triggers another sync from laptop mode. */ wait_event(mp->m_wait_single_sync_task, mp->m_sync_seq != prev_sync_seq); } return -error; } STATIC int xfs_fs_statfs( struct dentry *dentry, struct kstatfs *statp) { struct xfs_mount *mp = XFS_M(dentry->d_sb); xfs_sb_t *sbp = &mp->m_sb; __uint64_t fakeinos, id; xfs_extlen_t lsize; statp->f_type = XFS_SB_MAGIC; statp->f_namelen = MAXNAMELEN - 1; id = huge_encode_dev(mp->m_ddev_targp->bt_dev); statp->f_fsid.val[0] = (u32)id; statp->f_fsid.val[1] = (u32)(id >> 32); xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT); spin_lock(&mp->m_sb_lock); statp->f_bsize = sbp->sb_blocksize; lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; statp->f_blocks = sbp->sb_dblocks - lsize; statp->f_bfree = statp->f_bavail = sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); fakeinos = statp->f_bfree << sbp->sb_inopblog; #if XFS_BIG_INUMS fakeinos += mp->m_inoadd; #endif statp->f_files = MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER); if (mp->m_maxicount) #if XFS_BIG_INUMS if (!mp->m_inoadd) #endif statp->f_files = min_t(typeof(statp->f_files), statp->f_files, mp->m_maxicount); statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree); spin_unlock(&mp->m_sb_lock); XFS_QM_DQSTATVFS(XFS_I(dentry->d_inode), statp); return 0; } STATIC int xfs_fs_remount( struct super_block *sb, int *flags, char *options) { struct xfs_mount *mp = XFS_M(sb); struct xfs_mount_args *args = xfs_args_allocate(sb, 0); int error; error = xfs_parseargs(mp, options, args, 1); if (error) goto out_free_args; if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */ if (mp->m_flags & XFS_MOUNT_RDONLY) mp->m_flags &= ~XFS_MOUNT_RDONLY; if (args->flags & XFSMNT_BARRIER) { mp->m_flags |= XFS_MOUNT_BARRIER; xfs_mountfs_check_barriers(mp); } else { mp->m_flags &= ~XFS_MOUNT_BARRIER; } } else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */ xfs_filestream_flush(mp); xfs_sync(mp, SYNC_DATA_QUIESCE); xfs_attr_quiesce(mp); mp->m_flags |= XFS_MOUNT_RDONLY; } out_free_args: kmem_free(args); return -error; } /* * Second stage of a freeze. The data is already frozen so we only * need to take care of themetadata. Once that's done write a dummy * record to dirty the log in case of a crash while frozen. */ STATIC void xfs_fs_lockfs( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_attr_quiesce(mp); xfs_fs_log_dummy(mp); } STATIC int xfs_fs_show_options( struct seq_file *m, struct vfsmount *mnt) { return -xfs_showargs(XFS_M(mnt->mnt_sb), m); } STATIC int xfs_fs_quotasync( struct super_block *sb, int type) { return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL); } STATIC int xfs_fs_getxstate( struct super_block *sb, struct fs_quota_stat *fqs) { return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs); } STATIC int xfs_fs_setxstate( struct super_block *sb, unsigned int flags, int op) { return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags); } STATIC int xfs_fs_getxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { return -XFS_QM_QUOTACTL(XFS_M(sb), (type == USRQUOTA) ? Q_XGETQUOTA : ((type == GRPQUOTA) ? Q_XGETGQUOTA : Q_XGETPQUOTA), id, (caddr_t)fdq); } STATIC int xfs_fs_setxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { return -XFS_QM_QUOTACTL(XFS_M(sb), (type == USRQUOTA) ? Q_XSETQLIM : ((type == GRPQUOTA) ? Q_XSETGQLIM : Q_XSETPQLIM), id, (caddr_t)fdq); } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock has _not_ yet been read in. */ STATIC int xfs_start_flags( struct xfs_mount_args *ap, struct xfs_mount *mp) { /* Values are in BBs */ if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) { /* * At this point the superblock has not been read * in, therefore we do not know the block size. * Before the mount call ends we will convert * these to FSBs. */ mp->m_dalign = ap->sunit; mp->m_swidth = ap->swidth; } if (ap->logbufs != -1 && ap->logbufs != 0 && (ap->logbufs < XLOG_MIN_ICLOGS || ap->logbufs > XLOG_MAX_ICLOGS)) { cmn_err(CE_WARN, "XFS: invalid logbufs value: %d [not %d-%d]", ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); return XFS_ERROR(EINVAL); } mp->m_logbufs = ap->logbufs; if (ap->logbufsize != -1 && ap->logbufsize != 0 && (ap->logbufsize < XLOG_MIN_RECORD_BSIZE || ap->logbufsize > XLOG_MAX_RECORD_BSIZE || !is_power_of_2(ap->logbufsize))) { cmn_err(CE_WARN, "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", ap->logbufsize); return XFS_ERROR(EINVAL); } mp->m_logbsize = ap->logbufsize; mp->m_fsname_len = strlen(ap->fsname) + 1; mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP); strcpy(mp->m_fsname, ap->fsname); if (ap->rtname[0]) { mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP); strcpy(mp->m_rtname, ap->rtname); } if (ap->logname[0]) { mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP); strcpy(mp->m_logname, ap->logname); } if (ap->flags & XFSMNT_WSYNC) mp->m_flags |= XFS_MOUNT_WSYNC; #if XFS_BIG_INUMS if (ap->flags & XFSMNT_INO64) { mp->m_flags |= XFS_MOUNT_INO64; mp->m_inoadd = XFS_INO64_OFFSET; } #endif if (ap->flags & XFSMNT_RETERR) mp->m_flags |= XFS_MOUNT_RETERR; if (ap->flags & XFSMNT_NOALIGN) mp->m_flags |= XFS_MOUNT_NOALIGN; if (ap->flags & XFSMNT_SWALLOC) mp->m_flags |= XFS_MOUNT_SWALLOC; if (ap->flags & XFSMNT_OSYNCISOSYNC) mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC; if (ap->flags & XFSMNT_32BITINODES) mp->m_flags |= XFS_MOUNT_32BITINODES; if (ap->flags & XFSMNT_IOSIZE) { if (ap->iosizelog > XFS_MAX_IO_LOG || ap->iosizelog < XFS_MIN_IO_LOG) { cmn_err(CE_WARN, "XFS: invalid log iosize: %d [not %d-%d]", ap->iosizelog, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); return XFS_ERROR(EINVAL); } mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE; mp->m_readio_log = mp->m_writeio_log = ap->iosizelog; } if (ap->flags & XFSMNT_IKEEP) mp->m_flags |= XFS_MOUNT_IKEEP; if (ap->flags & XFSMNT_DIRSYNC) mp->m_flags |= XFS_MOUNT_DIRSYNC; if (ap->flags & XFSMNT_ATTR2) mp->m_flags |= XFS_MOUNT_ATTR2; if (ap->flags & XFSMNT_NOATTR2) mp->m_flags |= XFS_MOUNT_NOATTR2; if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE) mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; /* * no recovery flag requires a read-only mount */ if (ap->flags & XFSMNT_NORECOVERY) { if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { cmn_err(CE_WARN, "XFS: tried to mount a FS read-write without recovery!"); return XFS_ERROR(EINVAL); } mp->m_flags |= XFS_MOUNT_NORECOVERY; } if (ap->flags & XFSMNT_NOUUID) mp->m_flags |= XFS_MOUNT_NOUUID; if (ap->flags & XFSMNT_BARRIER) mp->m_flags |= XFS_MOUNT_BARRIER; else mp->m_flags &= ~XFS_MOUNT_BARRIER; if (ap->flags2 & XFSMNT2_FILESTREAMS) mp->m_flags |= XFS_MOUNT_FILESTREAMS; if (ap->flags & XFSMNT_DMAPI) mp->m_flags |= XFS_MOUNT_DMAPI; return 0; } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock _has_ now been read in. */ STATIC int xfs_finish_flags( struct xfs_mount_args *ap, struct xfs_mount *mp) { int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); /* Fail a mount where the logbuf is smaller then the log stripe */ if (xfs_sb_version_haslogv2(&mp->m_sb)) { if ((ap->logbufsize <= 0) && (mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) { mp->m_logbsize = mp->m_sb.sb_logsunit; } else if (ap->logbufsize > 0 && ap->logbufsize < mp->m_sb.sb_logsunit) { cmn_err(CE_WARN, "XFS: logbuf size must be greater than or equal to log stripe size"); return XFS_ERROR(EINVAL); } } else { /* Fail a mount if the logbuf is larger than 32K */ if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) { cmn_err(CE_WARN, "XFS: logbuf size for version 1 logs must be 16K or 32K"); return XFS_ERROR(EINVAL); } } /* * mkfs'ed attr2 will turn on attr2 mount unless explicitly * told by noattr2 to turn it off */ if (xfs_sb_version_hasattr2(&mp->m_sb) && !(ap->flags & XFSMNT_NOATTR2)) mp->m_flags |= XFS_MOUNT_ATTR2; /* * prohibit r/w mounts of read-only filesystems */ if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { cmn_err(CE_WARN, "XFS: cannot mount a read-only filesystem as read-write"); return XFS_ERROR(EROFS); } /* * check for shared mount. */ if (ap->flags & XFSMNT_SHARED) { if (!xfs_sb_version_hasshared(&mp->m_sb)) return XFS_ERROR(EINVAL); /* * For IRIX 6.5, shared mounts must have the shared * version bit set, have the persistent readonly * field set, must be version 0 and can only be mounted * read-only. */ if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) || (mp->m_sb.sb_shared_vn != 0)) return XFS_ERROR(EINVAL); mp->m_flags |= XFS_MOUNT_SHARED; /* * Shared XFS V0 can't deal with DMI. Return EINVAL. */ if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI)) return XFS_ERROR(EINVAL); } if (ap->flags & XFSMNT_UQUOTA) { mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); if (ap->flags & XFSMNT_UQUOTAENF) mp->m_qflags |= XFS_UQUOTA_ENFD; } if (ap->flags & XFSMNT_GQUOTA) { mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); if (ap->flags & XFSMNT_GQUOTAENF) mp->m_qflags |= XFS_OQUOTA_ENFD; } else if (ap->flags & XFSMNT_PQUOTA) { mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); if (ap->flags & XFSMNT_PQUOTAENF) mp->m_qflags |= XFS_OQUOTA_ENFD; } return 0; } STATIC int xfs_fs_fill_super( struct super_block *sb, void *data, int silent) { struct inode *root; struct xfs_mount *mp = NULL; struct xfs_mount_args *args = xfs_args_allocate(sb, silent); int flags = 0, error; mp = xfs_mount_init(); INIT_LIST_HEAD(&mp->m_sync_list); spin_lock_init(&mp->m_sync_lock); init_waitqueue_head(&mp->m_wait_single_sync_task); mp->m_super = sb; sb->s_fs_info = mp; if (sb->s_flags & MS_RDONLY) mp->m_flags |= XFS_MOUNT_RDONLY; error = xfs_parseargs(mp, (char *)data, args, 0); if (error) goto fail_vfsop; sb_min_blocksize(sb, BBSIZE); sb->s_export_op = &xfs_export_operations; sb->s_qcop = &xfs_quotactl_operations; sb->s_op = &xfs_super_operations; error = xfs_dmops_get(mp, args); if (error) goto fail_vfsop; error = xfs_qmops_get(mp, args); if (error) goto out_put_dmops; if (args->flags & XFSMNT_QUIET) flags |= XFS_MFSI_QUIET; error = xfs_open_devices(mp, args); if (error) goto out_put_qmops; /* * Setup flags based on mount(2) options and then the superblock */ error = xfs_start_flags(args, mp); if (error) goto error1; error = xfs_readsb(mp, flags); if (error) goto error1; error = xfs_finish_flags(args, mp); if (error) goto error2; error = xfs_setup_devices(mp); if (error) goto error2; if (mp->m_flags & XFS_MOUNT_BARRIER) xfs_mountfs_check_barriers(mp); error = xfs_filestream_mount(mp); if (error) goto error2; error = xfs_mountfs(mp, flags); if (error) goto error2; XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname); sb->s_dirt = 1; sb->s_magic = XFS_SB_MAGIC; sb->s_blocksize = mp->m_sb.sb_blocksize; sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); sb->s_time_gran = 1; set_posix_acl_flag(sb); root = igrab(mp->m_rootip->i_vnode); if (!root) { error = ENOENT; goto fail_unmount; } if (is_bad_inode(root)) { error = EINVAL; goto fail_vnrele; } sb->s_root = d_alloc_root(root); if (!sb->s_root) { error = ENOMEM; goto fail_vnrele; } mp->m_sync_work.w_syncer = xfs_sync_worker; mp->m_sync_work.w_mount = mp; mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd"); if (IS_ERR(mp->m_sync_task)) { error = -PTR_ERR(mp->m_sync_task); goto fail_vnrele; } xfs_itrace_exit(XFS_I(sb->s_root->d_inode)); kmem_free(args); return 0; error2: if (mp->m_sb_bp) xfs_freesb(mp); error1: xfs_binval(mp->m_ddev_targp); if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) xfs_binval(mp->m_logdev_targp); if (mp->m_rtdev_targp) xfs_binval(mp->m_rtdev_targp); xfs_close_devices(mp); out_put_qmops: xfs_qmops_put(mp); out_put_dmops: xfs_dmops_put(mp); goto fail_vfsop; fail_vnrele: if (sb->s_root) { dput(sb->s_root); sb->s_root = NULL; } else { iput(root); } fail_unmount: /* * Blow away any referenced inode in the filestreams cache. * This can and will cause log traffic as inodes go inactive * here. */ xfs_filestream_unmount(mp); XFS_bflush(mp->m_ddev_targp); error = xfs_unmount_flush(mp, 0); WARN_ON(error); IRELE(mp->m_rootip); xfs_unmountfs(mp); xfs_close_devices(mp); xfs_qmops_put(mp); xfs_dmops_put(mp); kmem_free(mp); fail_vfsop: kmem_free(args); return -error; } STATIC int xfs_fs_get_sb( struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super, mnt); } static struct super_operations xfs_super_operations = { .alloc_inode = xfs_fs_alloc_inode, .destroy_inode = xfs_fs_destroy_inode, .write_inode = xfs_fs_write_inode, .clear_inode = xfs_fs_clear_inode, .put_super = xfs_fs_put_super, .write_super = xfs_fs_write_super, .sync_fs = xfs_fs_sync_super, .write_super_lockfs = xfs_fs_lockfs, .statfs = xfs_fs_statfs, .remount_fs = xfs_fs_remount, .show_options = xfs_fs_show_options, }; static struct quotactl_ops xfs_quotactl_operations = { .quota_sync = xfs_fs_quotasync, .get_xstate = xfs_fs_getxstate, .set_xstate = xfs_fs_setxstate, .get_xquota = xfs_fs_getxquota, .set_xquota = xfs_fs_setxquota, }; static struct file_system_type xfs_fs_type = { .owner = THIS_MODULE, .name = "xfs", .get_sb = xfs_fs_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; STATIC int __init init_xfs_fs( void ) { int error; static char message[] __initdata = KERN_INFO \ XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"; printk(message); ktrace_init(64); error = xfs_init_zones(); if (error < 0) goto undo_zones; error = xfs_buf_init(); if (error < 0) goto undo_buffers; vn_init(); xfs_init(); uuid_init(); vfs_initquota(); error = register_filesystem(&xfs_fs_type); if (error) goto undo_register; return 0; undo_register: xfs_buf_terminate(); undo_buffers: xfs_destroy_zones(); undo_zones: return error; } STATIC void __exit exit_xfs_fs( void ) { vfs_exitquota(); unregister_filesystem(&xfs_fs_type); xfs_cleanup(); xfs_buf_terminate(); xfs_destroy_zones(); ktrace_uninit(); } module_init(init_xfs_fs); module_exit(exit_xfs_fs); MODULE_AUTHOR("Silicon Graphics, Inc."); MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); MODULE_LICENSE("GPL");