/******************************************************************************* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. The full GNU General Public License is included in this distribution in the file called LICENSE. Contact Information: Linux NICS Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *******************************************************************************/ #include "e1000.h" /* Change Log * 6.0.58 4/20/05 * o Accepted ethtool cleanup patch from Stephen Hemminger * 6.0.44+ 2/15/05 * o applied Anton's patch to resolve tx hang in hardware * o Applied Andrew Mortons patch - e1000 stops working after resume */ char e1000_driver_name[] = "e1000"; static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; #ifndef CONFIG_E1000_NAPI #define DRIVERNAPI #else #define DRIVERNAPI "-NAPI" #endif #define DRV_VERSION "6.3.9-k2"DRIVERNAPI char e1000_driver_version[] = DRV_VERSION; static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation."; /* e1000_pci_tbl - PCI Device ID Table * * Last entry must be all 0s * * Macro expands to... * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} */ static struct pci_device_id e1000_pci_tbl[] = { INTEL_E1000_ETHERNET_DEVICE(0x1000), INTEL_E1000_ETHERNET_DEVICE(0x1001), INTEL_E1000_ETHERNET_DEVICE(0x1004), INTEL_E1000_ETHERNET_DEVICE(0x1008), INTEL_E1000_ETHERNET_DEVICE(0x1009), INTEL_E1000_ETHERNET_DEVICE(0x100C), INTEL_E1000_ETHERNET_DEVICE(0x100D), INTEL_E1000_ETHERNET_DEVICE(0x100E), INTEL_E1000_ETHERNET_DEVICE(0x100F), INTEL_E1000_ETHERNET_DEVICE(0x1010), INTEL_E1000_ETHERNET_DEVICE(0x1011), INTEL_E1000_ETHERNET_DEVICE(0x1012), INTEL_E1000_ETHERNET_DEVICE(0x1013), INTEL_E1000_ETHERNET_DEVICE(0x1014), INTEL_E1000_ETHERNET_DEVICE(0x1015), INTEL_E1000_ETHERNET_DEVICE(0x1016), INTEL_E1000_ETHERNET_DEVICE(0x1017), INTEL_E1000_ETHERNET_DEVICE(0x1018), INTEL_E1000_ETHERNET_DEVICE(0x1019), INTEL_E1000_ETHERNET_DEVICE(0x101A), INTEL_E1000_ETHERNET_DEVICE(0x101D), INTEL_E1000_ETHERNET_DEVICE(0x101E), INTEL_E1000_ETHERNET_DEVICE(0x1026), INTEL_E1000_ETHERNET_DEVICE(0x1027), INTEL_E1000_ETHERNET_DEVICE(0x1028), INTEL_E1000_ETHERNET_DEVICE(0x105E), INTEL_E1000_ETHERNET_DEVICE(0x105F), INTEL_E1000_ETHERNET_DEVICE(0x1060), INTEL_E1000_ETHERNET_DEVICE(0x1075), INTEL_E1000_ETHERNET_DEVICE(0x1076), INTEL_E1000_ETHERNET_DEVICE(0x1077), INTEL_E1000_ETHERNET_DEVICE(0x1078), INTEL_E1000_ETHERNET_DEVICE(0x1079), INTEL_E1000_ETHERNET_DEVICE(0x107A), INTEL_E1000_ETHERNET_DEVICE(0x107B), INTEL_E1000_ETHERNET_DEVICE(0x107C), INTEL_E1000_ETHERNET_DEVICE(0x107D), INTEL_E1000_ETHERNET_DEVICE(0x107E), INTEL_E1000_ETHERNET_DEVICE(0x107F), INTEL_E1000_ETHERNET_DEVICE(0x108A), INTEL_E1000_ETHERNET_DEVICE(0x108B), INTEL_E1000_ETHERNET_DEVICE(0x108C), INTEL_E1000_ETHERNET_DEVICE(0x109A), /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); int e1000_up(struct e1000_adapter *adapter); void e1000_down(struct e1000_adapter *adapter); void e1000_reset(struct e1000_adapter *adapter); int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); void e1000_free_all_tx_resources(struct e1000_adapter *adapter); void e1000_free_all_rx_resources(struct e1000_adapter *adapter); static int e1000_setup_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *txdr); static int e1000_setup_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rxdr); static void e1000_free_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring); static void e1000_free_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); void e1000_update_stats(struct e1000_adapter *adapter); /* Local Function Prototypes */ static int e1000_init_module(void); static void e1000_exit_module(void); static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); static void __devexit e1000_remove(struct pci_dev *pdev); static int e1000_alloc_queues(struct e1000_adapter *adapter); #ifdef CONFIG_E1000_MQ static void e1000_setup_queue_mapping(struct e1000_adapter *adapter); #endif static int e1000_sw_init(struct e1000_adapter *adapter); static int e1000_open(struct net_device *netdev); static int e1000_close(struct net_device *netdev); static void e1000_configure_tx(struct e1000_adapter *adapter); static void e1000_configure_rx(struct e1000_adapter *adapter); static void e1000_setup_rctl(struct e1000_adapter *adapter); static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); static void e1000_clean_tx_ring(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring); static void e1000_clean_rx_ring(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); static void e1000_set_multi(struct net_device *netdev); static void e1000_update_phy_info(unsigned long data); static void e1000_watchdog(unsigned long data); static void e1000_watchdog_task(struct e1000_adapter *adapter); static void e1000_82547_tx_fifo_stall(unsigned long data); static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); static struct net_device_stats * e1000_get_stats(struct net_device *netdev); static int e1000_change_mtu(struct net_device *netdev, int new_mtu); static int e1000_set_mac(struct net_device *netdev, void *p); static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs); static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring); #ifdef CONFIG_E1000_NAPI static int e1000_clean(struct net_device *poll_dev, int *budget); static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do); static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do); #else static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); #endif static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); void e1000_set_ethtool_ops(struct net_device *netdev); static void e1000_enter_82542_rst(struct e1000_adapter *adapter); static void e1000_leave_82542_rst(struct e1000_adapter *adapter); static void e1000_tx_timeout(struct net_device *dev); static void e1000_tx_timeout_task(struct net_device *dev); static void e1000_smartspeed(struct e1000_adapter *adapter); static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb); static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); static void e1000_restore_vlan(struct e1000_adapter *adapter); #ifdef CONFIG_PM static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); static int e1000_resume(struct pci_dev *pdev); #endif #ifdef CONFIG_NET_POLL_CONTROLLER /* for netdump / net console */ static void e1000_netpoll (struct net_device *netdev); #endif #ifdef CONFIG_E1000_MQ /* for multiple Rx queues */ void e1000_rx_schedule(void *data); #endif /* Exported from other modules */ extern void e1000_check_options(struct e1000_adapter *adapter); static struct pci_driver e1000_driver = { .name = e1000_driver_name, .id_table = e1000_pci_tbl, .probe = e1000_probe, .remove = __devexit_p(e1000_remove), /* Power Managment Hooks */ #ifdef CONFIG_PM .suspend = e1000_suspend, .resume = e1000_resume #endif }; MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); /** * e1000_init_module - Driver Registration Routine * * e1000_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init e1000_init_module(void) { int ret; printk(KERN_INFO "%s - version %s\n", e1000_driver_string, e1000_driver_version); printk(KERN_INFO "%s\n", e1000_copyright); ret = pci_module_init(&e1000_driver); return ret; } module_init(e1000_init_module); /** * e1000_exit_module - Driver Exit Cleanup Routine * * e1000_exit_module is called just before the driver is removed * from memory. **/ static void __exit e1000_exit_module(void) { pci_unregister_driver(&e1000_driver); } module_exit(e1000_exit_module); /** * e1000_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static inline void e1000_irq_disable(struct e1000_adapter *adapter) { atomic_inc(&adapter->irq_sem); E1000_WRITE_REG(&adapter->hw, IMC, ~0); E1000_WRITE_FLUSH(&adapter->hw); synchronize_irq(adapter->pdev->irq); } /** * e1000_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static inline void e1000_irq_enable(struct e1000_adapter *adapter) { if(likely(atomic_dec_and_test(&adapter->irq_sem))) { E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); E1000_WRITE_FLUSH(&adapter->hw); } } static void e1000_update_mng_vlan(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; uint16_t vid = adapter->hw.mng_cookie.vlan_id; uint16_t old_vid = adapter->mng_vlan_id; if(adapter->vlgrp) { if(!adapter->vlgrp->vlan_devices[vid]) { if(adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { e1000_vlan_rx_add_vid(netdev, vid); adapter->mng_vlan_id = vid; } else adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) && (vid != old_vid) && !adapter->vlgrp->vlan_devices[old_vid]) e1000_vlan_rx_kill_vid(netdev, old_vid); } } } /** * e1000_release_hw_control - release control of the h/w to f/w * @adapter: address of board private structure * * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. For AMT version (only with 82573) i * of the f/w this means that the netowrk i/f is closed. * **/ static inline void e1000_release_hw_control(struct e1000_adapter *adapter) { uint32_t ctrl_ext; uint32_t swsm; /* Let firmware taken over control of h/w */ switch (adapter->hw.mac_type) { case e1000_82571: case e1000_82572: ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); break; case e1000_82573: swsm = E1000_READ_REG(&adapter->hw, SWSM); E1000_WRITE_REG(&adapter->hw, SWSM, swsm & ~E1000_SWSM_DRV_LOAD); default: break; } } /** * e1000_get_hw_control - get control of the h/w from f/w * @adapter: address of board private structure * * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is loaded. For AMT version (only with 82573) * of the f/w this means that the netowrk i/f is open. * **/ static inline void e1000_get_hw_control(struct e1000_adapter *adapter) { uint32_t ctrl_ext; uint32_t swsm; /* Let firmware know the driver has taken over */ switch (adapter->hw.mac_type) { case e1000_82571: case e1000_82572: ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); break; case e1000_82573: swsm = E1000_READ_REG(&adapter->hw, SWSM); E1000_WRITE_REG(&adapter->hw, SWSM, swsm | E1000_SWSM_DRV_LOAD); break; default: break; } } int e1000_up(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i, err; /* hardware has been reset, we need to reload some things */ /* Reset the PHY if it was previously powered down */ if(adapter->hw.media_type == e1000_media_type_copper) { uint16_t mii_reg; e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); if(mii_reg & MII_CR_POWER_DOWN) e1000_phy_reset(&adapter->hw); } e1000_set_multi(netdev); e1000_restore_vlan(adapter); e1000_configure_tx(adapter); e1000_setup_rctl(adapter); e1000_configure_rx(adapter); for (i = 0; i < adapter->num_rx_queues; i++) { adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]); } #ifdef CONFIG_PCI_MSI if(adapter->hw.mac_type > e1000_82547_rev_2) { adapter->have_msi = TRUE; if((err = pci_enable_msi(adapter->pdev))) { DPRINTK(PROBE, ERR, "Unable to allocate MSI interrupt Error: %d\n", err); adapter->have_msi = FALSE; } } #endif if((err = request_irq(adapter->pdev->irq, &e1000_intr, SA_SHIRQ | SA_SAMPLE_RANDOM, netdev->name, netdev))) { DPRINTK(PROBE, ERR, "Unable to allocate interrupt Error: %d\n", err); return err; } #ifdef CONFIG_E1000_MQ e1000_setup_queue_mapping(adapter); #endif adapter->tx_queue_len = netdev->tx_queue_len; mod_timer(&adapter->watchdog_timer, jiffies); #ifdef CONFIG_E1000_NAPI netif_poll_enable(netdev); #endif e1000_irq_enable(adapter); return 0; } void e1000_down(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) && e1000_check_mng_mode(&adapter->hw); e1000_irq_disable(adapter); #ifdef CONFIG_E1000_MQ while (atomic_read(&adapter->rx_sched_call_data.count) != 0); #endif free_irq(adapter->pdev->irq, netdev); #ifdef CONFIG_PCI_MSI if(adapter->hw.mac_type > e1000_82547_rev_2 && adapter->have_msi == TRUE) pci_disable_msi(adapter->pdev); #endif del_timer_sync(&adapter->tx_fifo_stall_timer); del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_info_timer); #ifdef CONFIG_E1000_NAPI netif_poll_disable(netdev); #endif netdev->tx_queue_len = adapter->tx_queue_len; adapter->link_speed = 0; adapter->link_duplex = 0; netif_carrier_off(netdev); netif_stop_queue(netdev); e1000_reset(adapter); e1000_clean_all_tx_rings(adapter); e1000_clean_all_rx_rings(adapter); /* Power down the PHY so no link is implied when interface is down * * The PHY cannot be powered down if any of the following is TRUE * * (a) WoL is enabled * (b) AMT is active * (c) SoL/IDER session is active */ if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && adapter->hw.media_type == e1000_media_type_copper && !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && !mng_mode_enabled && !e1000_check_phy_reset_block(&adapter->hw)) { uint16_t mii_reg; e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); mii_reg |= MII_CR_POWER_DOWN; e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); mdelay(1); } } void e1000_reset(struct e1000_adapter *adapter) { uint32_t pba, manc; uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF; /* Repartition Pba for greater than 9k mtu * To take effect CTRL.RST is required. */ switch (adapter->hw.mac_type) { case e1000_82547: case e1000_82547_rev_2: pba = E1000_PBA_30K; break; case e1000_82571: case e1000_82572: pba = E1000_PBA_38K; break; case e1000_82573: pba = E1000_PBA_12K; break; default: pba = E1000_PBA_48K; break; } if((adapter->hw.mac_type != e1000_82573) && (adapter->netdev->mtu > E1000_RXBUFFER_8192)) pba -= 8; /* allocate more FIFO for Tx */ if(adapter->hw.mac_type == e1000_82547) { adapter->tx_fifo_head = 0; adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; adapter->tx_fifo_size = (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; atomic_set(&adapter->tx_fifo_stall, 0); } E1000_WRITE_REG(&adapter->hw, PBA, pba); /* flow control settings */ /* Set the FC high water mark to 90% of the FIFO size. * Required to clear last 3 LSB */ fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; adapter->hw.fc_high_water = fc_high_water_mark; adapter->hw.fc_low_water = fc_high_water_mark - 8; adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; adapter->hw.fc_send_xon = 1; adapter->hw.fc = adapter->hw.original_fc; /* Allow time for pending master requests to run */ e1000_reset_hw(&adapter->hw); if(adapter->hw.mac_type >= e1000_82544) E1000_WRITE_REG(&adapter->hw, WUC, 0); if(e1000_init_hw(&adapter->hw)) DPRINTK(PROBE, ERR, "Hardware Error\n"); e1000_update_mng_vlan(adapter); /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); e1000_reset_adaptive(&adapter->hw); e1000_phy_get_info(&adapter->hw, &adapter->phy_info); if (adapter->en_mng_pt) { manc = E1000_READ_REG(&adapter->hw, MANC); manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); E1000_WRITE_REG(&adapter->hw, MANC, manc); } } /** * e1000_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in e1000_pci_tbl * * Returns 0 on success, negative on failure * * e1000_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int __devinit e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct e1000_adapter *adapter; unsigned long mmio_start, mmio_len; static int cards_found = 0; int i, err, pci_using_dac; uint16_t eeprom_data; uint16_t eeprom_apme_mask = E1000_EEPROM_APME; if((err = pci_enable_device(pdev))) return err; if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { pci_using_dac = 1; } else { if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { E1000_ERR("No usable DMA configuration, aborting\n"); return err; } pci_using_dac = 0; } if((err = pci_request_regions(pdev, e1000_driver_name))) return err; pci_set_master(pdev); netdev = alloc_etherdev(sizeof(struct e1000_adapter)); if(!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_MODULE_OWNER(netdev); SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.back = adapter; adapter->msg_enable = (1 << debug) - 1; mmio_start = pci_resource_start(pdev, BAR_0); mmio_len = pci_resource_len(pdev, BAR_0); adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); if(!adapter->hw.hw_addr) { err = -EIO; goto err_ioremap; } for(i = BAR_1; i <= BAR_5; i++) { if(pci_resource_len(pdev, i) == 0) continue; if(pci_resource_flags(pdev, i) & IORESOURCE_IO) { adapter->hw.io_base = pci_resource_start(pdev, i); break; } } netdev->open = &e1000_open; netdev->stop = &e1000_close; netdev->hard_start_xmit = &e1000_xmit_frame; netdev->get_stats = &e1000_get_stats; netdev->set_multicast_list = &e1000_set_multi; netdev->set_mac_address = &e1000_set_mac; netdev->change_mtu = &e1000_change_mtu; netdev->do_ioctl = &e1000_ioctl; e1000_set_ethtool_ops(netdev); netdev->tx_timeout = &e1000_tx_timeout; netdev->watchdog_timeo = 5 * HZ; #ifdef CONFIG_E1000_NAPI netdev->poll = &e1000_clean; netdev->weight = 64; #endif netdev->vlan_rx_register = e1000_vlan_rx_register; netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; #ifdef CONFIG_NET_POLL_CONTROLLER netdev->poll_controller = e1000_netpoll; #endif strcpy(netdev->name, pci_name(pdev)); netdev->mem_start = mmio_start; netdev->mem_end = mmio_start + mmio_len; netdev->base_addr = adapter->hw.io_base; adapter->bd_number = cards_found; /* setup the private structure */ if((err = e1000_sw_init(adapter))) goto err_sw_init; if((err = e1000_check_phy_reset_block(&adapter->hw))) DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); if(adapter->hw.mac_type >= e1000_82543) { netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER; } #ifdef NETIF_F_TSO if((adapter->hw.mac_type >= e1000_82544) && (adapter->hw.mac_type != e1000_82547)) netdev->features |= NETIF_F_TSO; #ifdef NETIF_F_TSO_IPV6 if(adapter->hw.mac_type > e1000_82547_rev_2) netdev->features |= NETIF_F_TSO_IPV6; #endif #endif if(pci_using_dac) netdev->features |= NETIF_F_HIGHDMA; /* hard_start_xmit is safe against parallel locking */ netdev->features |= NETIF_F_LLTX; adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); /* before reading the EEPROM, reset the controller to * put the device in a known good starting state */ e1000_reset_hw(&adapter->hw); /* make sure the EEPROM is good */ if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) { DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); err = -EIO; goto err_eeprom; } /* copy the MAC address out of the EEPROM */ if(e1000_read_mac_addr(&adapter->hw)) DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); if(!is_valid_ether_addr(netdev->perm_addr)) { DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); err = -EIO; goto err_eeprom; } e1000_read_part_num(&adapter->hw, &(adapter->part_num)); e1000_get_bus_info(&adapter->hw); init_timer(&adapter->tx_fifo_stall_timer); adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; adapter->tx_fifo_stall_timer.data = (unsigned long) adapter; init_timer(&adapter->watchdog_timer); adapter->watchdog_timer.function = &e1000_watchdog; adapter->watchdog_timer.data = (unsigned long) adapter; INIT_WORK(&adapter->watchdog_task, (void (*)(void *))e1000_watchdog_task, adapter); init_timer(&adapter->phy_info_timer); adapter->phy_info_timer.function = &e1000_update_phy_info; adapter->phy_info_timer.data = (unsigned long) adapter; INIT_WORK(&adapter->tx_timeout_task, (void (*)(void *))e1000_tx_timeout_task, netdev); /* we're going to reset, so assume we have no link for now */ netif_carrier_off(netdev); netif_stop_queue(netdev); e1000_check_options(adapter); /* Initial Wake on LAN setting * If APM wake is enabled in the EEPROM, * enable the ACPI Magic Packet filter */ switch(adapter->hw.mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: break; case e1000_82544: e1000_read_eeprom(&adapter->hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); eeprom_apme_mask = E1000_EEPROM_82544_APM; break; case e1000_82546: case e1000_82546_rev_3: case e1000_82571: if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1) && (adapter->hw.media_type == e1000_media_type_copper)) { e1000_read_eeprom(&adapter->hw, EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); break; } /* Fall Through */ default: e1000_read_eeprom(&adapter->hw, EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; } if(eeprom_data & eeprom_apme_mask) adapter->wol |= E1000_WUFC_MAG; /* reset the hardware with the new settings */ e1000_reset(adapter); /* If the controller is 82573 and f/w is AMT, do not set * DRV_LOAD until the interface is up. For all other cases, * let the f/w know that the h/w is now under the control * of the driver. */ if (adapter->hw.mac_type != e1000_82573 || !e1000_check_mng_mode(&adapter->hw)) e1000_get_hw_control(adapter); strcpy(netdev->name, "eth%d"); if((err = register_netdev(netdev))) goto err_register; DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); cards_found++; return 0; err_register: err_sw_init: err_eeprom: iounmap(adapter->hw.hw_addr); err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); return err; } /** * e1000_remove - Device Removal Routine * @pdev: PCI device information struct * * e1000_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void __devexit e1000_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); uint32_t manc; #ifdef CONFIG_E1000_NAPI int i; #endif flush_scheduled_work(); if(adapter->hw.mac_type >= e1000_82540 && adapter->hw.media_type == e1000_media_type_copper) { manc = E1000_READ_REG(&adapter->hw, MANC); if(manc & E1000_MANC_SMBUS_EN) { manc |= E1000_MANC_ARP_EN; E1000_WRITE_REG(&adapter->hw, MANC, manc); } } /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ e1000_release_hw_control(adapter); unregister_netdev(netdev); #ifdef CONFIG_E1000_NAPI for (i = 0; i < adapter->num_rx_queues; i++) __dev_put(&adapter->polling_netdev[i]); #endif if(!e1000_check_phy_reset_block(&adapter->hw)) e1000_phy_hw_reset(&adapter->hw); kfree(adapter->tx_ring); kfree(adapter->rx_ring); #ifdef CONFIG_E1000_NAPI kfree(adapter->polling_netdev); #endif iounmap(adapter->hw.hw_addr); pci_release_regions(pdev); #ifdef CONFIG_E1000_MQ free_percpu(adapter->cpu_netdev); free_percpu(adapter->cpu_tx_ring); #endif free_netdev(netdev); pci_disable_device(pdev); } /** * e1000_sw_init - Initialize general software structures (struct e1000_adapter) * @adapter: board private structure to initialize * * e1000_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int __devinit e1000_sw_init(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; #ifdef CONFIG_E1000_NAPI int i; #endif /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); adapter->rx_buffer_len = E1000_RXBUFFER_2048; adapter->rx_ps_bsize0 = E1000_RXBUFFER_256; hw->max_frame_size = netdev->mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; /* identify the MAC */ if(e1000_set_mac_type(hw)) { DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); return -EIO; } /* initialize eeprom parameters */ if(e1000_init_eeprom_params(hw)) { E1000_ERR("EEPROM initialization failed\n"); return -EIO; } switch(hw->mac_type) { default: break; case e1000_82541: case e1000_82547: case e1000_82541_rev_2: case e1000_82547_rev_2: hw->phy_init_script = 1; break; } e1000_set_media_type(hw); hw->wait_autoneg_complete = FALSE; hw->tbi_compatibility_en = TRUE; hw->adaptive_ifs = TRUE; /* Copper options */ if(hw->media_type == e1000_media_type_copper) { hw->mdix = AUTO_ALL_MODES; hw->disable_polarity_correction = FALSE; hw->master_slave = E1000_MASTER_SLAVE; } #ifdef CONFIG_E1000_MQ /* Number of supported queues */ switch (hw->mac_type) { case e1000_82571: case e1000_82572: /* These controllers support 2 tx queues, but with a single * qdisc implementation, multiple tx queues aren't quite as * interesting. If we can find a logical way of mapping * flows to a queue, then perhaps we can up the num_tx_queue * count back to its default. Until then, we run the risk of * terrible performance due to SACK overload. */ adapter->num_tx_queues = 1; adapter->num_rx_queues = 2; break; default: adapter->num_tx_queues = 1; adapter->num_rx_queues = 1; break; } adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus()); adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus()); DPRINTK(DRV, INFO, "Multiqueue Enabled: Rx Queue count = %u %s\n", adapter->num_rx_queues, ((adapter->num_rx_queues == 1) ? ((num_online_cpus() > 1) ? "(due to unsupported feature in current adapter)" : "(due to unsupported system configuration)") : "")); DPRINTK(DRV, INFO, "Multiqueue Enabled: Tx Queue count = %u\n", adapter->num_tx_queues); #else adapter->num_tx_queues = 1; adapter->num_rx_queues = 1; #endif if (e1000_alloc_queues(adapter)) { DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); return -ENOMEM; } #ifdef CONFIG_E1000_NAPI for (i = 0; i < adapter->num_rx_queues; i++) { adapter->polling_netdev[i].priv = adapter; adapter->polling_netdev[i].poll = &e1000_clean; adapter->polling_netdev[i].weight = 64; dev_hold(&adapter->polling_netdev[i]); set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); } spin_lock_init(&adapter->tx_queue_lock); #endif atomic_set(&adapter->irq_sem, 1); spin_lock_init(&adapter->stats_lock); return 0; } /** * e1000_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * * We allocate one ring per queue at run-time since we don't know the * number of queues at compile-time. The polling_netdev array is * intended for Multiqueue, but should work fine with a single queue. **/ static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) { int size; size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; adapter->tx_ring = kmalloc(size, GFP_KERNEL); if (!adapter->tx_ring) return -ENOMEM; memset(adapter->tx_ring, 0, size); size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; adapter->rx_ring = kmalloc(size, GFP_KERNEL); if (!adapter->rx_ring) { kfree(adapter->tx_ring); return -ENOMEM; } memset(adapter->rx_ring, 0, size); #ifdef CONFIG_E1000_NAPI size = sizeof(struct net_device) * adapter->num_rx_queues; adapter->polling_netdev = kmalloc(size, GFP_KERNEL); if (!adapter->polling_netdev) { kfree(adapter->tx_ring); kfree(adapter->rx_ring); return -ENOMEM; } memset(adapter->polling_netdev, 0, size); #endif #ifdef CONFIG_E1000_MQ adapter->rx_sched_call_data.func = e1000_rx_schedule; adapter->rx_sched_call_data.info = adapter->netdev; adapter->cpu_netdev = alloc_percpu(struct net_device *); adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *); #endif return E1000_SUCCESS; } #ifdef CONFIG_E1000_MQ static void __devinit e1000_setup_queue_mapping(struct e1000_adapter *adapter) { int i, cpu; adapter->rx_sched_call_data.func = e1000_rx_schedule; adapter->rx_sched_call_data.info = adapter->netdev; cpus_clear(adapter->rx_sched_call_data.cpumask); adapter->cpu_netdev = alloc_percpu(struct net_device *); adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *); lock_cpu_hotplug(); i = 0; for_each_online_cpu(cpu) { *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_tx_queues]; /* This is incomplete because we'd like to assign separate * physical cpus to these netdev polling structures and * avoid saturating a subset of cpus. */ if (i < adapter->num_rx_queues) { *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i]; adapter->rx_ring[i].cpu = cpu; cpu_set(cpu, adapter->cpumask); } else *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL; i++; } unlock_cpu_hotplug(); } #endif /** * e1000_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ static int e1000_open(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); int err; /* allocate transmit descriptors */ if ((err = e1000_setup_all_tx_resources(adapter))) goto err_setup_tx; /* allocate receive descriptors */ if ((err = e1000_setup_all_rx_resources(adapter))) goto err_setup_rx; if((err = e1000_up(adapter))) goto err_up; adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; if((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { e1000_update_mng_vlan(adapter); } /* If AMT is enabled, let the firmware know that the network * interface is now open */ if (adapter->hw.mac_type == e1000_82573 && e1000_check_mng_mode(&adapter->hw)) e1000_get_hw_control(adapter); return E1000_SUCCESS; err_up: e1000_free_all_rx_resources(adapter); err_setup_rx: e1000_free_all_tx_resources(adapter); err_setup_tx: e1000_reset(adapter); return err; } /** * e1000_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ static int e1000_close(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); e1000_down(adapter); e1000_free_all_tx_resources(adapter); e1000_free_all_rx_resources(adapter); if((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); } /* If AMT is enabled, let the firmware know that the network * interface is now closed */ if (adapter->hw.mac_type == e1000_82573 && e1000_check_mng_mode(&adapter->hw)) e1000_release_hw_control(adapter); return 0; } /** * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary * @adapter: address of board private structure * @start: address of beginning of memory * @len: length of memory **/ static inline boolean_t e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, unsigned long len) { unsigned long begin = (unsigned long) start; unsigned long end = begin + len; /* First rev 82545 and 82546 need to not allow any memory * write location to cross 64k boundary due to errata 23 */ if (adapter->hw.mac_type == e1000_82545 || adapter->hw.mac_type == e1000_82546) { return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; } return TRUE; } /** * e1000_setup_tx_resources - allocate Tx resources (Descriptors) * @adapter: board private structure * @txdr: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ static int e1000_setup_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *txdr) { struct pci_dev *pdev = adapter->pdev; int size; size = sizeof(struct e1000_buffer) * txdr->count; txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus)); if(!txdr->buffer_info) { DPRINTK(PROBE, ERR, "Unable to allocate memory for the transmit descriptor ring\n"); return -ENOMEM; } memset(txdr->buffer_info, 0, size); /* round up to nearest 4K */ txdr->size = txdr->count * sizeof(struct e1000_tx_desc); E1000_ROUNDUP(txdr->size, 4096); txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); if(!txdr->desc) { setup_tx_desc_die: vfree(txdr->buffer_info); DPRINTK(PROBE, ERR, "Unable to allocate memory for the transmit descriptor ring\n"); return -ENOMEM; } /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { void *olddesc = txdr->desc; dma_addr_t olddma = txdr->dma; DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " "at %p\n", txdr->size, txdr->desc); /* Try again, without freeing the previous */ txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); if(!txdr->desc) { /* Failed allocation, critical failure */ pci_free_consistent(pdev, txdr->size, olddesc, olddma); goto setup_tx_desc_die; } if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { /* give up */ pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); pci_free_consistent(pdev, txdr->size, olddesc, olddma); DPRINTK(PROBE, ERR, "Unable to allocate aligned memory " "for the transmit descriptor ring\n"); vfree(txdr->buffer_info); return -ENOMEM; } else { /* Free old allocation, new allocation was successful */ pci_free_consistent(pdev, txdr->size, olddesc, olddma); } } memset(txdr->desc, 0, txdr->size); txdr->next_to_use = 0; txdr->next_to_clean = 0; spin_lock_init(&txdr->tx_lock); return 0; } /** * e1000_setup_all_tx_resources - wrapper to allocate Tx resources * (Descriptors) for all queues * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_tx_queues; i++) { err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); if (err) { DPRINTK(PROBE, ERR, "Allocation for Tx Queue %u failed\n", i); break; } } return err; } /** * e1000_configure_tx - Configure 8254x Transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void e1000_configure_tx(struct e1000_adapter *adapter) { uint64_t tdba; struct e1000_hw *hw = &adapter->hw; uint32_t tdlen, tctl, tipg, tarc; uint32_t ipgr1, ipgr2; /* Setup the HW Tx Head and Tail descriptor pointers */ switch (adapter->num_tx_queues) { case 2: tdba = adapter->tx_ring[1].dma; tdlen = adapter->tx_ring[1].count * sizeof(struct e1000_tx_desc); E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL)); E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32)); E1000_WRITE_REG(hw, TDLEN1, tdlen); E1000_WRITE_REG(hw, TDH1, 0); E1000_WRITE_REG(hw, TDT1, 0); adapter->tx_ring[1].tdh = E1000_TDH1; adapter->tx_ring[1].tdt = E1000_TDT1; /* Fall Through */ case 1: default: tdba = adapter->tx_ring[0].dma; tdlen = adapter->tx_ring[0].count * sizeof(struct e1000_tx_desc); E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); E1000_WRITE_REG(hw, TDLEN, tdlen); E1000_WRITE_REG(hw, TDH, 0); E1000_WRITE_REG(hw, TDT, 0); adapter->tx_ring[0].tdh = E1000_TDH; adapter->tx_ring[0].tdt = E1000_TDT; break; } /* Set the default values for the Tx Inter Packet Gap timer */ if (hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes) tipg = DEFAULT_82543_TIPG_IPGT_FIBER; else tipg = DEFAULT_82543_TIPG_IPGT_COPPER; switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: tipg = DEFAULT_82542_TIPG_IPGT; ipgr1 = DEFAULT_82542_TIPG_IPGR1; ipgr2 = DEFAULT_82542_TIPG_IPGR2; break; default: ipgr1 = DEFAULT_82543_TIPG_IPGR1; ipgr2 = DEFAULT_82543_TIPG_IPGR2; break; } tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; E1000_WRITE_REG(hw, TIPG, tipg); /* Set the Tx Interrupt Delay register */ E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); if (hw->mac_type >= e1000_82540) E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); /* Program the Transmit Control Register */ tctl = E1000_READ_REG(hw, TCTL); tctl &= ~E1000_TCTL_CT; tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); E1000_WRITE_REG(hw, TCTL, tctl); if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { tarc = E1000_READ_REG(hw, TARC0); tarc |= ((1 << 25) | (1 << 21)); E1000_WRITE_REG(hw, TARC0, tarc); tarc = E1000_READ_REG(hw, TARC1); tarc |= (1 << 25); if (tctl & E1000_TCTL_MULR) tarc &= ~(1 << 28); else tarc |= (1 << 28); E1000_WRITE_REG(hw, TARC1, tarc); } e1000_config_collision_dist(hw); /* Setup Transmit Descriptor Settings for eop descriptor */ adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; if (hw->mac_type < e1000_82543) adapter->txd_cmd |= E1000_TXD_CMD_RPS; else adapter->txd_cmd |= E1000_TXD_CMD_RS; /* Cache if we're 82544 running in PCI-X because we'll * need this to apply a workaround later in the send path. */ if (hw->mac_type == e1000_82544 && hw->bus_type == e1000_bus_type_pcix) adapter->pcix_82544 = 1; } /** * e1000_setup_rx_resources - allocate Rx resources (Descriptors) * @adapter: board private structure * @rxdr: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ static int e1000_setup_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rxdr) { struct pci_dev *pdev = adapter->pdev; int size, desc_len; size = sizeof(struct e1000_buffer) * rxdr->count; rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus)); if (!rxdr->buffer_info) { DPRINTK(PROBE, ERR, "Unable to allocate memory for the receive descriptor ring\n"); return -ENOMEM; } memset(rxdr->buffer_info, 0, size); size = sizeof(struct e1000_ps_page) * rxdr->count; rxdr->ps_page = kmalloc(size, GFP_KERNEL); if(!rxdr->ps_page) { vfree(rxdr->buffer_info); DPRINTK(PROBE, ERR, "Unable to allocate memory for the receive descriptor ring\n"); return -ENOMEM; } memset(rxdr->ps_page, 0, size); size = sizeof(struct e1000_ps_page_dma) * rxdr->count; rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL); if(!rxdr->ps_page_dma) { vfree(rxdr->buffer_info); kfree(rxdr->ps_page); DPRINTK(PROBE, ERR, "Unable to allocate memory for the receive descriptor ring\n"); return -ENOMEM; } memset(rxdr->ps_page_dma, 0, size); if(adapter->hw.mac_type <= e1000_82547_rev_2) desc_len = sizeof(struct e1000_rx_desc); else desc_len = sizeof(union e1000_rx_desc_packet_split); /* Round up to nearest 4K */ rxdr->size = rxdr->count * desc_len; E1000_ROUNDUP(rxdr->size, 4096); rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); if (!rxdr->desc) { DPRINTK(PROBE, ERR, "Unable to allocate memory for the receive descriptor ring\n"); setup_rx_desc_die: vfree(rxdr->buffer_info); kfree(rxdr->ps_page); kfree(rxdr->ps_page_dma); return -ENOMEM; } /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { void *olddesc = rxdr->desc; dma_addr_t olddma = rxdr->dma; DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " "at %p\n", rxdr->size, rxdr->desc); /* Try again, without freeing the previous */ rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); /* Failed allocation, critical failure */ if (!rxdr->desc) { pci_free_consistent(pdev, rxdr->size, olddesc, olddma); DPRINTK(PROBE, ERR, "Unable to allocate memory " "for the receive descriptor ring\n"); goto setup_rx_desc_die; } if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { /* give up */ pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); pci_free_consistent(pdev, rxdr->size, olddesc, olddma); DPRINTK(PROBE, ERR, "Unable to allocate aligned memory " "for the receive descriptor ring\n"); goto setup_rx_desc_die; } else { /* Free old allocation, new allocation was successful */ pci_free_consistent(pdev, rxdr->size, olddesc, olddma); } } memset(rxdr->desc, 0, rxdr->size); rxdr->next_to_clean = 0; rxdr->next_to_use = 0; rxdr->rx_skb_top = NULL; rxdr->rx_skb_prev = NULL; return 0; } /** * e1000_setup_all_rx_resources - wrapper to allocate Rx resources * (Descriptors) for all queues * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); if (err) { DPRINTK(PROBE, ERR, "Allocation for Rx Queue %u failed\n", i); break; } } return err; } /** * e1000_setup_rctl - configure the receive control registers * @adapter: Board private structure **/ #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) static void e1000_setup_rctl(struct e1000_adapter *adapter) { uint32_t rctl, rfctl; uint32_t psrctl = 0; #ifdef CONFIG_E1000_PACKET_SPLIT uint32_t pages = 0; #endif rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); if (adapter->hw.mac_type > e1000_82543) rctl |= E1000_RCTL_SECRC; if (adapter->hw.tbi_compatibility_on == 1) rctl |= E1000_RCTL_SBP; else rctl &= ~E1000_RCTL_SBP; if (adapter->netdev->mtu <= ETH_DATA_LEN) rctl &= ~E1000_RCTL_LPE; else rctl |= E1000_RCTL_LPE; /* Setup buffer sizes */ if(adapter->hw.mac_type >= e1000_82571) { /* We can now specify buffers in 1K increments. * BSIZE and BSEX are ignored in this case. */ rctl |= adapter->rx_buffer_len << 0x11; } else { rctl &= ~E1000_RCTL_SZ_4096; rctl |= E1000_RCTL_BSEX; switch (adapter->rx_buffer_len) { case E1000_RXBUFFER_2048: default: rctl |= E1000_RCTL_SZ_2048; rctl &= ~E1000_RCTL_BSEX; break; case E1000_RXBUFFER_4096: rctl |= E1000_RCTL_SZ_4096; break; case E1000_RXBUFFER_8192: rctl |= E1000_RCTL_SZ_8192; break; case E1000_RXBUFFER_16384: rctl |= E1000_RCTL_SZ_16384; break; } } #ifdef CONFIG_E1000_PACKET_SPLIT /* 82571 and greater support packet-split where the protocol * header is placed in skb->data and the packet data is * placed in pages hanging off of skb_shinfo(skb)->nr_frags. * In the case of a non-split, skb->data is linearly filled, * followed by the page buffers. Therefore, skb->data is * sized to hold the largest protocol header. */ pages = PAGE_USE_COUNT(adapter->netdev->mtu); if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) && PAGE_SIZE <= 16384) adapter->rx_ps_pages = pages; else adapter->rx_ps_pages = 0; #endif if (adapter->rx_ps_pages) { /* Configure extra packet-split registers */ rfctl = E1000_READ_REG(&adapter->hw, RFCTL); rfctl |= E1000_RFCTL_EXTEN; /* disable IPv6 packet split support */ rfctl |= E1000_RFCTL_IPV6_DIS; E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC; psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; switch (adapter->rx_ps_pages) { case 3: psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; case 2: psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; case 1: psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; break; } E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); } E1000_WRITE_REG(&adapter->hw, RCTL, rctl); } /** * e1000_configure_rx - Configure 8254x Receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void e1000_configure_rx(struct e1000_adapter *adapter) { uint64_t rdba; struct e1000_hw *hw = &adapter->hw; uint32_t rdlen, rctl, rxcsum, ctrl_ext; #ifdef CONFIG_E1000_MQ uint32_t reta, mrqc; int i; #endif if (adapter->rx_ps_pages) { rdlen = adapter->rx_ring[0].count * sizeof(union e1000_rx_desc_packet_split); adapter->clean_rx = e1000_clean_rx_irq_ps; adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; } else { rdlen = adapter->rx_ring[0].count * sizeof(struct e1000_rx_desc); adapter->clean_rx = e1000_clean_rx_irq; adapter->alloc_rx_buf = e1000_alloc_rx_buffers; } /* disable receives while setting up the descriptors */ rctl = E1000_READ_REG(hw, RCTL); E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); /* set the Receive Delay Timer Register */ E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); if (hw->mac_type >= e1000_82540) { E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); if(adapter->itr > 1) E1000_WRITE_REG(hw, ITR, 1000000000 / (adapter->itr * 256)); } if (hw->mac_type >= e1000_82571) { /* Reset delay timers after every interrupt */ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_CANC; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); } /* Setup the HW Rx Head and Tail Descriptor Pointers and * the Base and Length of the Rx Descriptor Ring */ switch (adapter->num_rx_queues) { #ifdef CONFIG_E1000_MQ case 2: rdba = adapter->rx_ring[1].dma; E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL)); E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32)); E1000_WRITE_REG(hw, RDLEN1, rdlen); E1000_WRITE_REG(hw, RDH1, 0); E1000_WRITE_REG(hw, RDT1, 0); adapter->rx_ring[1].rdh = E1000_RDH1; adapter->rx_ring[1].rdt = E1000_RDT1; /* Fall Through */ #endif case 1: default: rdba = adapter->rx_ring[0].dma; E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); E1000_WRITE_REG(hw, RDLEN, rdlen); E1000_WRITE_REG(hw, RDH, 0); E1000_WRITE_REG(hw, RDT, 0); adapter->rx_ring[0].rdh = E1000_RDH; adapter->rx_ring[0].rdt = E1000_RDT; break; } #ifdef CONFIG_E1000_MQ if (adapter->num_rx_queues > 1) { uint32_t random[10]; get_random_bytes(&random[0], 40); if (hw->mac_type <= e1000_82572) { E1000_WRITE_REG(hw, RSSIR, 0); E1000_WRITE_REG(hw, RSSIM, 0); } switch (adapter->num_rx_queues) { case 2: default: reta = 0x00800080; mrqc = E1000_MRQC_ENABLE_RSS_2Q; break; } /* Fill out redirection table */ for (i = 0; i < 32; i++) E1000_WRITE_REG_ARRAY(hw, RETA, i, reta); /* Fill out hash function seeds */ for (i = 0; i < 10; i++) E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]); mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP); E1000_WRITE_REG(hw, MRQC, mrqc); } /* Multiqueue and packet checksumming are mutually exclusive. */ if (hw->mac_type >= e1000_82571) { rxcsum = E1000_READ_REG(hw, RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; E1000_WRITE_REG(hw, RXCSUM, rxcsum); } #else /* Enable 82543 Receive Checksum Offload for TCP and UDP */ if (hw->mac_type >= e1000_82543) { rxcsum = E1000_READ_REG(hw, RXCSUM); if(adapter->rx_csum == TRUE) { rxcsum |= E1000_RXCSUM_TUOFL; /* Enable 82571 IPv4 payload checksum for UDP fragments * Must be used in conjunction with packet-split. */ if ((hw->mac_type >= e1000_82571) && (adapter->rx_ps_pages)) { rxcsum |= E1000_RXCSUM_IPPCSE; } } else { rxcsum &= ~E1000_RXCSUM_TUOFL; /* don't need to clear IPPCSE as it defaults to 0 */ } E1000_WRITE_REG(hw, RXCSUM, rxcsum); } #endif /* CONFIG_E1000_MQ */ if (hw->mac_type == e1000_82573) E1000_WRITE_REG(hw, ERT, 0x0100); /* Enable Receives */ E1000_WRITE_REG(hw, RCTL, rctl); } /** * e1000_free_tx_resources - Free Tx Resources per Queue * @adapter: board private structure * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ static void e1000_free_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { struct pci_dev *pdev = adapter->pdev; e1000_clean_tx_ring(adapter, tx_ring); vfree(tx_ring->buffer_info); tx_ring->buffer_info = NULL; pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * e1000_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ void e1000_free_all_tx_resources(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); } static inline void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, struct e1000_buffer *buffer_info) { if(buffer_info->dma) { pci_unmap_page(adapter->pdev, buffer_info->dma, buffer_info->length, PCI_DMA_TODEVICE); buffer_info->dma = 0; } if(buffer_info->skb) { dev_kfree_skb_any(buffer_info->skb); buffer_info->skb = NULL; } } /** * e1000_clean_tx_ring - Free Tx Buffers * @adapter: board private structure * @tx_ring: ring to be cleaned **/ static void e1000_clean_tx_ring(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { struct e1000_buffer *buffer_info; unsigned long size; unsigned int i; /* Free all the Tx ring sk_buffs */ for(i = 0; i < tx_ring->count; i++) { buffer_info = &tx_ring->buffer_info[i]; e1000_unmap_and_free_tx_resource(adapter, buffer_info); } size = sizeof(struct e1000_buffer) * tx_ring->count; memset(tx_ring->buffer_info, 0, size); /* Zero out the descriptor ring */ memset(tx_ring->desc, 0, tx_ring->size); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; tx_ring->last_tx_tso = 0; writel(0, adapter->hw.hw_addr + tx_ring->tdh); writel(0, adapter->hw.hw_addr + tx_ring->tdt); } /** * e1000_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure **/ static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); } /** * e1000_free_rx_resources - Free Rx Resources * @adapter: board private structure * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ static void e1000_free_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { struct pci_dev *pdev = adapter->pdev; e1000_clean_rx_ring(adapter, rx_ring); vfree(rx_ring->buffer_info); rx_ring->buffer_info = NULL; kfree(rx_ring->ps_page); rx_ring->ps_page = NULL; kfree(rx_ring->ps_page_dma); rx_ring->ps_page_dma = NULL; pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } /** * e1000_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ void e1000_free_all_rx_resources(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); } /** * e1000_clean_rx_ring - Free Rx Buffers per Queue * @adapter: board private structure * @rx_ring: ring to free buffers from **/ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { struct e1000_buffer *buffer_info; struct e1000_ps_page *ps_page; struct e1000_ps_page_dma *ps_page_dma; struct pci_dev *pdev = adapter->pdev; unsigned long size; unsigned int i, j; /* Free all the Rx ring sk_buffs */ for(i = 0; i < rx_ring->count; i++) { buffer_info = &rx_ring->buffer_info[i]; if(buffer_info->skb) { ps_page = &rx_ring->ps_page[i]; ps_page_dma = &rx_ring->ps_page_dma[i]; pci_unmap_single(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); dev_kfree_skb(buffer_info->skb); buffer_info->skb = NULL; } ps_page = &rx_ring->ps_page[i]; ps_page_dma = &rx_ring->ps_page_dma[i]; for (j = 0; j < adapter->rx_ps_pages; j++) { if (!ps_page->ps_page[j]) break; pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], PAGE_SIZE, PCI_DMA_FROMDEVICE); ps_page_dma->ps_page_dma[j] = 0; put_page(ps_page->ps_page[j]); ps_page->ps_page[j] = NULL; } } /* there also may be some cached data in our adapter */ if (rx_ring->rx_skb_top) { dev_kfree_skb(rx_ring->rx_skb_top); /* rx_skb_prev will be wiped out by rx_skb_top */ rx_ring->rx_skb_top = NULL; rx_ring->rx_skb_prev = NULL; } size = sizeof(struct e1000_buffer) * rx_ring->count; memset(rx_ring->buffer_info, 0, size); size = sizeof(struct e1000_ps_page) * rx_ring->count; memset(rx_ring->ps_page, 0, size); size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; memset(rx_ring->ps_page_dma, 0, size); /* Zero out the descriptor ring */ memset(rx_ring->desc, 0, rx_ring->size); rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; writel(0, adapter->hw.hw_addr + rx_ring->rdh); writel(0, adapter->hw.hw_addr + rx_ring->rdt); } /** * e1000_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure **/ static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); } /* The 82542 2.0 (revision 2) needs to have the receive unit in reset * and memory write and invalidate disabled for certain operations */ static void e1000_enter_82542_rst(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; uint32_t rctl; e1000_pci_clear_mwi(&adapter->hw); rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl |= E1000_RCTL_RST; E1000_WRITE_REG(&adapter->hw, RCTL, rctl); E1000_WRITE_FLUSH(&adapter->hw); mdelay(5); if(netif_running(netdev)) e1000_clean_all_rx_rings(adapter); } static void e1000_leave_82542_rst(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; uint32_t rctl; rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl &= ~E1000_RCTL_RST; E1000_WRITE_REG(&adapter->hw, RCTL, rctl); E1000_WRITE_FLUSH(&adapter->hw); mdelay(5); if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) e1000_pci_set_mwi(&adapter->hw); if(netif_running(netdev)) { e1000_configure_rx(adapter); e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]); } } /** * e1000_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int e1000_set_mac(struct net_device *netdev, void *p) { struct e1000_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; if(!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; /* 82542 2.0 needs to be in reset to write receive address registers */ if(adapter->hw.mac_type == e1000_82542_rev2_0) e1000_enter_82542_rst(adapter); memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); /* With 82571 controllers, LAA may be overwritten (with the default) * due to controller reset from the other port. */ if (adapter->hw.mac_type == e1000_82571) { /* activate the work around */ adapter->hw.laa_is_present = 1; /* Hold a copy of the LAA in RAR[14] This is done so that * between the time RAR[0] gets clobbered and the time it * gets fixed (in e1000_watchdog), the actual LAA is in one * of the RARs and no incoming packets directed to this port * are dropped. Eventaully the LAA will be in RAR[0] and * RAR[14] */ e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, E1000_RAR_ENTRIES - 1); } if(adapter->hw.mac_type == e1000_82542_rev2_0) e1000_leave_82542_rst(adapter); return 0; } /** * e1000_set_multi - Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_multi entry point is called whenever the multicast address * list or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper multicast, * promiscuous mode, and all-multi behavior. **/ static void e1000_set_multi(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct dev_mc_list *mc_ptr; uint32_t rctl; uint32_t hash_value; int i, rar_entries = E1000_RAR_ENTRIES; /* reserve RAR[14] for LAA over-write work-around */ if (adapter->hw.mac_type == e1000_82571) rar_entries--; /* Check for Promiscuous and All Multicast modes */ rctl = E1000_READ_REG(hw, RCTL); if(netdev->flags & IFF_PROMISC) { rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); } else if(netdev->flags & IFF_ALLMULTI) { rctl |= E1000_RCTL_MPE; rctl &= ~E1000_RCTL_UPE; } else { rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); } E1000_WRITE_REG(hw, RCTL, rctl); /* 82542 2.0 needs to be in reset to write receive address registers */ if(hw->mac_type == e1000_82542_rev2_0) e1000_enter_82542_rst(adapter); /* load the first 14 multicast address into the exact filters 1-14 * RAR 0 is used for the station MAC adddress * if there are not 14 addresses, go ahead and clear the filters * -- with 82571 controllers only 0-13 entries are filled here */ mc_ptr = netdev->mc_list; for(i = 1; i < rar_entries; i++) { if (mc_ptr) { e1000_rar_set(hw, mc_ptr->dmi_addr, i); mc_ptr = mc_ptr->next; } else { E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); } } /* clear the old settings from the multicast hash table */ for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); /* load any remaining addresses into the hash table */ for(; mc_ptr; mc_ptr = mc_ptr->next) { hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr); e1000_mta_set(hw, hash_value); } if(hw->mac_type == e1000_82542_rev2_0) e1000_leave_82542_rst(adapter); } /* Need to wait a few seconds after link up to get diagnostic information from * the phy */ static void e1000_update_phy_info(unsigned long data) { struct e1000_adapter *adapter = (struct e1000_adapter *) data; e1000_phy_get_info(&adapter->hw, &adapter->phy_info); } /** * e1000_82547_tx_fifo_stall - Timer Call-back * @data: pointer to adapter cast into an unsigned long **/ static void e1000_82547_tx_fifo_stall(unsigned long data) { struct e1000_adapter *adapter = (struct e1000_adapter *) data; struct net_device *netdev = adapter->netdev; uint32_t tctl; if(atomic_read(&adapter->tx_fifo_stall)) { if((E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH)) && (E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH)) && (E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS))) { tctl = E1000_READ_REG(&adapter->hw, TCTL); E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN); E1000_WRITE_REG(&adapter->hw, TDFT, adapter->tx_head_addr); E1000_WRITE_REG(&adapter->hw, TDFH, adapter->tx_head_addr); E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr); E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr); E1000_WRITE_REG(&adapter->hw, TCTL, tctl); E1000_WRITE_FLUSH(&adapter->hw); adapter->tx_fifo_head = 0; atomic_set(&adapter->tx_fifo_stall, 0); netif_wake_queue(netdev); } else { mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); } } } /** * e1000_watchdog - Timer Call-back * @data: pointer to adapter cast into an unsigned long **/ static void e1000_watchdog(unsigned long data) { struct e1000_adapter *adapter = (struct e1000_adapter *) data; /* Do the rest outside of interrupt context */ schedule_work(&adapter->watchdog_task); } static void e1000_watchdog_task(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_tx_ring *txdr = adapter->tx_ring; uint32_t link; e1000_check_for_link(&adapter->hw); if (adapter->hw.mac_type == e1000_82573) { e1000_enable_tx_pkt_filtering(&adapter->hw); if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) e1000_update_mng_vlan(adapter); } if((adapter->hw.media_type == e1000_media_type_internal_serdes) && !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) link = !adapter->hw.serdes_link_down; else link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; if(link) { if(!netif_carrier_ok(netdev)) { e1000_get_speed_and_duplex(&adapter->hw, &adapter->link_speed, &adapter->link_duplex); DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n", adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full Duplex" : "Half Duplex"); /* tweak tx_queue_len according to speed/duplex */ netdev->tx_queue_len = adapter->tx_queue_len; adapter->tx_timeout_factor = 1; if (adapter->link_duplex == HALF_DUPLEX) { switch (adapter->link_speed) { case SPEED_10: netdev->tx_queue_len = 10; adapter->tx_timeout_factor = 8; break; case SPEED_100: netdev->tx_queue_len = 100; break; } } netif_carrier_on(netdev); netif_wake_queue(netdev); mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); adapter->smartspeed = 0; } } else { if(netif_carrier_ok(netdev)) { adapter->link_speed = 0; adapter->link_duplex = 0; DPRINTK(LINK, INFO, "NIC Link is Down\n"); netif_carrier_off(netdev); netif_stop_queue(netdev); mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); } e1000_smartspeed(adapter); } e1000_update_stats(adapter); adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; adapter->tpt_old = adapter->stats.tpt; adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; adapter->colc_old = adapter->stats.colc; adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; adapter->gorcl_old = adapter->stats.gorcl; adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; adapter->gotcl_old = adapter->stats.gotcl; e1000_update_adaptive(&adapter->hw); #ifdef CONFIG_E1000_MQ txdr = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id()); #endif if (!netif_carrier_ok(netdev)) { if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { /* We've lost link, so the controller stops DMA, * but we've got queued Tx work that's never going * to get done, so reset controller to flush Tx. * (Do the reset outside of interrupt context). */ schedule_work(&adapter->tx_timeout_task); } } /* Dynamic mode for Interrupt Throttle Rate (ITR) */ if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) { /* Symmetric Tx/Rx gets a reduced ITR=2000; Total * asymmetrical Tx or Rx gets ITR=8000; everyone * else is between 2000-8000. */ uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000; uint32_t dif = (adapter->gotcl > adapter->gorcl ? adapter->gotcl - adapter->gorcl : adapter->gorcl - adapter->gotcl) / 10000; uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256)); } /* Cause software interrupt to ensure rx ring is cleaned */ E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); /* Force detection of hung controller every watchdog period */ adapter->detect_tx_hung = TRUE; /* With 82571 controllers, LAA may be overwritten due to controller * reset from the other port. Set the appropriate LAA in RAR[0] */ if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present) e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); /* Reset the timer */ mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); } #define E1000_TX_FLAGS_CSUM 0x00000001 #define E1000_TX_FLAGS_VLAN 0x00000002 #define E1000_TX_FLAGS_TSO 0x00000004 #define E1000_TX_FLAGS_IPV4 0x00000008 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 #define E1000_TX_FLAGS_VLAN_SHIFT 16 static inline int e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, struct sk_buff *skb) { #ifdef NETIF_F_TSO struct e1000_context_desc *context_desc; struct e1000_buffer *buffer_info; unsigned int i; uint32_t cmd_length = 0; uint16_t ipcse = 0, tucse, mss; uint8_t ipcss, ipcso, tucss, tucso, hdr_len; int err; if(skb_shinfo(skb)->tso_size) { if (skb_header_cloned(skb)) { err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (err) return err; } hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); mss = skb_shinfo(skb)->tso_size; if(skb->protocol == ntohs(ETH_P_IP)) { skb->nh.iph->tot_len = 0; skb->nh.iph->check = 0; skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr, skb->nh.iph->daddr, 0, IPPROTO_TCP, 0); cmd_length = E1000_TXD_CMD_IP; ipcse = skb->h.raw - skb->data - 1; #ifdef NETIF_F_TSO_IPV6 } else if(skb->protocol == ntohs(ETH_P_IPV6)) { skb->nh.ipv6h->payload_len = 0; skb->h.th->check = ~csum_ipv6_magic(&skb->nh.ipv6h->saddr, &skb->nh.ipv6h->daddr, 0, IPPROTO_TCP, 0); ipcse = 0; #endif } ipcss = skb->nh.raw - skb->data; ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; tucss = skb->h.raw - skb->data; tucso = (void *)&(skb->h.th->check) - (void *)skb->data; tucse = 0; cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); i = tx_ring->next_to_use; context_desc = E1000_CONTEXT_DESC(*tx_ring, i); buffer_info = &tx_ring->buffer_info[i]; context_desc->lower_setup.ip_fields.ipcss = ipcss; context_desc->lower_setup.ip_fields.ipcso = ipcso; context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); context_desc->upper_setup.tcp_fields.tucss = tucss; context_desc->upper_setup.tcp_fields.tucso = tucso; context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; context_desc->cmd_and_length = cpu_to_le32(cmd_length); buffer_info->time_stamp = jiffies; if (++i == tx_ring->count) i = 0; tx_ring->next_to_use = i; return 1; } #endif return 0; } static inline boolean_t e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, struct sk_buff *skb) { struct e1000_context_desc *context_desc; struct e1000_buffer *buffer_info; unsigned int i; uint8_t css; if(likely(skb->ip_summed == CHECKSUM_HW)) { css = skb->h.raw - skb->data; i = tx_ring->next_to_use; buffer_info = &tx_ring->buffer_info[i]; context_desc = E1000_CONTEXT_DESC(*tx_ring, i); context_desc->upper_setup.tcp_fields.tucss = css; context_desc->upper_setup.tcp_fields.tucso = css + skb->csum; context_desc->upper_setup.tcp_fields.tucse = 0; context_desc->tcp_seg_setup.data = 0; context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); buffer_info->time_stamp = jiffies; if (unlikely(++i == tx_ring->count)) i = 0; tx_ring->next_to_use = i; return TRUE; } return FALSE; } #define E1000_MAX_TXD_PWR 12 #define E1000_MAX_DATA_PER_TXD (1<len; unsigned int offset = 0, size, count = 0, i; unsigned int f; len -= skb->data_len; i = tx_ring->next_to_use; while(len) { buffer_info = &tx_ring->buffer_info[i]; size = min(len, max_per_txd); #ifdef NETIF_F_TSO /* Workaround for Controller erratum -- * descriptor for non-tso packet in a linear SKB that follows a * tso gets written back prematurely before the data is fully * DMAd to the controller */ if (!skb->data_len && tx_ring->last_tx_tso && !skb_shinfo(skb)->tso_size) { tx_ring->last_tx_tso = 0; size -= 4; } /* Workaround for premature desc write-backs * in TSO mode. Append 4-byte sentinel desc */ if(unlikely(mss && !nr_frags && size == len && size > 8)) size -= 4; #endif /* work-around for errata 10 and it applies * to all controllers in PCI-X mode * The fix is to make sure that the first descriptor of a * packet is smaller than 2048 - 16 - 16 (or 2016) bytes */ if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && (size > 2015) && count == 0)) size = 2015; /* Workaround for potential 82544 hang in PCI-X. Avoid * terminating buffers within evenly-aligned dwords. */ if(unlikely(adapter->pcix_82544 && !((unsigned long)(skb->data + offset + size - 1) & 4) && size > 4)) size -= 4; buffer_info->length = size; buffer_info->dma = pci_map_single(adapter->pdev, skb->data + offset, size, PCI_DMA_TODEVICE); buffer_info->time_stamp = jiffies; len -= size; offset += size; count++; if(unlikely(++i == tx_ring->count)) i = 0; } for(f = 0; f < nr_frags; f++) { struct skb_frag_struct *frag; frag = &skb_shinfo(skb)->frags[f]; len = frag->size; offset = frag->page_offset; while(len) { buffer_info = &tx_ring->buffer_info[i]; size = min(len, max_per_txd); #ifdef NETIF_F_TSO /* Workaround for premature desc write-backs * in TSO mode. Append 4-byte sentinel desc */ if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) size -= 4; #endif /* Workaround for potential 82544 hang in PCI-X. * Avoid terminating buffers within evenly-aligned * dwords. */ if(unlikely(adapter->pcix_82544 && !((unsigned long)(frag->page+offset+size-1) & 4) && size > 4)) size -= 4; buffer_info->length = size; buffer_info->dma = pci_map_page(adapter->pdev, frag->page, offset, size, PCI_DMA_TODEVICE); buffer_info->time_stamp = jiffies; len -= size; offset += size; count++; if(unlikely(++i == tx_ring->count)) i = 0; } } i = (i == 0) ? tx_ring->count - 1 : i - 1; tx_ring->buffer_info[i].skb = skb; tx_ring->buffer_info[first].next_to_watch = i; return count; } static inline void e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, int tx_flags, int count) { struct e1000_tx_desc *tx_desc = NULL; struct e1000_buffer *buffer_info; uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; unsigned int i; if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | E1000_TXD_CMD_TSE; txd_upper |= E1000_TXD_POPTS_TXSM << 8; if(likely(tx_flags & E1000_TX_FLAGS_IPV4)) txd_upper |= E1000_TXD_POPTS_IXSM << 8; } if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; txd_upper |= E1000_TXD_POPTS_TXSM << 8; } if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { txd_lower |= E1000_TXD_CMD_VLE; txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); } i = tx_ring->next_to_use; while(count--) { buffer_info = &tx_ring->buffer_info[i]; tx_desc = E1000_TX_DESC(*tx_ring, i); tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); tx_desc->lower.data = cpu_to_le32(txd_lower | buffer_info->length); tx_desc->upper.data = cpu_to_le32(txd_upper); if(unlikely(++i == tx_ring->count)) i = 0; } tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); tx_ring->next_to_use = i; writel(i, adapter->hw.hw_addr + tx_ring->tdt); } /** * 82547 workaround to avoid controller hang in half-duplex environment. * The workaround is to avoid queuing a large packet that would span * the internal Tx FIFO ring boundary by notifying the stack to resend * the packet at a later time. This gives the Tx FIFO an opportunity to * flush all packets. When that occurs, we reset the Tx FIFO pointers * to the beginning of the Tx FIFO. **/ #define E1000_FIFO_HDR 0x10 #define E1000_82547_PAD_LEN 0x3E0 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) { uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR; E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR); if(adapter->link_duplex != HALF_DUPLEX) goto no_fifo_stall_required; if(atomic_read(&adapter->tx_fifo_stall)) return 1; if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { atomic_set(&adapter->tx_fifo_stall, 1); return 1; } no_fifo_stall_required: adapter->tx_fifo_head += skb_fifo_len; if(adapter->tx_fifo_head >= adapter->tx_fifo_size) adapter->tx_fifo_head -= adapter->tx_fifo_size; return 0; } #define MINIMUM_DHCP_PACKET_SIZE 282 static inline int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) { struct e1000_hw *hw = &adapter->hw; uint16_t length, offset; if(vlan_tx_tag_present(skb)) { if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && ( adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) return 0; } if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) { struct ethhdr *eth = (struct ethhdr *) skb->data; if((htons(ETH_P_IP) == eth->h_proto)) { const struct iphdr *ip = (struct iphdr *)((uint8_t *)skb->data+14); if(IPPROTO_UDP == ip->protocol) { struct udphdr *udp = (struct udphdr *)((uint8_t *)ip + (ip->ihl << 2)); if(ntohs(udp->dest) == 67) { offset = (uint8_t *)udp + 8 - skb->data; length = skb->len - offset; return e1000_mng_write_dhcp_info(hw, (uint8_t *)udp + 8, length); } } } } return 0; } #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_tx_ring *tx_ring; unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; unsigned int tx_flags = 0; unsigned int len = skb->len; unsigned long flags; unsigned int nr_frags = 0; unsigned int mss = 0; int count = 0; int tso; unsigned int f; len -= skb->data_len; #ifdef CONFIG_E1000_MQ tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id()); #else tx_ring = adapter->tx_ring; #endif if (unlikely(skb->len <= 0)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } #ifdef NETIF_F_TSO mss = skb_shinfo(skb)->tso_size; /* The controller does a simple calculation to * make sure there is enough room in the FIFO before * initiating the DMA for each buffer. The calc is: * 4 = ceil(buffer len/mss). To make sure we don't * overrun the FIFO, adjust the max buffer len if mss * drops. */ if(mss) { uint8_t hdr_len; max_per_txd = min(mss << 2, max_per_txd); max_txd_pwr = fls(max_per_txd) - 1; /* TSO Workaround for 82571/2 Controllers -- if skb->data * points to just header, pull a few bytes of payload from * frags into skb->data */ hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) && (adapter->hw.mac_type == e1000_82571 || adapter->hw.mac_type == e1000_82572)) { unsigned int pull_size; pull_size = min((unsigned int)4, skb->data_len); if (!__pskb_pull_tail(skb, pull_size)) { printk(KERN_ERR "__pskb_pull_tail failed.\n"); dev_kfree_skb_any(skb); return -EFAULT; } len = skb->len - skb->data_len; } } if((mss) || (skb->ip_summed == CHECKSUM_HW)) /* reserve a descriptor for the offload context */ count++; count++; #else if(skb->ip_summed == CHECKSUM_HW) count++; #endif #ifdef NETIF_F_TSO /* Controller Erratum workaround */ if (!skb->data_len && tx_ring->last_tx_tso && !skb_shinfo(skb)->tso_size) count++; #endif count += TXD_USE_COUNT(len, max_txd_pwr); if(adapter->pcix_82544) count++; /* work-around for errata 10 and it applies to all controllers * in PCI-X mode, so add one more descriptor to the count */ if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && (len > 2015))) count++; nr_frags = skb_shinfo(skb)->nr_frags; for(f = 0; f < nr_frags; f++) count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, max_txd_pwr); if(adapter->pcix_82544) count += nr_frags; if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) ) e1000_transfer_dhcp_info(adapter, skb); local_irq_save(flags); if (!spin_trylock(&tx_ring->tx_lock)) { /* Collision - tell upper layer to requeue */ local_irq_restore(flags); return NETDEV_TX_LOCKED; } /* need: count + 2 desc gap to keep tail from touching * head, otherwise try next time */ if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) { netif_stop_queue(netdev); spin_unlock_irqrestore(&tx_ring->tx_lock, flags); return NETDEV_TX_BUSY; } if(unlikely(adapter->hw.mac_type == e1000_82547)) { if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) { netif_stop_queue(netdev); mod_timer(&adapter->tx_fifo_stall_timer, jiffies); spin_unlock_irqrestore(&tx_ring->tx_lock, flags); return NETDEV_TX_BUSY; } } if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { tx_flags |= E1000_TX_FLAGS_VLAN; tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); } first = tx_ring->next_to_use; tso = e1000_tso(adapter, tx_ring, skb); if (tso < 0) { dev_kfree_skb_any(skb); spin_unlock_irqrestore(&tx_ring->tx_lock, flags); return NETDEV_TX_OK; } if (likely(tso)) { tx_ring->last_tx_tso = 1; tx_flags |= E1000_TX_FLAGS_TSO; } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) tx_flags |= E1000_TX_FLAGS_CSUM; /* Old method was to assume IPv4 packet by default if TSO was enabled. * 82571 hardware supports TSO capabilities for IPv6 as well... * no longer assume, we must. */ if (likely(skb->protocol == ntohs(ETH_P_IP))) tx_flags |= E1000_TX_FLAGS_IPV4; e1000_tx_queue(adapter, tx_ring, tx_flags, e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, nr_frags, mss)); netdev->trans_start = jiffies; /* Make sure there is space in the ring for the next send. */ if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2)) netif_stop_queue(netdev); spin_unlock_irqrestore(&tx_ring->tx_lock, flags); return NETDEV_TX_OK; } /** * e1000_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure **/ static void e1000_tx_timeout(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); /* Do the reset outside of interrupt context */ schedule_work(&adapter->tx_timeout_task); } static void e1000_tx_timeout_task(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); adapter->tx_timeout_count++; e1000_down(adapter); e1000_up(adapter); } /** * e1000_get_stats - Get System Network Statistics * @netdev: network interface device structure * * Returns the address of the device statistics structure. * The statistics are actually updated from the timer callback. **/ static struct net_device_stats * e1000_get_stats(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); /* only return the current stats */ return &adapter->net_stats; } /** * e1000_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) { struct e1000_adapter *adapter = netdev_priv(netdev); int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); return -EINVAL; } /* Adapter-specific max frame size limits. */ switch (adapter->hw.mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82573: if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); return -EINVAL; } break; case e1000_82571: case e1000_82572: #define MAX_STD_JUMBO_FRAME_SIZE 9234 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); return -EINVAL; } break; default: /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ break; } /* since the driver code now supports splitting a packet across * multiple descriptors, most of the fifo related limitations on * jumbo frame traffic have gone away. * simply use 2k descriptors for everything. * * NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN * means we reserve 2 more, this pushes us to allocate from the next * larger slab size * i.e. RXBUFFER_2048 --> size-4096 slab */ /* recent hardware supports 1KB granularity */ if (adapter->hw.mac_type > e1000_82547_rev_2) { adapter->rx_buffer_len = ((max_frame < E1000_RXBUFFER_2048) ? max_frame : E1000_RXBUFFER_2048); E1000_ROUNDUP(adapter->rx_buffer_len, 1024); } else adapter->rx_buffer_len = E1000_RXBUFFER_2048; netdev->mtu = new_mtu; if(netif_running(netdev)) { e1000_down(adapter); e1000_up(adapter); } adapter->hw.max_frame_size = max_frame; return 0; } /** * e1000_update_stats - Update the board statistics counters * @adapter: board private structure **/ void e1000_update_stats(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; unsigned long flags; uint16_t phy_tmp; #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF spin_lock_irqsave(&adapter->stats_lock, flags); /* these counters are modified from e1000_adjust_tbi_stats, * called from the interrupt context, so they must only * be written while holding adapter->stats_lock */ adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); adapter->stats.gprc += E1000_READ_REG(hw, GPRC); adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); adapter->stats.gorch += E1000_READ_REG(hw, GORCH); adapter->stats.bprc += E1000_READ_REG(hw, BPRC); adapter->stats.mprc += E1000_READ_REG(hw, MPRC); adapter->stats.roc += E1000_READ_REG(hw, ROC); adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); adapter->stats.mpc += E1000_READ_REG(hw, MPC); adapter->stats.scc += E1000_READ_REG(hw, SCC); adapter->stats.ecol += E1000_READ_REG(hw, ECOL); adapter->stats.mcc += E1000_READ_REG(hw, MCC); adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); adapter->stats.dc += E1000_READ_REG(hw, DC); adapter->stats.sec += E1000_READ_REG(hw, SEC); adapter->stats.rlec += E1000_READ_REG(hw, RLEC); adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); adapter->stats.gptc += E1000_READ_REG(hw, GPTC); adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); adapter->stats.ruc += E1000_READ_REG(hw, RUC); adapter->stats.rfc += E1000_READ_REG(hw, RFC); adapter->stats.rjc += E1000_READ_REG(hw, RJC); adapter->stats.torl += E1000_READ_REG(hw, TORL); adapter->stats.torh += E1000_READ_REG(hw, TORH); adapter->stats.totl += E1000_READ_REG(hw, TOTL); adapter->stats.toth += E1000_READ_REG(hw, TOTH); adapter->stats.tpr += E1000_READ_REG(hw, TPR); adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); adapter->stats.mptc += E1000_READ_REG(hw, MPTC); adapter->stats.bptc += E1000_READ_REG(hw, BPTC); /* used for adaptive IFS */ hw->tx_packet_delta = E1000_READ_REG(hw, TPT); adapter->stats.tpt += hw->tx_packet_delta; hw->collision_delta = E1000_READ_REG(hw, COLC); adapter->stats.colc += hw->collision_delta; if(hw->mac_type >= e1000_82543) { adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); } if(hw->mac_type > e1000_82547_rev_2) { adapter->stats.iac += E1000_READ_REG(hw, IAC); adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); } /* Fill out the OS statistics structure */ adapter->net_stats.rx_packets = adapter->stats.gprc; adapter->net_stats.tx_packets = adapter->stats.gptc; adapter->net_stats.rx_bytes = adapter->stats.gorcl; adapter->net_stats.tx_bytes = adapter->stats.gotcl; adapter->net_stats.multicast = adapter->stats.mprc; adapter->net_stats.collisions = adapter->stats.colc; /* Rx Errors */ adapter->net_stats.rx_errors = adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.rlec + adapter->stats.cexterr; adapter->net_stats.rx_dropped = 0; adapter->net_stats.rx_length_errors = adapter->stats.rlec; adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; adapter->net_stats.rx_missed_errors = adapter->stats.mpc; /* Tx Errors */ adapter->net_stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; adapter->net_stats.tx_window_errors = adapter->stats.latecol; adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; /* Tx Dropped needs to be maintained elsewhere */ /* Phy Stats */ if(hw->media_type == e1000_media_type_copper) { if((adapter->link_speed == SPEED_1000) && (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; adapter->phy_stats.idle_errors += phy_tmp; } if((hw->mac_type <= e1000_82546) && (hw->phy_type == e1000_phy_m88) && !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) adapter->phy_stats.receive_errors += phy_tmp; } spin_unlock_irqrestore(&adapter->stats_lock, flags); } #ifdef CONFIG_E1000_MQ void e1000_rx_schedule(void *data) { struct net_device *poll_dev, *netdev = data; struct e1000_adapter *adapter = netdev->priv; int this_cpu = get_cpu(); poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu); if (poll_dev == NULL) { put_cpu(); return; } if (likely(netif_rx_schedule_prep(poll_dev))) __netif_rx_schedule(poll_dev); else e1000_irq_enable(adapter); put_cpu(); } #endif /** * e1000_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure * @pt_regs: CPU registers structure **/ static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs) { struct net_device *netdev = data; struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; uint32_t icr = E1000_READ_REG(hw, ICR); #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI) int i; #endif if(unlikely(!icr)) return IRQ_NONE; /* Not our interrupt */ if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { hw->get_link_status = 1; mod_timer(&adapter->watchdog_timer, jiffies); } #ifdef CONFIG_E1000_NAPI atomic_inc(&adapter->irq_sem); E1000_WRITE_REG(hw, IMC, ~0); E1000_WRITE_FLUSH(hw); #ifdef CONFIG_E1000_MQ if (atomic_read(&adapter->rx_sched_call_data.count) == 0) { /* We must setup the cpumask once count == 0 since * each cpu bit is cleared when the work is done. */ adapter->rx_sched_call_data.cpumask = adapter->cpumask; atomic_add(adapter->num_rx_queues - 1, &adapter->irq_sem); atomic_set(&adapter->rx_sched_call_data.count, adapter->num_rx_queues); smp_call_async_mask(&adapter->rx_sched_call_data); } else { printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count)); } #else /* if !CONFIG_E1000_MQ */ if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0]))) __netif_rx_schedule(&adapter->polling_netdev[0]); else e1000_irq_enable(adapter); #endif /* CONFIG_E1000_MQ */ #else /* if !CONFIG_E1000_NAPI */ /* Writing IMC and IMS is needed for 82547. Due to Hub Link bus being occupied, an interrupt de-assertion message is not able to be sent. When an interrupt assertion message is generated later, two messages are re-ordered and sent out. That causes APIC to think 82547 is in de-assertion state, while 82547 is in assertion state, resulting in dead lock. Writing IMC forces 82547 into de-assertion state. */ if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){ atomic_inc(&adapter->irq_sem); E1000_WRITE_REG(hw, IMC, ~0); } for(i = 0; i < E1000_MAX_INTR; i++) if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) & !e1000_clean_tx_irq(adapter, adapter->tx_ring))) break; if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) e1000_irq_enable(adapter); #endif /* CONFIG_E1000_NAPI */ return IRQ_HANDLED; } #ifdef CONFIG_E1000_NAPI /** * e1000_clean - NAPI Rx polling callback * @adapter: board private structure **/ static int e1000_clean(struct net_device *poll_dev, int *budget) { struct e1000_adapter *adapter; int work_to_do = min(*budget, poll_dev->quota); int tx_cleaned, i = 0, work_done = 0; /* Must NOT use netdev_priv macro here. */ adapter = poll_dev->priv; /* Keep link state information with original netdev */ if (!netif_carrier_ok(adapter->netdev)) goto quit_polling; while (poll_dev != &adapter->polling_netdev[i]) { i++; if (unlikely(i == adapter->num_rx_queues)) BUG(); } tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]); adapter->clean_rx(adapter, &adapter->rx_ring[i], &work_done, work_to_do); *budget -= work_done; poll_dev->quota -= work_done; /* If no Tx and not enough Rx work done, exit the polling mode */ if((!tx_cleaned && (work_done == 0)) || !netif_running(adapter->netdev)) { quit_polling: netif_rx_complete(poll_dev); e1000_irq_enable(adapter); return 0; } return 1; } #endif /** * e1000_clean_tx_irq - Reclaim resources after transmit completes * @adapter: board private structure **/ static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { struct net_device *netdev = adapter->netdev; struct e1000_tx_desc *tx_desc, *eop_desc; struct e1000_buffer *buffer_info; unsigned int i, eop; boolean_t cleaned = FALSE; i = tx_ring->next_to_clean; eop = tx_ring->buffer_info[i].next_to_watch; eop_desc = E1000_TX_DESC(*tx_ring, eop); while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { for(cleaned = FALSE; !cleaned; ) { tx_desc = E1000_TX_DESC(*tx_ring, i); buffer_info = &tx_ring->buffer_info[i]; cleaned = (i == eop); e1000_unmap_and_free_tx_resource(adapter, buffer_info); tx_desc->buffer_addr = 0; tx_desc->lower.data = 0; tx_desc->upper.data = 0; if(unlikely(++i == tx_ring->count)) i = 0; } #ifdef CONFIG_E1000_MQ tx_ring->tx_stats.packets++; #endif eop = tx_ring->buffer_info[i].next_to_watch; eop_desc = E1000_TX_DESC(*tx_ring, eop); } tx_ring->next_to_clean = i; spin_lock(&tx_ring->tx_lock); if(unlikely(cleaned && netif_queue_stopped(netdev) && netif_carrier_ok(netdev))) netif_wake_queue(netdev); spin_unlock(&tx_ring->tx_lock); if (adapter->detect_tx_hung) { /* Detect a transmit hang in hardware, this serializes the * check with the clearing of time_stamp and movement of i */ adapter->detect_tx_hung = FALSE; if (tx_ring->buffer_info[eop].dma && time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + adapter->tx_timeout_factor * HZ) && !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF)) { /* detected Tx unit hang */ DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" " Tx Queue <%lu>\n" " TDH <%x>\n" " TDT <%x>\n" " next_to_use <%x>\n" " next_to_clean <%x>\n" "buffer_info[next_to_clean]\n" " time_stamp <%lx>\n" " next_to_watch <%x>\n" " jiffies <%lx>\n" " next_to_watch.status <%x>\n", (unsigned long)((tx_ring - adapter->tx_ring) / sizeof(struct e1000_tx_ring)), readl(adapter->hw.hw_addr + tx_ring->tdh), readl(adapter->hw.hw_addr + tx_ring->tdt), tx_ring->next_to_use, tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, eop, jiffies, eop_desc->upper.fields.status); netif_stop_queue(netdev); } } return cleaned; } /** * e1000_rx_checksum - Receive Checksum Offload for 82543 * @adapter: board private structure * @status_err: receive descriptor status and error fields * @csum: receive descriptor csum field * @sk_buff: socket buffer with received data **/ static inline void e1000_rx_checksum(struct e1000_adapter *adapter, uint32_t status_err, uint32_t csum, struct sk_buff *skb) { uint16_t status = (uint16_t)status_err; uint8_t errors = (uint8_t)(status_err >> 24); skb->ip_summed = CHECKSUM_NONE; /* 82543 or newer only */ if(unlikely(adapter->hw.mac_type < e1000_82543)) return; /* Ignore Checksum bit is set */ if(unlikely(status & E1000_RXD_STAT_IXSM)) return; /* TCP/UDP checksum error bit is set */ if(unlikely(errors & E1000_RXD_ERR_TCPE)) { /* let the stack verify checksum errors */ adapter->hw_csum_err++; return; } /* TCP/UDP Checksum has not been calculated */ if(adapter->hw.mac_type <= e1000_82547_rev_2) { if(!(status & E1000_RXD_STAT_TCPCS)) return; } else { if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) return; } /* It must be a TCP or UDP packet with a valid checksum */ if (likely(status & E1000_RXD_STAT_TCPCS)) { /* TCP checksum is good */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else if (adapter->hw.mac_type > e1000_82547_rev_2) { /* IP fragment with UDP payload */ /* Hardware complements the payload checksum, so we undo it * and then put the value in host order for further stack use. */ csum = ntohl(csum ^ 0xFFFF); skb->csum = csum; skb->ip_summed = CHECKSUM_HW; } adapter->hw_csum_good++; } /** * e1000_clean_rx_irq - Send received data up the network stack; legacy * @adapter: board private structure **/ static boolean_t #ifdef CONFIG_E1000_NAPI e1000_clean_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do) #else e1000_clean_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) #endif { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; struct e1000_rx_desc *rx_desc; struct e1000_buffer *buffer_info; struct sk_buff *skb; unsigned long flags; uint32_t length; uint8_t last_byte; unsigned int i; boolean_t cleaned = FALSE; i = rx_ring->next_to_clean; rx_desc = E1000_RX_DESC(*rx_ring, i); while(rx_desc->status & E1000_RXD_STAT_DD) { buffer_info = &rx_ring->buffer_info[i]; #ifdef CONFIG_E1000_NAPI if(*work_done >= work_to_do) break; (*work_done)++; #endif cleaned = TRUE; pci_unmap_single(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); skb = buffer_info->skb; length = le16_to_cpu(rx_desc->length); if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) { /* All receives must fit into a single buffer */ E1000_DBG("%s: Receive packet consumed multiple" " buffers\n", netdev->name); dev_kfree_skb_irq(skb); goto next_desc; } if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { last_byte = *(skb->data + length - 1); if(TBI_ACCEPT(&adapter->hw, rx_desc->status, rx_desc->errors, length, last_byte)) { spin_lock_irqsave(&adapter->stats_lock, flags); e1000_tbi_adjust_stats(&adapter->hw, &adapter->stats, length, skb->data); spin_unlock_irqrestore(&adapter->stats_lock, flags); length--; } else { dev_kfree_skb_irq(skb); goto next_desc; } } /* Good Receive */ skb_put(skb, length - ETHERNET_FCS_SIZE); /* Receive Checksum Offload */ e1000_rx_checksum(adapter, (uint32_t)(rx_desc->status) | ((uint32_t)(rx_desc->errors) << 24), rx_desc->csum, skb); skb->protocol = eth_type_trans(skb, netdev); #ifdef CONFIG_E1000_NAPI if(unlikely(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP))) { vlan_hwaccel_receive_skb(skb, adapter->vlgrp, le16_to_cpu(rx_desc->special) & E1000_RXD_SPC_VLAN_MASK); } else { netif_receive_skb(skb); } #else /* CONFIG_E1000_NAPI */ if(unlikely(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP))) { vlan_hwaccel_rx(skb, adapter->vlgrp, le16_to_cpu(rx_desc->special) & E1000_RXD_SPC_VLAN_MASK); } else { netif_rx(skb); } #endif /* CONFIG_E1000_NAPI */ netdev->last_rx = jiffies; #ifdef CONFIG_E1000_MQ rx_ring->rx_stats.packets++; rx_ring->rx_stats.bytes += length; #endif next_desc: rx_desc->status = 0; buffer_info->skb = NULL; if(unlikely(++i == rx_ring->count)) i = 0; rx_desc = E1000_RX_DESC(*rx_ring, i); } rx_ring->next_to_clean = i; adapter->alloc_rx_buf(adapter, rx_ring); return cleaned; } /** * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split * @adapter: board private structure **/ static boolean_t #ifdef CONFIG_E1000_NAPI e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do) #else e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) #endif { union e1000_rx_desc_packet_split *rx_desc; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; struct e1000_buffer *buffer_info; struct e1000_ps_page *ps_page; struct e1000_ps_page_dma *ps_page_dma; struct sk_buff *skb; unsigned int i, j; uint32_t length, staterr; boolean_t cleaned = FALSE; i = rx_ring->next_to_clean; rx_desc = E1000_RX_DESC_PS(*rx_ring, i); staterr = le32_to_cpu(rx_desc->wb.middle.status_error); while(staterr & E1000_RXD_STAT_DD) { buffer_info = &rx_ring->buffer_info[i]; ps_page = &rx_ring->ps_page[i]; ps_page_dma = &rx_ring->ps_page_dma[i]; #ifdef CONFIG_E1000_NAPI if(unlikely(*work_done >= work_to_do)) break; (*work_done)++; #endif cleaned = TRUE; pci_unmap_single(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); skb = buffer_info->skb; if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) { E1000_DBG("%s: Packet Split buffers didn't pick up" " the full packet\n", netdev->name); dev_kfree_skb_irq(skb); goto next_desc; } if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { dev_kfree_skb_irq(skb); goto next_desc; } length = le16_to_cpu(rx_desc->wb.middle.length0); if(unlikely(!length)) { E1000_DBG("%s: Last part of the packet spanning" " multiple descriptors\n", netdev->name); dev_kfree_skb_irq(skb); goto next_desc; } /* Good Receive */ skb_put(skb, length); for(j = 0; j < adapter->rx_ps_pages; j++) { if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j]))) break; pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], PAGE_SIZE, PCI_DMA_FROMDEVICE); ps_page_dma->ps_page_dma[j] = 0; skb_shinfo(skb)->frags[j].page = ps_page->ps_page[j]; ps_page->ps_page[j] = NULL; skb_shinfo(skb)->frags[j].page_offset = 0; skb_shinfo(skb)->frags[j].size = length; skb_shinfo(skb)->nr_frags++; skb->len += length; skb->data_len += length; } e1000_rx_checksum(adapter, staterr, rx_desc->wb.lower.hi_dword.csum_ip.csum, skb); skb->protocol = eth_type_trans(skb, netdev); if(likely(rx_desc->wb.upper.header_status & E1000_RXDPS_HDRSTAT_HDRSP)) { adapter->rx_hdr_split++; #ifdef HAVE_RX_ZERO_COPY skb_shinfo(skb)->zero_copy = TRUE; #endif } #ifdef CONFIG_E1000_NAPI if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { vlan_hwaccel_receive_skb(skb, adapter->vlgrp, le16_to_cpu(rx_desc->wb.middle.vlan) & E1000_RXD_SPC_VLAN_MASK); } else { netif_receive_skb(skb); } #else /* CONFIG_E1000_NAPI */ if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { vlan_hwaccel_rx(skb, adapter->vlgrp, le16_to_cpu(rx_desc->wb.middle.vlan) & E1000_RXD_SPC_VLAN_MASK); } else { netif_rx(skb); } #endif /* CONFIG_E1000_NAPI */ netdev->last_rx = jiffies; #ifdef CONFIG_E1000_MQ rx_ring->rx_stats.packets++; rx_ring->rx_stats.bytes += length; #endif next_desc: rx_desc->wb.middle.status_error &= ~0xFF; buffer_info->skb = NULL; if(unlikely(++i == rx_ring->count)) i = 0; rx_desc = E1000_RX_DESC_PS(*rx_ring, i); staterr = le32_to_cpu(rx_desc->wb.middle.status_error); } rx_ring->next_to_clean = i; adapter->alloc_rx_buf(adapter, rx_ring); return cleaned; } /** * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended * @adapter: address of board private structure **/ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; struct e1000_rx_desc *rx_desc; struct e1000_buffer *buffer_info; struct sk_buff *skb; unsigned int i; unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; i = rx_ring->next_to_use; buffer_info = &rx_ring->buffer_info[i]; while(!buffer_info->skb) { skb = dev_alloc_skb(bufsz); if(unlikely(!skb)) { /* Better luck next round */ break; } /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { struct sk_buff *oldskb = skb; DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " "at %p\n", bufsz, skb->data); /* Try again, without freeing the previous */ skb = dev_alloc_skb(bufsz); /* Failed allocation, critical failure */ if (!skb) { dev_kfree_skb(oldskb); break; } if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { /* give up */ dev_kfree_skb(skb); dev_kfree_skb(oldskb); break; /* while !buffer_info->skb */ } else { /* Use new allocation */ dev_kfree_skb(oldskb); } } /* Make buffer alignment 2 beyond a 16 byte boundary * this will result in a 16 byte aligned IP header after * the 14 byte MAC header is removed */ skb_reserve(skb, NET_IP_ALIGN); skb->dev = netdev; buffer_info->skb = skb; buffer_info->length = adapter->rx_buffer_len; buffer_info->dma = pci_map_single(pdev, skb->data, adapter->rx_buffer_len, PCI_DMA_FROMDEVICE); /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, (void *)(unsigned long)buffer_info->dma, adapter->rx_buffer_len)) { DPRINTK(RX_ERR, ERR, "dma align check failed: %u bytes at %p\n", adapter->rx_buffer_len, (void *)(unsigned long)buffer_info->dma); dev_kfree_skb(skb); buffer_info->skb = NULL; pci_unmap_single(pdev, buffer_info->dma, adapter->rx_buffer_len, PCI_DMA_FROMDEVICE); break; /* while !buffer_info->skb */ } rx_desc = E1000_RX_DESC(*rx_ring, i); rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(i, adapter->hw.hw_addr + rx_ring->rdt); } if(unlikely(++i == rx_ring->count)) i = 0; buffer_info = &rx_ring->buffer_info[i]; } rx_ring->next_to_use = i; } /** * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split * @adapter: address of board private structure **/ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; union e1000_rx_desc_packet_split *rx_desc; struct e1000_buffer *buffer_info; struct e1000_ps_page *ps_page; struct e1000_ps_page_dma *ps_page_dma; struct sk_buff *skb; unsigned int i, j; i = rx_ring->next_to_use; buffer_info = &rx_ring->buffer_info[i]; ps_page = &rx_ring->ps_page[i]; ps_page_dma = &rx_ring->ps_page_dma[i]; while(!buffer_info->skb) { rx_desc = E1000_RX_DESC_PS(*rx_ring, i); for(j = 0; j < PS_PAGE_BUFFERS; j++) { if (j < adapter->rx_ps_pages) { if (likely(!ps_page->ps_page[j])) { ps_page->ps_page[j] = alloc_page(GFP_ATOMIC); if (unlikely(!ps_page->ps_page[j])) goto no_buffers; ps_page_dma->ps_page_dma[j] = pci_map_page(pdev, ps_page->ps_page[j], 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); } /* Refresh the desc even if buffer_addrs didn't * change because each write-back erases * this info. */ rx_desc->read.buffer_addr[j+1] = cpu_to_le64(ps_page_dma->ps_page_dma[j]); } else rx_desc->read.buffer_addr[j+1] = ~0; } skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN); if(unlikely(!skb)) break; /* Make buffer alignment 2 beyond a 16 byte boundary * this will result in a 16 byte aligned IP header after * the 14 byte MAC header is removed */ skb_reserve(skb, NET_IP_ALIGN); skb->dev = netdev; buffer_info->skb = skb; buffer_info->length = adapter->rx_ps_bsize0; buffer_info->dma = pci_map_single(pdev, skb->data, adapter->rx_ps_bsize0, PCI_DMA_FROMDEVICE); rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); /* Hardware increments by 16 bytes, but packet split * descriptors are 32 bytes...so we increment tail * twice as much. */ writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt); } if(unlikely(++i == rx_ring->count)) i = 0; buffer_info = &rx_ring->buffer_info[i]; ps_page = &rx_ring->ps_page[i]; ps_page_dma = &rx_ring->ps_page_dma[i]; } no_buffers: rx_ring->next_to_use = i; } /** * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. * @adapter: **/ static void e1000_smartspeed(struct e1000_adapter *adapter) { uint16_t phy_status; uint16_t phy_ctrl; if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) return; if(adapter->smartspeed == 0) { /* If Master/Slave config fault is asserted twice, * we assume back-to-back */ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); if(phy_ctrl & CR_1000T_MS_ENABLE) { phy_ctrl &= ~CR_1000T_MS_ENABLE; e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); adapter->smartspeed++; if(!e1000_phy_setup_autoneg(&adapter->hw) && !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); } } return; } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { /* If still no link, perhaps using 2/3 pair cable */ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); phy_ctrl |= CR_1000T_MS_ENABLE; e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); if(!e1000_phy_setup_autoneg(&adapter->hw) && !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); } } /* Restart process after E1000_SMARTSPEED_MAX iterations */ if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX) adapter->smartspeed = 0; } /** * e1000_ioctl - * @netdev: * @ifreq: * @cmd: **/ static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return e1000_mii_ioctl(netdev, ifr, cmd); default: return -EOPNOTSUPP; } } /** * e1000_mii_ioctl - * @netdev: * @ifreq: * @cmd: **/ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct mii_ioctl_data *data = if_mii(ifr); int retval; uint16_t mii_reg; uint16_t spddplx; unsigned long flags; if(adapter->hw.media_type != e1000_media_type_copper) return -EOPNOTSUPP; switch (cmd) { case SIOCGMIIPHY: data->phy_id = adapter->hw.phy_addr; break; case SIOCGMIIREG: if(!capable(CAP_NET_ADMIN)) return -EPERM; spin_lock_irqsave(&adapter->stats_lock, flags); if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, &data->val_out)) { spin_unlock_irqrestore(&adapter->stats_lock, flags); return -EIO; } spin_unlock_irqrestore(&adapter->stats_lock, flags); break; case SIOCSMIIREG: if(!capable(CAP_NET_ADMIN)) return -EPERM; if(data->reg_num & ~(0x1F)) return -EFAULT; mii_reg = data->val_in; spin_lock_irqsave(&adapter->stats_lock, flags); if(e1000_write_phy_reg(&adapter->hw, data->reg_num, mii_reg)) { spin_unlock_irqrestore(&adapter->stats_lock, flags); return -EIO; } if(adapter->hw.phy_type == e1000_phy_m88) { switch (data->reg_num) { case PHY_CTRL: if(mii_reg & MII_CR_POWER_DOWN) break; if(mii_reg & MII_CR_AUTO_NEG_EN) { adapter->hw.autoneg = 1; adapter->hw.autoneg_advertised = 0x2F; } else { if (mii_reg & 0x40) spddplx = SPEED_1000; else if (mii_reg & 0x2000) spddplx = SPEED_100; else spddplx = SPEED_10; spddplx += (mii_reg & 0x100) ? FULL_DUPLEX : HALF_DUPLEX; retval = e1000_set_spd_dplx(adapter, spddplx); if(retval) { spin_unlock_irqrestore( &adapter->stats_lock, flags); return retval; } } if(netif_running(adapter->netdev)) { e1000_down(adapter); e1000_up(adapter); } else e1000_reset(adapter); break; case M88E1000_PHY_SPEC_CTRL: case M88E1000_EXT_PHY_SPEC_CTRL: if(e1000_phy_reset(&adapter->hw)) { spin_unlock_irqrestore( &adapter->stats_lock, flags); return -EIO; } break; } } else { switch (data->reg_num) { case PHY_CTRL: if(mii_reg & MII_CR_POWER_DOWN) break; if(netif_running(adapter->netdev)) { e1000_down(adapter); e1000_up(adapter); } else e1000_reset(adapter); break; } } spin_unlock_irqrestore(&adapter->stats_lock, flags); break; default: return -EOPNOTSUPP; } return E1000_SUCCESS; } void e1000_pci_set_mwi(struct e1000_hw *hw) { struct e1000_adapter *adapter = hw->back; int ret_val = pci_set_mwi(adapter->pdev); if(ret_val) DPRINTK(PROBE, ERR, "Error in setting MWI\n"); } void e1000_pci_clear_mwi(struct e1000_hw *hw) { struct e1000_adapter *adapter = hw->back; pci_clear_mwi(adapter->pdev); } void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) { struct e1000_adapter *adapter = hw->back; pci_read_config_word(adapter->pdev, reg, value); } void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) { struct e1000_adapter *adapter = hw->back; pci_write_config_word(adapter->pdev, reg, *value); } uint32_t e1000_io_read(struct e1000_hw *hw, unsigned long port) { return inl(port); } void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) { outl(value, port); } static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) { struct e1000_adapter *adapter = netdev_priv(netdev); uint32_t ctrl, rctl; e1000_irq_disable(adapter); adapter->vlgrp = grp; if(grp) { /* enable VLAN tag insert/strip */ ctrl = E1000_READ_REG(&adapter->hw, CTRL); ctrl |= E1000_CTRL_VME; E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); /* enable VLAN receive filtering */ rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl |= E1000_RCTL_VFE; rctl &= ~E1000_RCTL_CFIEN; E1000_WRITE_REG(&adapter->hw, RCTL, rctl); e1000_update_mng_vlan(adapter); } else { /* disable VLAN tag insert/strip */ ctrl = E1000_READ_REG(&adapter->hw, CTRL); ctrl &= ~E1000_CTRL_VME; E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); /* disable VLAN filtering */ rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl &= ~E1000_RCTL_VFE; E1000_WRITE_REG(&adapter->hw, RCTL, rctl); if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) { e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; } } e1000_irq_enable(adapter); } static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) { struct e1000_adapter *adapter = netdev_priv(netdev); uint32_t vfta, index; if((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && (vid == adapter->mng_vlan_id)) return; /* add VID to filter table */ index = (vid >> 5) & 0x7F; vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); vfta |= (1 << (vid & 0x1F)); e1000_write_vfta(&adapter->hw, index, vfta); } static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) { struct e1000_adapter *adapter = netdev_priv(netdev); uint32_t vfta, index; e1000_irq_disable(adapter); if(adapter->vlgrp) adapter->vlgrp->vlan_devices[vid] = NULL; e1000_irq_enable(adapter); if((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && (vid == adapter->mng_vlan_id)) return; /* remove VID from filter table */ index = (vid >> 5) & 0x7F; vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); vfta &= ~(1 << (vid & 0x1F)); e1000_write_vfta(&adapter->hw, index, vfta); } static void e1000_restore_vlan(struct e1000_adapter *adapter) { e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); if(adapter->vlgrp) { uint16_t vid; for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { if(!adapter->vlgrp->vlan_devices[vid]) continue; e1000_vlan_rx_add_vid(adapter->netdev, vid); } } } int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) { adapter->hw.autoneg = 0; /* Fiber NICs only allow 1000 gbps Full duplex */ if((adapter->hw.media_type == e1000_media_type_fiber) && spddplx != (SPEED_1000 + DUPLEX_FULL)) { DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); return -EINVAL; } switch(spddplx) { case SPEED_10 + DUPLEX_HALF: adapter->hw.forced_speed_duplex = e1000_10_half; break; case SPEED_10 + DUPLEX_FULL: adapter->hw.forced_speed_duplex = e1000_10_full; break; case SPEED_100 + DUPLEX_HALF: adapter->hw.forced_speed_duplex = e1000_100_half; break; case SPEED_100 + DUPLEX_FULL: adapter->hw.forced_speed_duplex = e1000_100_full; break; case SPEED_1000 + DUPLEX_FULL: adapter->hw.autoneg = 1; adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; break; case SPEED_1000 + DUPLEX_HALF: /* not supported */ default: DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); return -EINVAL; } return 0; } #ifdef CONFIG_PM static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); uint32_t ctrl, ctrl_ext, rctl, manc, status; uint32_t wufc = adapter->wol; netif_device_detach(netdev); if(netif_running(netdev)) e1000_down(adapter); status = E1000_READ_REG(&adapter->hw, STATUS); if(status & E1000_STATUS_LU) wufc &= ~E1000_WUFC_LNKC; if(wufc) { e1000_setup_rctl(adapter); e1000_set_multi(netdev); /* turn on all-multi mode if wake on multicast is enabled */ if(adapter->wol & E1000_WUFC_MC) { rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(&adapter->hw, RCTL, rctl); } if(adapter->hw.mac_type >= e1000_82540) { ctrl = E1000_READ_REG(&adapter->hw, CTRL); /* advertise wake from D3Cold */ #define E1000_CTRL_ADVD3WUC 0x00100000 /* phy power management enable */ #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 ctrl |= E1000_CTRL_ADVD3WUC | E1000_CTRL_EN_PHY_PWR_MGMT; E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); } if(adapter->hw.media_type == e1000_media_type_fiber || adapter->hw.media_type == e1000_media_type_internal_serdes) { /* keep the laser running in D3 */ ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); } /* Allow time for pending master requests to run */ e1000_disable_pciex_master(&adapter->hw); E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); E1000_WRITE_REG(&adapter->hw, WUFC, wufc); pci_enable_wake(pdev, 3, 1); pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ } else { E1000_WRITE_REG(&adapter->hw, WUC, 0); E1000_WRITE_REG(&adapter->hw, WUFC, 0); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ } pci_save_state(pdev); if(adapter->hw.mac_type >= e1000_82540 && adapter->hw.media_type == e1000_media_type_copper) { manc = E1000_READ_REG(&adapter->hw, MANC); if(manc & E1000_MANC_SMBUS_EN) { manc |= E1000_MANC_ARP_EN; E1000_WRITE_REG(&adapter->hw, MANC, manc); pci_enable_wake(pdev, 3, 1); pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ } } /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ e1000_release_hw_control(adapter); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int e1000_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); uint32_t manc, ret_val; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); ret_val = pci_enable_device(pdev); pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); e1000_reset(adapter); E1000_WRITE_REG(&adapter->hw, WUS, ~0); if(netif_running(netdev)) e1000_up(adapter); netif_device_attach(netdev); if(adapter->hw.mac_type >= e1000_82540 && adapter->hw.media_type == e1000_media_type_copper) { manc = E1000_READ_REG(&adapter->hw, MANC); manc &= ~(E1000_MANC_ARP_EN); E1000_WRITE_REG(&adapter->hw, MANC, manc); } /* If the controller is 82573 and f/w is AMT, do not set * DRV_LOAD until the interface is up. For all other cases, * let the f/w know that the h/w is now under the control * of the driver. */ if (adapter->hw.mac_type != e1000_82573 || !e1000_check_mng_mode(&adapter->hw)) e1000_get_hw_control(adapter); return 0; } #endif #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void e1000_netpoll(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); disable_irq(adapter->pdev->irq); e1000_intr(adapter->pdev->irq, netdev, NULL); e1000_clean_tx_irq(adapter, adapter->tx_ring); enable_irq(adapter->pdev->irq); } #endif /* e1000_main.c */