/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "rate.h" #include "mesh.h" #include "wep.h" #include "wme.h" #include "aes_ccm.h" #include "led.h" #include "cfg.h" #include "debugfs.h" #include "debugfs_netdev.h" /* * For seeing transmitted packets on monitor interfaces * we have a radiotap header too. */ struct ieee80211_tx_status_rtap_hdr { struct ieee80211_radiotap_header hdr; __le16 tx_flags; u8 data_retries; } __attribute__ ((packed)); /* common interface routines */ static int header_parse_80211(const struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */ return ETH_ALEN; } /* must be called under mdev tx lock */ static void ieee80211_configure_filter(struct ieee80211_local *local) { unsigned int changed_flags; unsigned int new_flags = 0; if (atomic_read(&local->iff_promiscs)) new_flags |= FIF_PROMISC_IN_BSS; if (atomic_read(&local->iff_allmultis)) new_flags |= FIF_ALLMULTI; if (local->monitors) new_flags |= FIF_BCN_PRBRESP_PROMISC; if (local->fif_fcsfail) new_flags |= FIF_FCSFAIL; if (local->fif_plcpfail) new_flags |= FIF_PLCPFAIL; if (local->fif_control) new_flags |= FIF_CONTROL; if (local->fif_other_bss) new_flags |= FIF_OTHER_BSS; changed_flags = local->filter_flags ^ new_flags; /* be a bit nasty */ new_flags |= (1<<31); local->ops->configure_filter(local_to_hw(local), changed_flags, &new_flags, local->mdev->mc_count, local->mdev->mc_list); WARN_ON(new_flags & (1<<31)); local->filter_flags = new_flags & ~(1<<31); } /* master interface */ static int ieee80211_master_open(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; int res = -EOPNOTSUPP; /* we hold the RTNL here so can safely walk the list */ list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->dev != dev && netif_running(sdata->dev)) { res = 0; break; } } if (res) return res; netif_start_queue(local->mdev); return 0; } static int ieee80211_master_stop(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata; /* we hold the RTNL here so can safely walk the list */ list_for_each_entry(sdata, &local->interfaces, list) if (sdata->dev != dev && netif_running(sdata->dev)) dev_close(sdata->dev); return 0; } static void ieee80211_master_set_multicast_list(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); ieee80211_configure_filter(local); } /* regular interfaces */ static int ieee80211_change_mtu(struct net_device *dev, int new_mtu) { int meshhdrlen; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); meshhdrlen = (sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) ? 5 : 0; /* FIX: what would be proper limits for MTU? * This interface uses 802.3 frames. */ if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6 - meshhdrlen) { printk(KERN_WARNING "%s: invalid MTU %d\n", dev->name, new_mtu); return -EINVAL; } #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ dev->mtu = new_mtu; return 0; } static inline int identical_mac_addr_allowed(int type1, int type2) { return (type1 == IEEE80211_IF_TYPE_MNTR || type2 == IEEE80211_IF_TYPE_MNTR || (type1 == IEEE80211_IF_TYPE_AP && type2 == IEEE80211_IF_TYPE_WDS) || (type1 == IEEE80211_IF_TYPE_WDS && (type2 == IEEE80211_IF_TYPE_WDS || type2 == IEEE80211_IF_TYPE_AP)) || (type1 == IEEE80211_IF_TYPE_AP && type2 == IEEE80211_IF_TYPE_VLAN) || (type1 == IEEE80211_IF_TYPE_VLAN && (type2 == IEEE80211_IF_TYPE_AP || type2 == IEEE80211_IF_TYPE_VLAN))); } static int ieee80211_open(struct net_device *dev) { struct ieee80211_sub_if_data *sdata, *nsdata; struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_if_init_conf conf; int res; bool need_hw_reconfig = 0; struct sta_info *sta; sdata = IEEE80211_DEV_TO_SUB_IF(dev); /* we hold the RTNL here so can safely walk the list */ list_for_each_entry(nsdata, &local->interfaces, list) { struct net_device *ndev = nsdata->dev; if (ndev != dev && ndev != local->mdev && netif_running(ndev)) { /* * Allow only a single IBSS interface to be up at any * time. This is restricted because beacon distribution * cannot work properly if both are in the same IBSS. * * To remove this restriction we'd have to disallow them * from setting the same SSID on different IBSS interfaces * belonging to the same hardware. Then, however, we're * faced with having to adopt two different TSF timers... */ if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && nsdata->vif.type == IEEE80211_IF_TYPE_IBSS) return -EBUSY; /* * Disallow multiple IBSS/STA mode interfaces. * * This is a technical restriction, it is possible although * most likely not IEEE 802.11 compliant to have multiple * STAs with just a single hardware (the TSF timer will not * be adjusted properly.) * * However, because mac80211 uses the master device's BSS * information for each STA/IBSS interface, doing this will * currently corrupt that BSS information completely, unless, * a not very useful case, both STAs are associated to the * same BSS. * * To remove this restriction, the BSS information needs to * be embedded in the STA/IBSS mode sdata instead of using * the master device's BSS structure. */ if ((sdata->vif.type == IEEE80211_IF_TYPE_STA || sdata->vif.type == IEEE80211_IF_TYPE_IBSS) && (nsdata->vif.type == IEEE80211_IF_TYPE_STA || nsdata->vif.type == IEEE80211_IF_TYPE_IBSS)) return -EBUSY; /* * The remaining checks are only performed for interfaces * with the same MAC address. */ if (compare_ether_addr(dev->dev_addr, ndev->dev_addr)) continue; /* * check whether it may have the same address */ if (!identical_mac_addr_allowed(sdata->vif.type, nsdata->vif.type)) return -ENOTUNIQ; /* * can only add VLANs to enabled APs */ if (sdata->vif.type == IEEE80211_IF_TYPE_VLAN && nsdata->vif.type == IEEE80211_IF_TYPE_AP) sdata->u.vlan.ap = nsdata; } } switch (sdata->vif.type) { case IEEE80211_IF_TYPE_WDS: if (!is_valid_ether_addr(sdata->u.wds.remote_addr)) return -ENOLINK; break; case IEEE80211_IF_TYPE_VLAN: if (!sdata->u.vlan.ap) return -ENOLINK; break; case IEEE80211_IF_TYPE_AP: case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_MNTR: case IEEE80211_IF_TYPE_IBSS: case IEEE80211_IF_TYPE_MESH_POINT: /* no special treatment */ break; case IEEE80211_IF_TYPE_INVALID: /* cannot happen */ WARN_ON(1); break; } if (local->open_count == 0) { res = 0; if (local->ops->start) res = local->ops->start(local_to_hw(local)); if (res) return res; need_hw_reconfig = 1; ieee80211_led_radio(local, local->hw.conf.radio_enabled); } switch (sdata->vif.type) { case IEEE80211_IF_TYPE_VLAN: list_add(&sdata->u.vlan.list, &sdata->u.vlan.ap->u.ap.vlans); /* no need to tell driver */ break; case IEEE80211_IF_TYPE_MNTR: if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) { local->cooked_mntrs++; break; } /* must be before the call to ieee80211_configure_filter */ local->monitors++; if (local->monitors == 1) local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP; if (sdata->u.mntr_flags & MONITOR_FLAG_FCSFAIL) local->fif_fcsfail++; if (sdata->u.mntr_flags & MONITOR_FLAG_PLCPFAIL) local->fif_plcpfail++; if (sdata->u.mntr_flags & MONITOR_FLAG_CONTROL) local->fif_control++; if (sdata->u.mntr_flags & MONITOR_FLAG_OTHER_BSS) local->fif_other_bss++; netif_tx_lock_bh(local->mdev); ieee80211_configure_filter(local); netif_tx_unlock_bh(local->mdev); break; case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_IBSS: sdata->u.sta.flags &= ~IEEE80211_STA_PREV_BSSID_SET; /* fall through */ default: conf.vif = &sdata->vif; conf.type = sdata->vif.type; conf.mac_addr = dev->dev_addr; res = local->ops->add_interface(local_to_hw(local), &conf); if (res) goto err_stop; ieee80211_if_config(dev); ieee80211_reset_erp_info(dev); ieee80211_enable_keys(sdata); if (sdata->vif.type == IEEE80211_IF_TYPE_STA && !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME)) netif_carrier_off(dev); else netif_carrier_on(dev); } if (sdata->vif.type == IEEE80211_IF_TYPE_WDS) { /* Create STA entry for the WDS peer */ sta = sta_info_alloc(sdata, sdata->u.wds.remote_addr, GFP_KERNEL); if (!sta) { res = -ENOMEM; goto err_del_interface; } /* no locking required since STA is not live yet */ sta->flags |= WLAN_STA_AUTHORIZED; res = sta_info_insert(sta); if (res) { /* STA has been freed */ goto err_del_interface; } } if (local->open_count == 0) { res = dev_open(local->mdev); WARN_ON(res); if (res) goto err_del_interface; tasklet_enable(&local->tx_pending_tasklet); tasklet_enable(&local->tasklet); } /* * set_multicast_list will be invoked by the networking core * which will check whether any increments here were done in * error and sync them down to the hardware as filter flags. */ if (sdata->flags & IEEE80211_SDATA_ALLMULTI) atomic_inc(&local->iff_allmultis); if (sdata->flags & IEEE80211_SDATA_PROMISC) atomic_inc(&local->iff_promiscs); local->open_count++; if (need_hw_reconfig) ieee80211_hw_config(local); /* * ieee80211_sta_work is disabled while network interface * is down. Therefore, some configuration changes may not * yet be effective. Trigger execution of ieee80211_sta_work * to fix this. */ if (sdata->vif.type == IEEE80211_IF_TYPE_STA || sdata->vif.type == IEEE80211_IF_TYPE_IBSS) { struct ieee80211_if_sta *ifsta = &sdata->u.sta; queue_work(local->hw.workqueue, &ifsta->work); } netif_start_queue(dev); return 0; err_del_interface: local->ops->remove_interface(local_to_hw(local), &conf); err_stop: if (!local->open_count && local->ops->stop) local->ops->stop(local_to_hw(local)); return res; } static int ieee80211_stop(struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct ieee80211_if_init_conf conf; struct sta_info *sta; /* * Stop TX on this interface first. */ netif_stop_queue(dev); /* * Now delete all active aggregation sessions. */ rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sta->sdata == sdata) ieee80211_sta_tear_down_BA_sessions(dev, sta->addr); } rcu_read_unlock(); /* * Remove all stations associated with this interface. * * This must be done before calling ops->remove_interface() * because otherwise we can later invoke ops->sta_notify() * whenever the STAs are removed, and that invalidates driver * assumptions about always getting a vif pointer that is valid * (because if we remove a STA after ops->remove_interface() * the driver will have removed the vif info already!) * * We could relax this and only unlink the stations from the * hash table and list but keep them on a per-sdata list that * will be inserted back again when the interface is brought * up again, but I don't currently see a use case for that, * except with WDS which gets a STA entry created when it is * brought up. */ sta_info_flush(local, sdata); /* * Don't count this interface for promisc/allmulti while it * is down. dev_mc_unsync() will invoke set_multicast_list * on the master interface which will sync these down to the * hardware as filter flags. */ if (sdata->flags & IEEE80211_SDATA_ALLMULTI) atomic_dec(&local->iff_allmultis); if (sdata->flags & IEEE80211_SDATA_PROMISC) atomic_dec(&local->iff_promiscs); dev_mc_unsync(local->mdev, dev); /* APs need special treatment */ if (sdata->vif.type == IEEE80211_IF_TYPE_AP) { struct ieee80211_sub_if_data *vlan, *tmp; struct beacon_data *old_beacon = sdata->u.ap.beacon; /* remove beacon */ rcu_assign_pointer(sdata->u.ap.beacon, NULL); synchronize_rcu(); kfree(old_beacon); /* down all dependent devices, that is VLANs */ list_for_each_entry_safe(vlan, tmp, &sdata->u.ap.vlans, u.vlan.list) dev_close(vlan->dev); WARN_ON(!list_empty(&sdata->u.ap.vlans)); } local->open_count--; switch (sdata->vif.type) { case IEEE80211_IF_TYPE_VLAN: list_del(&sdata->u.vlan.list); sdata->u.vlan.ap = NULL; /* no need to tell driver */ break; case IEEE80211_IF_TYPE_MNTR: if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) { local->cooked_mntrs--; break; } local->monitors--; if (local->monitors == 0) local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP; if (sdata->u.mntr_flags & MONITOR_FLAG_FCSFAIL) local->fif_fcsfail--; if (sdata->u.mntr_flags & MONITOR_FLAG_PLCPFAIL) local->fif_plcpfail--; if (sdata->u.mntr_flags & MONITOR_FLAG_CONTROL) local->fif_control--; if (sdata->u.mntr_flags & MONITOR_FLAG_OTHER_BSS) local->fif_other_bss--; netif_tx_lock_bh(local->mdev); ieee80211_configure_filter(local); netif_tx_unlock_bh(local->mdev); break; case IEEE80211_IF_TYPE_MESH_POINT: case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_IBSS: sdata->u.sta.state = IEEE80211_DISABLED; del_timer_sync(&sdata->u.sta.timer); /* * When we get here, the interface is marked down. * Call synchronize_rcu() to wait for the RX path * should it be using the interface and enqueuing * frames at this very time on another CPU. */ synchronize_rcu(); skb_queue_purge(&sdata->u.sta.skb_queue); if (local->scan_dev == sdata->dev) { if (!local->ops->hw_scan) { local->sta_sw_scanning = 0; cancel_delayed_work(&local->scan_work); } else local->sta_hw_scanning = 0; } flush_workqueue(local->hw.workqueue); sdata->u.sta.flags &= ~IEEE80211_STA_PRIVACY_INVOKED; kfree(sdata->u.sta.extra_ie); sdata->u.sta.extra_ie = NULL; sdata->u.sta.extra_ie_len = 0; /* fall through */ default: conf.vif = &sdata->vif; conf.type = sdata->vif.type; conf.mac_addr = dev->dev_addr; /* disable all keys for as long as this netdev is down */ ieee80211_disable_keys(sdata); local->ops->remove_interface(local_to_hw(local), &conf); } if (local->open_count == 0) { if (netif_running(local->mdev)) dev_close(local->mdev); if (local->ops->stop) local->ops->stop(local_to_hw(local)); ieee80211_led_radio(local, 0); tasklet_disable(&local->tx_pending_tasklet); tasklet_disable(&local->tasklet); } return 0; } int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid) { struct ieee80211_local *local = hw_to_local(hw); struct sta_info *sta; struct ieee80211_sub_if_data *sdata; u16 start_seq_num = 0; u8 *state; int ret; DECLARE_MAC_BUF(mac); if (tid >= STA_TID_NUM) return -EINVAL; #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "Open BA session requested for %s tid %u\n", print_mac(mac, ra), tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ rcu_read_lock(); sta = sta_info_get(local, ra); if (!sta) { printk(KERN_DEBUG "Could not find the station\n"); rcu_read_unlock(); return -ENOENT; } spin_lock_bh(&sta->lock); /* we have tried too many times, receiver does not want A-MPDU */ if (sta->ampdu_mlme.addba_req_num[tid] > HT_AGG_MAX_RETRIES) { ret = -EBUSY; goto start_ba_exit; } state = &sta->ampdu_mlme.tid_state_tx[tid]; /* check if the TID is not in aggregation flow already */ if (*state != HT_AGG_STATE_IDLE) { #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "BA request denied - session is not " "idle on tid %u\n", tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ ret = -EAGAIN; goto start_ba_exit; } /* prepare A-MPDU MLME for Tx aggregation */ sta->ampdu_mlme.tid_tx[tid] = kmalloc(sizeof(struct tid_ampdu_tx), GFP_ATOMIC); if (!sta->ampdu_mlme.tid_tx[tid]) { if (net_ratelimit()) printk(KERN_ERR "allocate tx mlme to tid %d failed\n", tid); ret = -ENOMEM; goto start_ba_exit; } /* Tx timer */ sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer.function = sta_addba_resp_timer_expired; sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer.data = (unsigned long)&sta->timer_to_tid[tid]; init_timer(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer); /* ensure that TX flow won't interrupt us * until the end of the call to requeue function */ spin_lock_bh(&local->mdev->queue_lock); /* create a new queue for this aggregation */ ret = ieee80211_ht_agg_queue_add(local, sta, tid); /* case no queue is available to aggregation * don't switch to aggregation */ if (ret) { #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "BA request denied - queue unavailable for" " tid %d\n", tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ goto start_ba_err; } sdata = sta->sdata; /* Ok, the Addba frame hasn't been sent yet, but if the driver calls the * call back right away, it must see that the flow has begun */ *state |= HT_ADDBA_REQUESTED_MSK; if (local->ops->ampdu_action) ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_TX_START, ra, tid, &start_seq_num); if (ret) { /* No need to requeue the packets in the agg queue, since we * held the tx lock: no packet could be enqueued to the newly * allocated queue */ ieee80211_ht_agg_queue_remove(local, sta, tid, 0); #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "BA request denied - HW unavailable for" " tid %d\n", tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ *state = HT_AGG_STATE_IDLE; goto start_ba_err; } /* Will put all the packets in the new SW queue */ ieee80211_requeue(local, ieee802_1d_to_ac[tid]); spin_unlock_bh(&local->mdev->queue_lock); /* send an addBA request */ sta->ampdu_mlme.dialog_token_allocator++; sta->ampdu_mlme.tid_tx[tid]->dialog_token = sta->ampdu_mlme.dialog_token_allocator; sta->ampdu_mlme.tid_tx[tid]->ssn = start_seq_num; ieee80211_send_addba_request(sta->sdata->dev, ra, tid, sta->ampdu_mlme.tid_tx[tid]->dialog_token, sta->ampdu_mlme.tid_tx[tid]->ssn, 0x40, 5000); /* activate the timer for the recipient's addBA response */ sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer.expires = jiffies + ADDBA_RESP_INTERVAL; add_timer(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer); printk(KERN_DEBUG "activated addBA response timer on tid %d\n", tid); goto start_ba_exit; start_ba_err: kfree(sta->ampdu_mlme.tid_tx[tid]); sta->ampdu_mlme.tid_tx[tid] = NULL; spin_unlock_bh(&local->mdev->queue_lock); ret = -EBUSY; start_ba_exit: spin_unlock_bh(&sta->lock); rcu_read_unlock(); return ret; } EXPORT_SYMBOL(ieee80211_start_tx_ba_session); int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid, enum ieee80211_back_parties initiator) { struct ieee80211_local *local = hw_to_local(hw); struct sta_info *sta; u8 *state; int ret = 0; DECLARE_MAC_BUF(mac); if (tid >= STA_TID_NUM) return -EINVAL; rcu_read_lock(); sta = sta_info_get(local, ra); if (!sta) { rcu_read_unlock(); return -ENOENT; } /* check if the TID is in aggregation */ state = &sta->ampdu_mlme.tid_state_tx[tid]; spin_lock_bh(&sta->lock); if (*state != HT_AGG_STATE_OPERATIONAL) { ret = -ENOENT; goto stop_BA_exit; } #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "Tx BA session stop requested for %s tid %u\n", print_mac(mac, ra), tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ ieee80211_stop_queue(hw, sta->tid_to_tx_q[tid]); *state = HT_AGG_STATE_REQ_STOP_BA_MSK | (initiator << HT_AGG_STATE_INITIATOR_SHIFT); if (local->ops->ampdu_action) ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_TX_STOP, ra, tid, NULL); /* case HW denied going back to legacy */ if (ret) { WARN_ON(ret != -EBUSY); *state = HT_AGG_STATE_OPERATIONAL; ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]); goto stop_BA_exit; } stop_BA_exit: spin_unlock_bh(&sta->lock); rcu_read_unlock(); return ret; } EXPORT_SYMBOL(ieee80211_stop_tx_ba_session); void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid) { struct ieee80211_local *local = hw_to_local(hw); struct sta_info *sta; u8 *state; DECLARE_MAC_BUF(mac); if (tid >= STA_TID_NUM) { printk(KERN_DEBUG "Bad TID value: tid = %d (>= %d)\n", tid, STA_TID_NUM); return; } rcu_read_lock(); sta = sta_info_get(local, ra); if (!sta) { rcu_read_unlock(); printk(KERN_DEBUG "Could not find station: %s\n", print_mac(mac, ra)); return; } state = &sta->ampdu_mlme.tid_state_tx[tid]; spin_lock_bh(&sta->lock); if (!(*state & HT_ADDBA_REQUESTED_MSK)) { printk(KERN_DEBUG "addBA was not requested yet, state is %d\n", *state); spin_unlock_bh(&sta->lock); rcu_read_unlock(); return; } WARN_ON_ONCE(*state & HT_ADDBA_DRV_READY_MSK); *state |= HT_ADDBA_DRV_READY_MSK; if (*state == HT_AGG_STATE_OPERATIONAL) { printk(KERN_DEBUG "Aggregation is on for tid %d \n", tid); ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]); } spin_unlock_bh(&sta->lock); rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_start_tx_ba_cb); void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid) { struct ieee80211_local *local = hw_to_local(hw); struct sta_info *sta; u8 *state; int agg_queue; DECLARE_MAC_BUF(mac); if (tid >= STA_TID_NUM) { printk(KERN_DEBUG "Bad TID value: tid = %d (>= %d)\n", tid, STA_TID_NUM); return; } #ifdef CONFIG_MAC80211_HT_DEBUG printk(KERN_DEBUG "Stopping Tx BA session for %s tid %d\n", print_mac(mac, ra), tid); #endif /* CONFIG_MAC80211_HT_DEBUG */ rcu_read_lock(); sta = sta_info_get(local, ra); if (!sta) { printk(KERN_DEBUG "Could not find station: %s\n", print_mac(mac, ra)); rcu_read_unlock(); return; } state = &sta->ampdu_mlme.tid_state_tx[tid]; spin_lock_bh(&sta->lock); if ((*state & HT_AGG_STATE_REQ_STOP_BA_MSK) == 0) { printk(KERN_DEBUG "unexpected callback to A-MPDU stop\n"); spin_unlock_bh(&sta->lock); rcu_read_unlock(); return; } if (*state & HT_AGG_STATE_INITIATOR_MSK) ieee80211_send_delba(sta->sdata->dev, ra, tid, WLAN_BACK_INITIATOR, WLAN_REASON_QSTA_NOT_USE); agg_queue = sta->tid_to_tx_q[tid]; /* avoid ordering issues: we are the only one that can modify * the content of the qdiscs */ spin_lock_bh(&local->mdev->queue_lock); /* remove the queue for this aggregation */ ieee80211_ht_agg_queue_remove(local, sta, tid, 1); spin_unlock_bh(&local->mdev->queue_lock); /* we just requeued the all the frames that were in the removed * queue, and since we might miss a softirq we do netif_schedule. * ieee80211_wake_queue is not used here as this queue is not * necessarily stopped */ netif_schedule(local->mdev); *state = HT_AGG_STATE_IDLE; sta->ampdu_mlme.addba_req_num[tid] = 0; kfree(sta->ampdu_mlme.tid_tx[tid]); sta->ampdu_mlme.tid_tx[tid] = NULL; spin_unlock_bh(&sta->lock); rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_stop_tx_ba_cb); void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, u16 tid) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_ra_tid *ra_tid; struct sk_buff *skb = dev_alloc_skb(0); if (unlikely(!skb)) { if (net_ratelimit()) printk(KERN_WARNING "%s: Not enough memory, " "dropping start BA session", skb->dev->name); return; } ra_tid = (struct ieee80211_ra_tid *) &skb->cb; memcpy(&ra_tid->ra, ra, ETH_ALEN); ra_tid->tid = tid; skb->pkt_type = IEEE80211_ADDBA_MSG; skb_queue_tail(&local->skb_queue, skb); tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_start_tx_ba_cb_irqsafe); void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra, u16 tid) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_ra_tid *ra_tid; struct sk_buff *skb = dev_alloc_skb(0); if (unlikely(!skb)) { if (net_ratelimit()) printk(KERN_WARNING "%s: Not enough memory, " "dropping stop BA session", skb->dev->name); return; } ra_tid = (struct ieee80211_ra_tid *) &skb->cb; memcpy(&ra_tid->ra, ra, ETH_ALEN); ra_tid->tid = tid; skb->pkt_type = IEEE80211_DELBA_MSG; skb_queue_tail(&local->skb_queue, skb); tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_stop_tx_ba_cb_irqsafe); static void ieee80211_set_multicast_list(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int allmulti, promisc, sdata_allmulti, sdata_promisc; allmulti = !!(dev->flags & IFF_ALLMULTI); promisc = !!(dev->flags & IFF_PROMISC); sdata_allmulti = !!(sdata->flags & IEEE80211_SDATA_ALLMULTI); sdata_promisc = !!(sdata->flags & IEEE80211_SDATA_PROMISC); if (allmulti != sdata_allmulti) { if (dev->flags & IFF_ALLMULTI) atomic_inc(&local->iff_allmultis); else atomic_dec(&local->iff_allmultis); sdata->flags ^= IEEE80211_SDATA_ALLMULTI; } if (promisc != sdata_promisc) { if (dev->flags & IFF_PROMISC) atomic_inc(&local->iff_promiscs); else atomic_dec(&local->iff_promiscs); sdata->flags ^= IEEE80211_SDATA_PROMISC; } dev_mc_sync(local->mdev, dev); } static const struct header_ops ieee80211_header_ops = { .create = eth_header, .parse = header_parse_80211, .rebuild = eth_rebuild_header, .cache = eth_header_cache, .cache_update = eth_header_cache_update, }; /* Must not be called for mdev */ void ieee80211_if_setup(struct net_device *dev) { ether_setup(dev); dev->hard_start_xmit = ieee80211_subif_start_xmit; dev->wireless_handlers = &ieee80211_iw_handler_def; dev->set_multicast_list = ieee80211_set_multicast_list; dev->change_mtu = ieee80211_change_mtu; dev->open = ieee80211_open; dev->stop = ieee80211_stop; dev->destructor = ieee80211_if_free; } /* everything else */ static int __ieee80211_if_config(struct net_device *dev, struct sk_buff *beacon, struct ieee80211_tx_control *control) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_if_conf conf; if (!local->ops->config_interface || !netif_running(dev)) return 0; memset(&conf, 0, sizeof(conf)); conf.type = sdata->vif.type; if (sdata->vif.type == IEEE80211_IF_TYPE_STA || sdata->vif.type == IEEE80211_IF_TYPE_IBSS) { conf.bssid = sdata->u.sta.bssid; conf.ssid = sdata->u.sta.ssid; conf.ssid_len = sdata->u.sta.ssid_len; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { conf.beacon = beacon; conf.beacon_control = control; ieee80211_start_mesh(dev); } else if (sdata->vif.type == IEEE80211_IF_TYPE_AP) { conf.ssid = sdata->u.ap.ssid; conf.ssid_len = sdata->u.ap.ssid_len; conf.beacon = beacon; conf.beacon_control = control; } return local->ops->config_interface(local_to_hw(local), &sdata->vif, &conf); } int ieee80211_if_config(struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); if (sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT && (local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE)) return ieee80211_if_config_beacon(dev); return __ieee80211_if_config(dev, NULL, NULL); } int ieee80211_if_config_beacon(struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_tx_control control; struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct sk_buff *skb; if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE)) return 0; skb = ieee80211_beacon_get(local_to_hw(local), &sdata->vif, &control); if (!skb) return -ENOMEM; return __ieee80211_if_config(dev, skb, &control); } int ieee80211_hw_config(struct ieee80211_local *local) { struct ieee80211_channel *chan; int ret = 0; if (local->sta_sw_scanning) chan = local->scan_channel; else chan = local->oper_channel; local->hw.conf.channel = chan; if (!local->hw.conf.power_level) local->hw.conf.power_level = chan->max_power; else local->hw.conf.power_level = min(chan->max_power, local->hw.conf.power_level); local->hw.conf.max_antenna_gain = chan->max_antenna_gain; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG printk(KERN_DEBUG "%s: HW CONFIG: freq=%d\n", wiphy_name(local->hw.wiphy), chan->center_freq); #endif if (local->open_count) ret = local->ops->config(local_to_hw(local), &local->hw.conf); return ret; } /** * ieee80211_handle_ht should be used only after legacy configuration * has been determined namely band, as ht configuration depends upon * the hardware's HT abilities for a _specific_ band. */ u32 ieee80211_handle_ht(struct ieee80211_local *local, int enable_ht, struct ieee80211_ht_info *req_ht_cap, struct ieee80211_ht_bss_info *req_bss_cap) { struct ieee80211_conf *conf = &local->hw.conf; struct ieee80211_supported_band *sband; struct ieee80211_ht_info ht_conf; struct ieee80211_ht_bss_info ht_bss_conf; u32 changed = 0; int i; u8 max_tx_streams = IEEE80211_HT_CAP_MAX_STREAMS; u8 tx_mcs_set_cap; sband = local->hw.wiphy->bands[conf->channel->band]; memset(&ht_conf, 0, sizeof(struct ieee80211_ht_info)); memset(&ht_bss_conf, 0, sizeof(struct ieee80211_ht_bss_info)); /* HT is not supported */ if (!sband->ht_info.ht_supported) { conf->flags &= ~IEEE80211_CONF_SUPPORT_HT_MODE; goto out; } /* disable HT */ if (!enable_ht) { if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) changed |= BSS_CHANGED_HT; conf->flags &= ~IEEE80211_CONF_SUPPORT_HT_MODE; conf->ht_conf.ht_supported = 0; goto out; } if (!(conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE)) changed |= BSS_CHANGED_HT; conf->flags |= IEEE80211_CONF_SUPPORT_HT_MODE; ht_conf.ht_supported = 1; ht_conf.cap = req_ht_cap->cap & sband->ht_info.cap; ht_conf.cap &= ~(IEEE80211_HT_CAP_MIMO_PS); ht_conf.cap |= sband->ht_info.cap & IEEE80211_HT_CAP_MIMO_PS; ht_bss_conf.primary_channel = req_bss_cap->primary_channel; ht_bss_conf.bss_cap = req_bss_cap->bss_cap; ht_bss_conf.bss_op_mode = req_bss_cap->bss_op_mode; ht_conf.ampdu_factor = req_ht_cap->ampdu_factor; ht_conf.ampdu_density = req_ht_cap->ampdu_density; /* Bits 96-100 */ tx_mcs_set_cap = sband->ht_info.supp_mcs_set[12]; /* configure suppoerted Tx MCS according to requested MCS * (based in most cases on Rx capabilities of peer) and self * Tx MCS capabilities (as defined by low level driver HW * Tx capabilities) */ if (!(tx_mcs_set_cap & IEEE80211_HT_CAP_MCS_TX_DEFINED)) goto check_changed; /* Counting from 0 therfore + 1 */ if (tx_mcs_set_cap & IEEE80211_HT_CAP_MCS_TX_RX_DIFF) max_tx_streams = ((tx_mcs_set_cap & IEEE80211_HT_CAP_MCS_TX_STREAMS) >> 2) + 1; for (i = 0; i < max_tx_streams; i++) ht_conf.supp_mcs_set[i] = sband->ht_info.supp_mcs_set[i] & req_ht_cap->supp_mcs_set[i]; if (tx_mcs_set_cap & IEEE80211_HT_CAP_MCS_TX_UEQM) for (i = IEEE80211_SUPP_MCS_SET_UEQM; i < IEEE80211_SUPP_MCS_SET_LEN; i++) ht_conf.supp_mcs_set[i] = sband->ht_info.supp_mcs_set[i] & req_ht_cap->supp_mcs_set[i]; check_changed: /* if bss configuration changed store the new one */ if (memcmp(&conf->ht_conf, &ht_conf, sizeof(ht_conf)) || memcmp(&conf->ht_bss_conf, &ht_bss_conf, sizeof(ht_bss_conf))) { changed |= BSS_CHANGED_HT; memcpy(&conf->ht_conf, &ht_conf, sizeof(ht_conf)); memcpy(&conf->ht_bss_conf, &ht_bss_conf, sizeof(ht_bss_conf)); } out: return changed; } void ieee80211_bss_info_change_notify(struct ieee80211_sub_if_data *sdata, u32 changed) { struct ieee80211_local *local = sdata->local; if (!changed) return; if (local->ops->bss_info_changed) local->ops->bss_info_changed(local_to_hw(local), &sdata->vif, &sdata->bss_conf, changed); } void ieee80211_reset_erp_info(struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata->bss_conf.use_cts_prot = 0; sdata->bss_conf.use_short_preamble = 0; ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE); } void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_status *saved; int tmp; skb->dev = local->mdev; saved = kmalloc(sizeof(struct ieee80211_tx_status), GFP_ATOMIC); if (unlikely(!saved)) { if (net_ratelimit()) printk(KERN_WARNING "%s: Not enough memory, " "dropping tx status", skb->dev->name); /* should be dev_kfree_skb_irq, but due to this function being * named _irqsafe instead of just _irq we can't be sure that * people won't call it from non-irq contexts */ dev_kfree_skb_any(skb); return; } memcpy(saved, status, sizeof(struct ieee80211_tx_status)); /* copy pointer to saved status into skb->cb for use by tasklet */ memcpy(skb->cb, &saved, sizeof(saved)); skb->pkt_type = IEEE80211_TX_STATUS_MSG; skb_queue_tail(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS ? &local->skb_queue : &local->skb_queue_unreliable, skb); tmp = skb_queue_len(&local->skb_queue) + skb_queue_len(&local->skb_queue_unreliable); while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT && (skb = skb_dequeue(&local->skb_queue_unreliable))) { memcpy(&saved, skb->cb, sizeof(saved)); kfree(saved); dev_kfree_skb_irq(skb); tmp--; I802_DEBUG_INC(local->tx_status_drop); } tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_tx_status_irqsafe); static void ieee80211_tasklet_handler(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *) data; struct sk_buff *skb; struct ieee80211_rx_status rx_status; struct ieee80211_tx_status *tx_status; struct ieee80211_ra_tid *ra_tid; while ((skb = skb_dequeue(&local->skb_queue)) || (skb = skb_dequeue(&local->skb_queue_unreliable))) { switch (skb->pkt_type) { case IEEE80211_RX_MSG: /* status is in skb->cb */ memcpy(&rx_status, skb->cb, sizeof(rx_status)); /* Clear skb->pkt_type in order to not confuse kernel * netstack. */ skb->pkt_type = 0; __ieee80211_rx(local_to_hw(local), skb, &rx_status); break; case IEEE80211_TX_STATUS_MSG: /* get pointer to saved status out of skb->cb */ memcpy(&tx_status, skb->cb, sizeof(tx_status)); skb->pkt_type = 0; ieee80211_tx_status(local_to_hw(local), skb, tx_status); kfree(tx_status); break; case IEEE80211_DELBA_MSG: ra_tid = (struct ieee80211_ra_tid *) &skb->cb; ieee80211_stop_tx_ba_cb(local_to_hw(local), ra_tid->ra, ra_tid->tid); dev_kfree_skb(skb); break; case IEEE80211_ADDBA_MSG: ra_tid = (struct ieee80211_ra_tid *) &skb->cb; ieee80211_start_tx_ba_cb(local_to_hw(local), ra_tid->ra, ra_tid->tid); dev_kfree_skb(skb); break ; default: /* should never get here! */ printk(KERN_ERR "%s: Unknown message type (%d)\n", wiphy_name(local->hw.wiphy), skb->pkt_type); dev_kfree_skb(skb); break; } } } /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to * make a prepared TX frame (one that has been given to hw) to look like brand * new IEEE 802.11 frame that is ready to go through TX processing again. * Also, tx_packet_data in cb is restored from tx_control. */ static void ieee80211_remove_tx_extra(struct ieee80211_local *local, struct ieee80211_key *key, struct sk_buff *skb, struct ieee80211_tx_control *control) { int hdrlen, iv_len, mic_len; struct ieee80211_tx_packet_data *pkt_data; pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; pkt_data->ifindex = vif_to_sdata(control->vif)->dev->ifindex; pkt_data->flags = 0; if (control->flags & IEEE80211_TXCTL_REQ_TX_STATUS) pkt_data->flags |= IEEE80211_TXPD_REQ_TX_STATUS; if (control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT) pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT; if (control->flags & IEEE80211_TXCTL_REQUEUE) pkt_data->flags |= IEEE80211_TXPD_REQUEUE; if (control->flags & IEEE80211_TXCTL_EAPOL_FRAME) pkt_data->flags |= IEEE80211_TXPD_EAPOL_FRAME; pkt_data->queue = control->queue; hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (!key) goto no_key; switch (key->conf.alg) { case ALG_WEP: iv_len = WEP_IV_LEN; mic_len = WEP_ICV_LEN; break; case ALG_TKIP: iv_len = TKIP_IV_LEN; mic_len = TKIP_ICV_LEN; break; case ALG_CCMP: iv_len = CCMP_HDR_LEN; mic_len = CCMP_MIC_LEN; break; default: goto no_key; } if (skb->len >= mic_len && !(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) skb_trim(skb, skb->len - mic_len); if (skb->len >= iv_len && skb->len > hdrlen) { memmove(skb->data + iv_len, skb->data, hdrlen); skb_pull(skb, iv_len); } no_key: { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u16 fc = le16_to_cpu(hdr->frame_control); if ((fc & 0x8C) == 0x88) /* QoS Control Field */ { fc &= ~IEEE80211_STYPE_QOS_DATA; hdr->frame_control = cpu_to_le16(fc); memmove(skb->data + 2, skb->data, hdrlen - 2); skb_pull(skb, 2); } } } static void ieee80211_handle_filtered_frame(struct ieee80211_local *local, struct sta_info *sta, struct sk_buff *skb, struct ieee80211_tx_status *status) { sta->tx_filtered_count++; /* * Clear the TX filter mask for this STA when sending the next * packet. If the STA went to power save mode, this will happen * happen when it wakes up for the next time. */ set_sta_flags(sta, WLAN_STA_CLEAR_PS_FILT); /* * This code races in the following way: * * (1) STA sends frame indicating it will go to sleep and does so * (2) hardware/firmware adds STA to filter list, passes frame up * (3) hardware/firmware processes TX fifo and suppresses a frame * (4) we get TX status before having processed the frame and * knowing that the STA has gone to sleep. * * This is actually quite unlikely even when both those events are * processed from interrupts coming in quickly after one another or * even at the same time because we queue both TX status events and * RX frames to be processed by a tasklet and process them in the * same order that they were received or TX status last. Hence, there * is no race as long as the frame RX is processed before the next TX * status, which drivers can ensure, see below. * * Note that this can only happen if the hardware or firmware can * actually add STAs to the filter list, if this is done by the * driver in response to set_tim() (which will only reduce the race * this whole filtering tries to solve, not completely solve it) * this situation cannot happen. * * To completely solve this race drivers need to make sure that they * (a) don't mix the irq-safe/not irq-safe TX status/RX processing * functions and * (b) always process RX events before TX status events if ordering * can be unknown, for example with different interrupt status * bits. */ if (test_sta_flags(sta, WLAN_STA_PS) && skb_queue_len(&sta->tx_filtered) < STA_MAX_TX_BUFFER) { ieee80211_remove_tx_extra(local, sta->key, skb, &status->control); skb_queue_tail(&sta->tx_filtered, skb); return; } if (!test_sta_flags(sta, WLAN_STA_PS) && !(status->control.flags & IEEE80211_TXCTL_REQUEUE)) { /* Software retry the packet once */ status->control.flags |= IEEE80211_TXCTL_REQUEUE; ieee80211_remove_tx_extra(local, sta->key, skb, &status->control); dev_queue_xmit(skb); return; } if (net_ratelimit()) printk(KERN_DEBUG "%s: dropped TX filtered frame, " "queue_len=%d PS=%d @%lu\n", wiphy_name(local->hw.wiphy), skb_queue_len(&sta->tx_filtered), !!test_sta_flags(sta, WLAN_STA_PS), jiffies); dev_kfree_skb(skb); } void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_status *status) { struct sk_buff *skb2; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = hw_to_local(hw); u16 frag, type; struct ieee80211_tx_status_rtap_hdr *rthdr; struct ieee80211_sub_if_data *sdata; struct net_device *prev_dev = NULL; if (!status) { printk(KERN_ERR "%s: ieee80211_tx_status called with NULL status\n", wiphy_name(local->hw.wiphy)); dev_kfree_skb(skb); return; } rcu_read_lock(); if (status->excessive_retries) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { if (test_sta_flags(sta, WLAN_STA_PS)) { /* * The STA is in power save mode, so assume * that this TX packet failed because of that. */ status->excessive_retries = 0; status->flags |= IEEE80211_TX_STATUS_TX_FILTERED; ieee80211_handle_filtered_frame(local, sta, skb, status); rcu_read_unlock(); return; } } } if (status->flags & IEEE80211_TX_STATUS_TX_FILTERED) { struct sta_info *sta; sta = sta_info_get(local, hdr->addr1); if (sta) { ieee80211_handle_filtered_frame(local, sta, skb, status); rcu_read_unlock(); return; } } else rate_control_tx_status(local->mdev, skb, status); rcu_read_unlock(); ieee80211_led_tx(local, 0); /* SNMP counters * Fragments are passed to low-level drivers as separate skbs, so these * are actually fragments, not frames. Update frame counters only for * the first fragment of the frame. */ frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE; if (status->flags & IEEE80211_TX_STATUS_ACK) { if (frag == 0) { local->dot11TransmittedFrameCount++; if (is_multicast_ether_addr(hdr->addr1)) local->dot11MulticastTransmittedFrameCount++; if (status->retry_count > 0) local->dot11RetryCount++; if (status->retry_count > 1) local->dot11MultipleRetryCount++; } /* This counter shall be incremented for an acknowledged MPDU * with an individual address in the address 1 field or an MPDU * with a multicast address in the address 1 field of type Data * or Management. */ if (!is_multicast_ether_addr(hdr->addr1) || type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT) local->dot11TransmittedFragmentCount++; } else { if (frag == 0) local->dot11FailedCount++; } /* this was a transmitted frame, but now we want to reuse it */ skb_orphan(skb); /* * This is a bit racy but we can avoid a lot of work * with this test... */ if (!local->monitors && !local->cooked_mntrs) { dev_kfree_skb(skb); return; } /* send frame to monitor interfaces now */ if (skb_headroom(skb) < sizeof(*rthdr)) { printk(KERN_ERR "ieee80211_tx_status: headroom too small\n"); dev_kfree_skb(skb); return; } rthdr = (struct ieee80211_tx_status_rtap_hdr *) skb_push(skb, sizeof(*rthdr)); memset(rthdr, 0, sizeof(*rthdr)); rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); rthdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_TX_FLAGS) | (1 << IEEE80211_RADIOTAP_DATA_RETRIES)); if (!(status->flags & IEEE80211_TX_STATUS_ACK) && !is_multicast_ether_addr(hdr->addr1)) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_FAIL); if ((status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) && (status->control.flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_CTS); else if (status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_RTS); rthdr->data_retries = status->retry_count; /* XXX: is this sufficient for BPF? */ skb_set_mac_header(skb, 0); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR) { if (!netif_running(sdata->dev)) continue; if (prev_dev) { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) { skb2->dev = prev_dev; netif_rx(skb2); } } prev_dev = sdata->dev; } } if (prev_dev) { skb->dev = prev_dev; netif_rx(skb); skb = NULL; } rcu_read_unlock(); dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_tx_status); struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct ieee80211_ops *ops) { struct ieee80211_local *local; int priv_size; struct wiphy *wiphy; /* Ensure 32-byte alignment of our private data and hw private data. * We use the wiphy priv data for both our ieee80211_local and for * the driver's private data * * In memory it'll be like this: * * +-------------------------+ * | struct wiphy | * +-------------------------+ * | struct ieee80211_local | * +-------------------------+ * | driver's private data | * +-------------------------+ * */ priv_size = ((sizeof(struct ieee80211_local) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) + priv_data_len; wiphy = wiphy_new(&mac80211_config_ops, priv_size); if (!wiphy) return NULL; wiphy->privid = mac80211_wiphy_privid; local = wiphy_priv(wiphy); local->hw.wiphy = wiphy; local->hw.priv = (char *)local + ((sizeof(struct ieee80211_local) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); BUG_ON(!ops->tx); BUG_ON(!ops->start); BUG_ON(!ops->stop); BUG_ON(!ops->config); BUG_ON(!ops->add_interface); BUG_ON(!ops->remove_interface); BUG_ON(!ops->configure_filter); local->ops = ops; local->hw.queues = 1; /* default */ local->bridge_packets = 1; local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD; local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD; local->short_retry_limit = 7; local->long_retry_limit = 4; local->hw.conf.radio_enabled = 1; INIT_LIST_HEAD(&local->interfaces); spin_lock_init(&local->key_lock); INIT_DELAYED_WORK(&local->scan_work, ieee80211_sta_scan_work); sta_info_init(local); tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending, (unsigned long)local); tasklet_disable(&local->tx_pending_tasklet); tasklet_init(&local->tasklet, ieee80211_tasklet_handler, (unsigned long) local); tasklet_disable(&local->tasklet); skb_queue_head_init(&local->skb_queue); skb_queue_head_init(&local->skb_queue_unreliable); return local_to_hw(local); } EXPORT_SYMBOL(ieee80211_alloc_hw); int ieee80211_register_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); const char *name; int result; enum ieee80211_band band; struct net_device *mdev; struct ieee80211_sub_if_data *sdata; /* * generic code guarantees at least one band, * set this very early because much code assumes * that hw.conf.channel is assigned */ for (band = 0; band < IEEE80211_NUM_BANDS; band++) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[band]; if (sband) { /* init channel we're on */ local->hw.conf.channel = local->oper_channel = local->scan_channel = &sband->channels[0]; break; } } result = wiphy_register(local->hw.wiphy); if (result < 0) return result; /* for now, mdev needs sub_if_data :/ */ mdev = alloc_netdev(sizeof(struct ieee80211_sub_if_data), "wmaster%d", ether_setup); if (!mdev) goto fail_mdev_alloc; sdata = IEEE80211_DEV_TO_SUB_IF(mdev); mdev->ieee80211_ptr = &sdata->wdev; sdata->wdev.wiphy = local->hw.wiphy; local->mdev = mdev; ieee80211_rx_bss_list_init(mdev); mdev->hard_start_xmit = ieee80211_master_start_xmit; mdev->open = ieee80211_master_open; mdev->stop = ieee80211_master_stop; mdev->type = ARPHRD_IEEE80211; mdev->header_ops = &ieee80211_header_ops; mdev->set_multicast_list = ieee80211_master_set_multicast_list; sdata->vif.type = IEEE80211_IF_TYPE_AP; sdata->dev = mdev; sdata->local = local; sdata->u.ap.force_unicast_rateidx = -1; sdata->u.ap.max_ratectrl_rateidx = -1; ieee80211_if_sdata_init(sdata); /* no RCU needed since we're still during init phase */ list_add_tail(&sdata->list, &local->interfaces); name = wiphy_dev(local->hw.wiphy)->driver->name; local->hw.workqueue = create_singlethread_workqueue(name); if (!local->hw.workqueue) { result = -ENOMEM; goto fail_workqueue; } /* * The hardware needs headroom for sending the frame, * and we need some headroom for passing the frame to monitor * interfaces, but never both at the same time. */ local->tx_headroom = max_t(unsigned int , local->hw.extra_tx_headroom, sizeof(struct ieee80211_tx_status_rtap_hdr)); debugfs_hw_add(local); local->hw.conf.beacon_int = 1000; local->wstats_flags |= local->hw.flags & (IEEE80211_HW_SIGNAL_UNSPEC | IEEE80211_HW_SIGNAL_DB | IEEE80211_HW_SIGNAL_DBM) ? IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID; local->wstats_flags |= local->hw.flags & IEEE80211_HW_NOISE_DBM ? IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID; if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) local->wstats_flags |= IW_QUAL_DBM; result = sta_info_start(local); if (result < 0) goto fail_sta_info; rtnl_lock(); result = dev_alloc_name(local->mdev, local->mdev->name); if (result < 0) goto fail_dev; memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN); SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy)); result = register_netdevice(local->mdev); if (result < 0) goto fail_dev; ieee80211_debugfs_add_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev)); ieee80211_if_set_type(local->mdev, IEEE80211_IF_TYPE_AP); result = ieee80211_init_rate_ctrl_alg(local, hw->rate_control_algorithm); if (result < 0) { printk(KERN_DEBUG "%s: Failed to initialize rate control " "algorithm\n", wiphy_name(local->hw.wiphy)); goto fail_rate; } result = ieee80211_wep_init(local); if (result < 0) { printk(KERN_DEBUG "%s: Failed to initialize wep\n", wiphy_name(local->hw.wiphy)); goto fail_wep; } if (hw->queues > IEEE80211_MAX_QUEUES) hw->queues = IEEE80211_MAX_QUEUES; if (hw->ampdu_queues > IEEE80211_MAX_AMPDU_QUEUES) hw->ampdu_queues = IEEE80211_MAX_AMPDU_QUEUES; ieee80211_install_qdisc(local->mdev); /* add one default STA interface */ result = ieee80211_if_add(local->mdev, "wlan%d", NULL, IEEE80211_IF_TYPE_STA, NULL); if (result) printk(KERN_WARNING "%s: Failed to add default virtual iface\n", wiphy_name(local->hw.wiphy)); local->reg_state = IEEE80211_DEV_REGISTERED; rtnl_unlock(); ieee80211_led_init(local); return 0; fail_wep: rate_control_deinitialize(local); fail_rate: ieee80211_debugfs_remove_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev)); unregister_netdevice(local->mdev); local->mdev = NULL; fail_dev: rtnl_unlock(); sta_info_stop(local); fail_sta_info: debugfs_hw_del(local); destroy_workqueue(local->hw.workqueue); fail_workqueue: if (local->mdev != NULL) { ieee80211_if_free(local->mdev); local->mdev = NULL; } fail_mdev_alloc: wiphy_unregister(local->hw.wiphy); return result; } EXPORT_SYMBOL(ieee80211_register_hw); void ieee80211_unregister_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata, *tmp; tasklet_kill(&local->tx_pending_tasklet); tasklet_kill(&local->tasklet); rtnl_lock(); BUG_ON(local->reg_state != IEEE80211_DEV_REGISTERED); local->reg_state = IEEE80211_DEV_UNREGISTERED; /* * At this point, interface list manipulations are fine * because the driver cannot be handing us frames any * more and the tasklet is killed. */ /* * First, we remove all non-master interfaces. Do this because they * may have bss pointer dependency on the master, and when we free * the master these would be freed as well, breaking our list * iteration completely. */ list_for_each_entry_safe(sdata, tmp, &local->interfaces, list) { if (sdata->dev == local->mdev) continue; list_del(&sdata->list); __ieee80211_if_del(local, sdata); } /* then, finally, remove the master interface */ __ieee80211_if_del(local, IEEE80211_DEV_TO_SUB_IF(local->mdev)); rtnl_unlock(); ieee80211_rx_bss_list_deinit(local->mdev); ieee80211_clear_tx_pending(local); sta_info_stop(local); rate_control_deinitialize(local); debugfs_hw_del(local); if (skb_queue_len(&local->skb_queue) || skb_queue_len(&local->skb_queue_unreliable)) printk(KERN_WARNING "%s: skb_queue not empty\n", wiphy_name(local->hw.wiphy)); skb_queue_purge(&local->skb_queue); skb_queue_purge(&local->skb_queue_unreliable); destroy_workqueue(local->hw.workqueue); wiphy_unregister(local->hw.wiphy); ieee80211_wep_free(local); ieee80211_led_exit(local); ieee80211_if_free(local->mdev); local->mdev = NULL; } EXPORT_SYMBOL(ieee80211_unregister_hw); void ieee80211_free_hw(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); wiphy_free(local->hw.wiphy); } EXPORT_SYMBOL(ieee80211_free_hw); static int __init ieee80211_init(void) { struct sk_buff *skb; int ret; BUILD_BUG_ON(sizeof(struct ieee80211_tx_packet_data) > sizeof(skb->cb)); ret = rc80211_pid_init(); if (ret) goto out; ret = ieee80211_wme_register(); if (ret) { printk(KERN_DEBUG "ieee80211_init: failed to " "initialize WME (err=%d)\n", ret); goto out_cleanup_pid; } ieee80211_debugfs_netdev_init(); return 0; out_cleanup_pid: rc80211_pid_exit(); out: return ret; } static void __exit ieee80211_exit(void) { rc80211_pid_exit(); /* * For key todo, it'll be empty by now but the work * might still be scheduled. */ flush_scheduled_work(); if (mesh_allocated) ieee80211s_stop(); ieee80211_wme_unregister(); ieee80211_debugfs_netdev_exit(); } subsys_initcall(ieee80211_init); module_exit(ieee80211_exit); MODULE_DESCRIPTION("IEEE 802.11 subsystem"); MODULE_LICENSE("GPL");