/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" #include #include #include struct change_domains { uint32_t invalidate_domains; uint32_t flush_domains; uint32_t flush_rings; }; static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj, struct intel_ring_buffer *pipelined); static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj, uint64_t offset, uint64_t size); static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj); static int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, bool interruptible); static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, unsigned alignment, bool map_and_fenceable); static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj); static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file); static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj); static int i915_gem_inactive_shrink(struct shrinker *shrinker, int nr_to_scan, gfp_t gfp_mask); /* some bookkeeping */ static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, size_t size) { dev_priv->mm.object_count++; dev_priv->mm.object_memory += size; } static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, size_t size) { dev_priv->mm.object_count--; dev_priv->mm.object_memory -= size; } static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv, struct drm_i915_gem_object *obj) { dev_priv->mm.gtt_count++; dev_priv->mm.gtt_memory += obj->gtt_space->size; if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) { dev_priv->mm.mappable_gtt_used += min_t(size_t, obj->gtt_space->size, dev_priv->mm.gtt_mappable_end - obj->gtt_offset); } list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list); } static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv, struct drm_i915_gem_object *obj) { dev_priv->mm.gtt_count--; dev_priv->mm.gtt_memory -= obj->gtt_space->size; if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) { dev_priv->mm.mappable_gtt_used -= min_t(size_t, obj->gtt_space->size, dev_priv->mm.gtt_mappable_end - obj->gtt_offset); } list_del_init(&obj->gtt_list); } /** * Update the mappable working set counters. Call _only_ when there is a change * in one of (pin|fault)_mappable and update *_mappable _before_ calling. * @mappable: new state the changed mappable flag (either pin_ or fault_). */ static void i915_gem_info_update_mappable(struct drm_i915_private *dev_priv, struct drm_i915_gem_object *obj, bool mappable) { if (mappable) { if (obj->pin_mappable && obj->fault_mappable) /* Combined state was already mappable. */ return; dev_priv->mm.gtt_mappable_count++; dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size; } else { if (obj->pin_mappable || obj->fault_mappable) /* Combined state still mappable. */ return; dev_priv->mm.gtt_mappable_count--; dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size; } } static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv, struct drm_i915_gem_object *obj, bool mappable) { dev_priv->mm.pin_count++; dev_priv->mm.pin_memory += obj->gtt_space->size; if (mappable) { obj->pin_mappable = true; i915_gem_info_update_mappable(dev_priv, obj, true); } } static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv, struct drm_i915_gem_object *obj) { dev_priv->mm.pin_count--; dev_priv->mm.pin_memory -= obj->gtt_space->size; if (obj->pin_mappable) { obj->pin_mappable = false; i915_gem_info_update_mappable(dev_priv, obj, false); } } int i915_gem_check_is_wedged(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct completion *x = &dev_priv->error_completion; unsigned long flags; int ret; if (!atomic_read(&dev_priv->mm.wedged)) return 0; ret = wait_for_completion_interruptible(x); if (ret) return ret; /* Success, we reset the GPU! */ if (!atomic_read(&dev_priv->mm.wedged)) return 0; /* GPU is hung, bump the completion count to account for * the token we just consumed so that we never hit zero and * end up waiting upon a subsequent completion event that * will never happen. */ spin_lock_irqsave(&x->wait.lock, flags); x->done++; spin_unlock_irqrestore(&x->wait.lock, flags); return -EIO; } static int i915_mutex_lock_interruptible(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = i915_gem_check_is_wedged(dev); if (ret) return ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (atomic_read(&dev_priv->mm.wedged)) { mutex_unlock(&dev->struct_mutex); return -EAGAIN; } WARN_ON(i915_verify_lists(dev)); return 0; } static inline bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) { return obj->gtt_space && !obj->active && obj->pin_count == 0; } int i915_gem_do_init(struct drm_device *dev, unsigned long start, unsigned long mappable_end, unsigned long end) { drm_i915_private_t *dev_priv = dev->dev_private; if (start >= end || (start & (PAGE_SIZE - 1)) != 0 || (end & (PAGE_SIZE - 1)) != 0) { return -EINVAL; } drm_mm_init(&dev_priv->mm.gtt_space, start, end - start); dev_priv->mm.gtt_total = end - start; dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start; dev_priv->mm.gtt_mappable_end = mappable_end; return 0; } int i915_gem_init_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_init *args = data; int ret; mutex_lock(&dev->struct_mutex); ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end); mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_get_aperture *args = data; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; mutex_lock(&dev->struct_mutex); args->aper_size = dev_priv->mm.gtt_total; args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory; mutex_unlock(&dev->struct_mutex); return 0; } /** * Creates a new mm object and returns a handle to it. */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_create *args = data; struct drm_i915_gem_object *obj; int ret; u32 handle; args->size = roundup(args->size, PAGE_SIZE); /* Allocate the new object */ obj = i915_gem_alloc_object(dev, args->size); if (obj == NULL) return -ENOMEM; ret = drm_gem_handle_create(file, &obj->base, &handle); if (ret) { drm_gem_object_release(&obj->base); i915_gem_info_remove_obj(dev->dev_private, obj->base.size); kfree(obj); return ret; } /* drop reference from allocate - handle holds it now */ drm_gem_object_unreference(&obj->base); trace_i915_gem_object_create(obj); args->handle = handle; return 0; } static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = obj->base.dev->dev_private; return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && obj->tiling_mode != I915_TILING_NONE; } static inline void slow_shmem_copy(struct page *dst_page, int dst_offset, struct page *src_page, int src_offset, int length) { char *dst_vaddr, *src_vaddr; dst_vaddr = kmap(dst_page); src_vaddr = kmap(src_page); memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length); kunmap(src_page); kunmap(dst_page); } static inline void slow_shmem_bit17_copy(struct page *gpu_page, int gpu_offset, struct page *cpu_page, int cpu_offset, int length, int is_read) { char *gpu_vaddr, *cpu_vaddr; /* Use the unswizzled path if this page isn't affected. */ if ((page_to_phys(gpu_page) & (1 << 17)) == 0) { if (is_read) return slow_shmem_copy(cpu_page, cpu_offset, gpu_page, gpu_offset, length); else return slow_shmem_copy(gpu_page, gpu_offset, cpu_page, cpu_offset, length); } gpu_vaddr = kmap(gpu_page); cpu_vaddr = kmap(cpu_page); /* Copy the data, XORing A6 with A17 (1). The user already knows he's * XORing with the other bits (A9 for Y, A9 and A10 for X) */ while (length > 0) { int cacheline_end = ALIGN(gpu_offset + 1, 64); int this_length = min(cacheline_end - gpu_offset, length); int swizzled_gpu_offset = gpu_offset ^ 64; if (is_read) { memcpy(cpu_vaddr + cpu_offset, gpu_vaddr + swizzled_gpu_offset, this_length); } else { memcpy(gpu_vaddr + swizzled_gpu_offset, cpu_vaddr + cpu_offset, this_length); } cpu_offset += this_length; gpu_offset += this_length; length -= this_length; } kunmap(cpu_page); kunmap(gpu_page); } /** * This is the fast shmem pread path, which attempts to copy_from_user directly * from the backing pages of the object to the user's address space. On a * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow(). */ static int i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; ssize_t remain; loff_t offset; char __user *user_data; int page_offset, page_length; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; offset = args->offset; while (remain > 0) { struct page *page; char *vaddr; int ret; /* Operation in this page * * page_offset = offset within page * page_length = bytes to copy for this page */ page_offset = offset & (PAGE_SIZE-1); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT, GFP_HIGHUSER | __GFP_RECLAIMABLE); if (IS_ERR(page)) return PTR_ERR(page); vaddr = kmap_atomic(page); ret = __copy_to_user_inatomic(user_data, vaddr + page_offset, page_length); kunmap_atomic(vaddr); mark_page_accessed(page); page_cache_release(page); if (ret) return -EFAULT; remain -= page_length; user_data += page_length; offset += page_length; } return 0; } /** * This is the fallback shmem pread path, which allocates temporary storage * in kernel space to copy_to_user into outside of the struct_mutex, so we * can copy out of the object's backing pages while holding the struct mutex * and not take page faults. */ static int i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; struct mm_struct *mm = current->mm; struct page **user_pages; ssize_t remain; loff_t offset, pinned_pages, i; loff_t first_data_page, last_data_page, num_pages; int shmem_page_offset; int data_page_index, data_page_offset; int page_length; int ret; uint64_t data_ptr = args->data_ptr; int do_bit17_swizzling; remain = args->size; /* Pin the user pages containing the data. We can't fault while * holding the struct mutex, yet we want to hold it while * dereferencing the user data. */ first_data_page = data_ptr / PAGE_SIZE; last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; num_pages = last_data_page - first_data_page + 1; user_pages = drm_malloc_ab(num_pages, sizeof(struct page *)); if (user_pages == NULL) return -ENOMEM; mutex_unlock(&dev->struct_mutex); down_read(&mm->mmap_sem); pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, num_pages, 1, 0, user_pages, NULL); up_read(&mm->mmap_sem); mutex_lock(&dev->struct_mutex); if (pinned_pages < num_pages) { ret = -EFAULT; goto out; } ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, args->size); if (ret) goto out; do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); offset = args->offset; while (remain > 0) { struct page *page; /* Operation in this page * * shmem_page_offset = offset within page in shmem file * data_page_index = page number in get_user_pages return * data_page_offset = offset with data_page_index page. * page_length = bytes to copy for this page */ shmem_page_offset = offset & ~PAGE_MASK; data_page_index = data_ptr / PAGE_SIZE - first_data_page; data_page_offset = data_ptr & ~PAGE_MASK; page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; if ((data_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - data_page_offset; page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT, GFP_HIGHUSER | __GFP_RECLAIMABLE); if (IS_ERR(page)) return PTR_ERR(page); if (do_bit17_swizzling) { slow_shmem_bit17_copy(page, shmem_page_offset, user_pages[data_page_index], data_page_offset, page_length, 1); } else { slow_shmem_copy(user_pages[data_page_index], data_page_offset, page, shmem_page_offset, page_length); } mark_page_accessed(page); page_cache_release(page); remain -= page_length; data_ptr += page_length; offset += page_length; } out: for (i = 0; i < pinned_pages; i++) { SetPageDirty(user_pages[i]); mark_page_accessed(user_pages[i]); page_cache_release(user_pages[i]); } drm_free_large(user_pages); return ret; } /** * Reads data from the object referenced by handle. * * On error, the contents of *data are undefined. */ int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pread *args = data; struct drm_i915_gem_object *obj; int ret = 0; if (args->size == 0) return 0; if (!access_ok(VERIFY_WRITE, (char __user *)(uintptr_t)args->data_ptr, args->size)) return -EFAULT; ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr, args->size); if (ret) return -EFAULT; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } /* Bounds check source. */ if (args->offset > obj->base.size || args->size > obj->base.size - args->offset) { ret = -EINVAL; goto out; } ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, args->size); if (ret) goto out; ret = -EFAULT; if (!i915_gem_object_needs_bit17_swizzle(obj)) ret = i915_gem_shmem_pread_fast(dev, obj, args, file); if (ret == -EFAULT) ret = i915_gem_shmem_pread_slow(dev, obj, args, file); out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /* This is the fast write path which cannot handle * page faults in the source data */ static inline int fast_user_write(struct io_mapping *mapping, loff_t page_base, int page_offset, char __user *user_data, int length) { char *vaddr_atomic; unsigned long unwritten; vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset, user_data, length); io_mapping_unmap_atomic(vaddr_atomic); return unwritten; } /* Here's the write path which can sleep for * page faults */ static inline void slow_kernel_write(struct io_mapping *mapping, loff_t gtt_base, int gtt_offset, struct page *user_page, int user_offset, int length) { char __iomem *dst_vaddr; char *src_vaddr; dst_vaddr = io_mapping_map_wc(mapping, gtt_base); src_vaddr = kmap(user_page); memcpy_toio(dst_vaddr + gtt_offset, src_vaddr + user_offset, length); kunmap(user_page); io_mapping_unmap(dst_vaddr); } /** * This is the fast pwrite path, where we copy the data directly from the * user into the GTT, uncached. */ static int i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { drm_i915_private_t *dev_priv = dev->dev_private; ssize_t remain; loff_t offset, page_base; char __user *user_data; int page_offset, page_length; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; offset = obj->gtt_offset + args->offset; while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ page_base = (offset & ~(PAGE_SIZE-1)); page_offset = offset & (PAGE_SIZE-1); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; /* If we get a fault while copying data, then (presumably) our * source page isn't available. Return the error and we'll * retry in the slow path. */ if (fast_user_write(dev_priv->mm.gtt_mapping, page_base, page_offset, user_data, page_length)) return -EFAULT; remain -= page_length; user_data += page_length; offset += page_length; } return 0; } /** * This is the fallback GTT pwrite path, which uses get_user_pages to pin * the memory and maps it using kmap_atomic for copying. * * This code resulted in x11perf -rgb10text consuming about 10% more CPU * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit). */ static int i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { drm_i915_private_t *dev_priv = dev->dev_private; ssize_t remain; loff_t gtt_page_base, offset; loff_t first_data_page, last_data_page, num_pages; loff_t pinned_pages, i; struct page **user_pages; struct mm_struct *mm = current->mm; int gtt_page_offset, data_page_offset, data_page_index, page_length; int ret; uint64_t data_ptr = args->data_ptr; remain = args->size; /* Pin the user pages containing the data. We can't fault while * holding the struct mutex, and all of the pwrite implementations * want to hold it while dereferencing the user data. */ first_data_page = data_ptr / PAGE_SIZE; last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; num_pages = last_data_page - first_data_page + 1; user_pages = drm_malloc_ab(num_pages, sizeof(struct page *)); if (user_pages == NULL) return -ENOMEM; mutex_unlock(&dev->struct_mutex); down_read(&mm->mmap_sem); pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, num_pages, 0, 0, user_pages, NULL); up_read(&mm->mmap_sem); mutex_lock(&dev->struct_mutex); if (pinned_pages < num_pages) { ret = -EFAULT; goto out_unpin_pages; } ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret) goto out_unpin_pages; offset = obj->gtt_offset + args->offset; while (remain > 0) { /* Operation in this page * * gtt_page_base = page offset within aperture * gtt_page_offset = offset within page in aperture * data_page_index = page number in get_user_pages return * data_page_offset = offset with data_page_index page. * page_length = bytes to copy for this page */ gtt_page_base = offset & PAGE_MASK; gtt_page_offset = offset & ~PAGE_MASK; data_page_index = data_ptr / PAGE_SIZE - first_data_page; data_page_offset = data_ptr & ~PAGE_MASK; page_length = remain; if ((gtt_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - gtt_page_offset; if ((data_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - data_page_offset; slow_kernel_write(dev_priv->mm.gtt_mapping, gtt_page_base, gtt_page_offset, user_pages[data_page_index], data_page_offset, page_length); remain -= page_length; offset += page_length; data_ptr += page_length; } out_unpin_pages: for (i = 0; i < pinned_pages; i++) page_cache_release(user_pages[i]); drm_free_large(user_pages); return ret; } /** * This is the fast shmem pwrite path, which attempts to directly * copy_from_user into the kmapped pages backing the object. */ static int i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; ssize_t remain; loff_t offset; char __user *user_data; int page_offset, page_length; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; offset = args->offset; obj->dirty = 1; while (remain > 0) { struct page *page; char *vaddr; int ret; /* Operation in this page * * page_offset = offset within page * page_length = bytes to copy for this page */ page_offset = offset & (PAGE_SIZE-1); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT, GFP_HIGHUSER | __GFP_RECLAIMABLE); if (IS_ERR(page)) return PTR_ERR(page); vaddr = kmap_atomic(page, KM_USER0); ret = __copy_from_user_inatomic(vaddr + page_offset, user_data, page_length); kunmap_atomic(vaddr, KM_USER0); set_page_dirty(page); mark_page_accessed(page); page_cache_release(page); /* If we get a fault while copying data, then (presumably) our * source page isn't available. Return the error and we'll * retry in the slow path. */ if (ret) return -EFAULT; remain -= page_length; user_data += page_length; offset += page_length; } return 0; } /** * This is the fallback shmem pwrite path, which uses get_user_pages to pin * the memory and maps it using kmap_atomic for copying. * * This avoids taking mmap_sem for faulting on the user's address while the * struct_mutex is held. */ static int i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; struct mm_struct *mm = current->mm; struct page **user_pages; ssize_t remain; loff_t offset, pinned_pages, i; loff_t first_data_page, last_data_page, num_pages; int shmem_page_offset; int data_page_index, data_page_offset; int page_length; int ret; uint64_t data_ptr = args->data_ptr; int do_bit17_swizzling; remain = args->size; /* Pin the user pages containing the data. We can't fault while * holding the struct mutex, and all of the pwrite implementations * want to hold it while dereferencing the user data. */ first_data_page = data_ptr / PAGE_SIZE; last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; num_pages = last_data_page - first_data_page + 1; user_pages = drm_malloc_ab(num_pages, sizeof(struct page *)); if (user_pages == NULL) return -ENOMEM; mutex_unlock(&dev->struct_mutex); down_read(&mm->mmap_sem); pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, num_pages, 0, 0, user_pages, NULL); up_read(&mm->mmap_sem); mutex_lock(&dev->struct_mutex); if (pinned_pages < num_pages) { ret = -EFAULT; goto out; } ret = i915_gem_object_set_to_cpu_domain(obj, 1); if (ret) goto out; do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); offset = args->offset; obj->dirty = 1; while (remain > 0) { struct page *page; /* Operation in this page * * shmem_page_offset = offset within page in shmem file * data_page_index = page number in get_user_pages return * data_page_offset = offset with data_page_index page. * page_length = bytes to copy for this page */ shmem_page_offset = offset & ~PAGE_MASK; data_page_index = data_ptr / PAGE_SIZE - first_data_page; data_page_offset = data_ptr & ~PAGE_MASK; page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; if ((data_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - data_page_offset; page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT, GFP_HIGHUSER | __GFP_RECLAIMABLE); if (IS_ERR(page)) { ret = PTR_ERR(page); goto out; } if (do_bit17_swizzling) { slow_shmem_bit17_copy(page, shmem_page_offset, user_pages[data_page_index], data_page_offset, page_length, 0); } else { slow_shmem_copy(page, shmem_page_offset, user_pages[data_page_index], data_page_offset, page_length); } set_page_dirty(page); mark_page_accessed(page); page_cache_release(page); remain -= page_length; data_ptr += page_length; offset += page_length; } out: for (i = 0; i < pinned_pages; i++) page_cache_release(user_pages[i]); drm_free_large(user_pages); return ret; } /** * Writes data to the object referenced by handle. * * On error, the contents of the buffer that were to be modified are undefined. */ int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pwrite *args = data; struct drm_i915_gem_object *obj; int ret; if (args->size == 0) return 0; if (!access_ok(VERIFY_READ, (char __user *)(uintptr_t)args->data_ptr, args->size)) return -EFAULT; ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr, args->size); if (ret) return -EFAULT; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } /* Bounds check destination. */ if (args->offset > obj->base.size || args->size > obj->base.size - args->offset) { ret = -EINVAL; goto out; } /* We can only do the GTT pwrite on untiled buffers, as otherwise * it would end up going through the fenced access, and we'll get * different detiling behavior between reading and writing. * pread/pwrite currently are reading and writing from the CPU * perspective, requiring manual detiling by the client. */ if (obj->phys_obj) ret = i915_gem_phys_pwrite(dev, obj, args, file); else if (obj->tiling_mode == I915_TILING_NONE && obj->gtt_space && obj->base.write_domain != I915_GEM_DOMAIN_CPU) { ret = i915_gem_object_pin(obj, 0, true); if (ret) goto out; ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret) goto out_unpin; ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); if (ret == -EFAULT) ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file); out_unpin: i915_gem_object_unpin(obj); } else { ret = i915_gem_object_set_to_cpu_domain(obj, 1); if (ret) goto out; ret = -EFAULT; if (!i915_gem_object_needs_bit17_swizzle(obj)) ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file); if (ret == -EFAULT) ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file); } out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * Called when user space prepares to use an object with the CPU, either * through the mmap ioctl's mapping or a GTT mapping. */ int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_set_domain *args = data; struct drm_i915_gem_object *obj; uint32_t read_domains = args->read_domains; uint32_t write_domain = args->write_domain; int ret; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; /* Only handle setting domains to types used by the CPU. */ if (write_domain & I915_GEM_GPU_DOMAINS) return -EINVAL; if (read_domains & I915_GEM_GPU_DOMAINS) return -EINVAL; /* Having something in the write domain implies it's in the read * domain, and only that read domain. Enforce that in the request. */ if (write_domain != 0 && read_domains != write_domain) return -EINVAL; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } intel_mark_busy(dev, obj); if (read_domains & I915_GEM_DOMAIN_GTT) { ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); /* Update the LRU on the fence for the CPU access that's * about to occur. */ if (obj->fence_reg != I915_FENCE_REG_NONE) { struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); } /* Silently promote "you're not bound, there was nothing to do" * to success, since the client was just asking us to * make sure everything was done. */ if (ret == -EINVAL) ret = 0; } else { ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); } /* Maintain LRU order of "inactive" objects */ if (ret == 0 && i915_gem_object_is_inactive(obj)) list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * Called when user space has done writes to this buffer */ int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_sw_finish *args = data; struct drm_i915_gem_object *obj; int ret = 0; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } /* Pinned buffers may be scanout, so flush the cache */ if (obj->pin_count) i915_gem_object_flush_cpu_write_domain(obj); drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * Maps the contents of an object, returning the address it is mapped * into. * * While the mapping holds a reference on the contents of the object, it doesn't * imply a ref on the object itself. */ int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_mmap *args = data; struct drm_gem_object *obj; loff_t offset; unsigned long addr; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; obj = drm_gem_object_lookup(dev, file, args->handle); if (obj == NULL) return -ENOENT; if (obj->size > dev_priv->mm.gtt_mappable_end) { drm_gem_object_unreference_unlocked(obj); return -E2BIG; } offset = args->offset; down_write(¤t->mm->mmap_sem); addr = do_mmap(obj->filp, 0, args->size, PROT_READ | PROT_WRITE, MAP_SHARED, args->offset); up_write(¤t->mm->mmap_sem); drm_gem_object_unreference_unlocked(obj); if (IS_ERR((void *)addr)) return addr; args->addr_ptr = (uint64_t) addr; return 0; } /** * i915_gem_fault - fault a page into the GTT * vma: VMA in question * vmf: fault info * * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped * from userspace. The fault handler takes care of binding the object to * the GTT (if needed), allocating and programming a fence register (again, * only if needed based on whether the old reg is still valid or the object * is tiled) and inserting a new PTE into the faulting process. * * Note that the faulting process may involve evicting existing objects * from the GTT and/or fence registers to make room. So performance may * suffer if the GTT working set is large or there are few fence registers * left. */ int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; pgoff_t page_offset; unsigned long pfn; int ret = 0; bool write = !!(vmf->flags & FAULT_FLAG_WRITE); /* We don't use vmf->pgoff since that has the fake offset */ page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> PAGE_SHIFT; /* Now bind it into the GTT if needed */ mutex_lock(&dev->struct_mutex); BUG_ON(obj->pin_count && !obj->pin_mappable); if (!obj->map_and_fenceable) { ret = i915_gem_object_unbind(obj); if (ret) goto unlock; } if (!obj->gtt_space) { ret = i915_gem_object_bind_to_gtt(obj, 0, true); if (ret) goto unlock; } ret = i915_gem_object_set_to_gtt_domain(obj, write); if (ret) goto unlock; if (!obj->fault_mappable) { obj->fault_mappable = true; i915_gem_info_update_mappable(dev_priv, obj, true); } /* Need a new fence register? */ if (obj->tiling_mode != I915_TILING_NONE) { ret = i915_gem_object_get_fence_reg(obj, true); if (ret) goto unlock; } if (i915_gem_object_is_inactive(obj)) list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) + page_offset; /* Finally, remap it using the new GTT offset */ ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); unlock: mutex_unlock(&dev->struct_mutex); switch (ret) { case -EAGAIN: set_need_resched(); case 0: case -ERESTARTSYS: return VM_FAULT_NOPAGE; case -ENOMEM: return VM_FAULT_OOM; default: return VM_FAULT_SIGBUS; } } /** * i915_gem_create_mmap_offset - create a fake mmap offset for an object * @obj: obj in question * * GEM memory mapping works by handing back to userspace a fake mmap offset * it can use in a subsequent mmap(2) call. The DRM core code then looks * up the object based on the offset and sets up the various memory mapping * structures. * * This routine allocates and attaches a fake offset for @obj. */ static int i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_gem_mm *mm = dev->mm_private; struct drm_map_list *list; struct drm_local_map *map; int ret = 0; /* Set the object up for mmap'ing */ list = &obj->base.map_list; list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL); if (!list->map) return -ENOMEM; map = list->map; map->type = _DRM_GEM; map->size = obj->base.size; map->handle = obj; /* Get a DRM GEM mmap offset allocated... */ list->file_offset_node = drm_mm_search_free(&mm->offset_manager, obj->base.size / PAGE_SIZE, 0, 0); if (!list->file_offset_node) { DRM_ERROR("failed to allocate offset for bo %d\n", obj->base.name); ret = -ENOSPC; goto out_free_list; } list->file_offset_node = drm_mm_get_block(list->file_offset_node, obj->base.size / PAGE_SIZE, 0); if (!list->file_offset_node) { ret = -ENOMEM; goto out_free_list; } list->hash.key = list->file_offset_node->start; ret = drm_ht_insert_item(&mm->offset_hash, &list->hash); if (ret) { DRM_ERROR("failed to add to map hash\n"); goto out_free_mm; } return 0; out_free_mm: drm_mm_put_block(list->file_offset_node); out_free_list: kfree(list->map); list->map = NULL; return ret; } /** * i915_gem_release_mmap - remove physical page mappings * @obj: obj in question * * Preserve the reservation of the mmapping with the DRM core code, but * relinquish ownership of the pages back to the system. * * It is vital that we remove the page mapping if we have mapped a tiled * object through the GTT and then lose the fence register due to * resource pressure. Similarly if the object has been moved out of the * aperture, than pages mapped into userspace must be revoked. Removing the * mapping will then trigger a page fault on the next user access, allowing * fixup by i915_gem_fault(). */ void i915_gem_release_mmap(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (unlikely(obj->base.map_list.map && dev->dev_mapping)) unmap_mapping_range(dev->dev_mapping, (loff_t)obj->base.map_list.hash.key<base.size, 1); if (obj->fault_mappable) { obj->fault_mappable = false; i915_gem_info_update_mappable(dev_priv, obj, false); } } static void i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_gem_mm *mm = dev->mm_private; struct drm_map_list *list = &obj->base.map_list; drm_ht_remove_item(&mm->offset_hash, &list->hash); drm_mm_put_block(list->file_offset_node); kfree(list->map); list->map = NULL; } static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; uint32_t size; if (INTEL_INFO(dev)->gen >= 4 || obj->tiling_mode == I915_TILING_NONE) return obj->base.size; /* Previous chips need a power-of-two fence region when tiling */ if (INTEL_INFO(dev)->gen == 3) size = 1024*1024; else size = 512*1024; while (size < obj->base.size) size <<= 1; return size; } /** * i915_gem_get_gtt_alignment - return required GTT alignment for an object * @obj: object to check * * Return the required GTT alignment for an object, taking into account * potential fence register mapping. */ static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; /* * Minimum alignment is 4k (GTT page size), but might be greater * if a fence register is needed for the object. */ if (INTEL_INFO(dev)->gen >= 4 || obj->tiling_mode == I915_TILING_NONE) return 4096; /* * Previous chips need to be aligned to the size of the smallest * fence register that can contain the object. */ return i915_gem_get_gtt_size(obj); } /** * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an * unfenced object * @obj: object to check * * Return the required GTT alignment for an object, only taking into account * unfenced tiled surface requirements. */ static uint32_t i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; int tile_height; /* * Minimum alignment is 4k (GTT page size) for sane hw. */ if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || obj->tiling_mode == I915_TILING_NONE) return 4096; /* * Older chips need unfenced tiled buffers to be aligned to the left * edge of an even tile row (where tile rows are counted as if the bo is * placed in a fenced gtt region). */ if (IS_GEN2(dev) || (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))) tile_height = 32; else tile_height = 8; return tile_height * obj->stride * 2; } /** * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing * @dev: DRM device * @data: GTT mapping ioctl data * @file: GEM object info * * Simply returns the fake offset to userspace so it can mmap it. * The mmap call will end up in drm_gem_mmap(), which will set things * up so we can get faults in the handler above. * * The fault handler will take care of binding the object into the GTT * (since it may have been evicted to make room for something), allocating * a fence register, and mapping the appropriate aperture address into * userspace. */ int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_mmap_gtt *args = data; struct drm_i915_gem_object *obj; int ret; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } if (obj->base.size > dev_priv->mm.gtt_mappable_end) { ret = -E2BIG; goto unlock; } if (obj->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to mmap a purgeable buffer\n"); ret = -EINVAL; goto out; } if (!obj->base.map_list.map) { ret = i915_gem_create_mmap_offset(obj); if (ret) goto out; } args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj, gfp_t gfpmask) { int page_count, i; struct address_space *mapping; struct inode *inode; struct page *page; /* Get the list of pages out of our struct file. They'll be pinned * at this point until we release them. */ page_count = obj->base.size / PAGE_SIZE; BUG_ON(obj->pages != NULL); obj->pages = drm_malloc_ab(page_count, sizeof(struct page *)); if (obj->pages == NULL) return -ENOMEM; inode = obj->base.filp->f_path.dentry->d_inode; mapping = inode->i_mapping; for (i = 0; i < page_count; i++) { page = read_cache_page_gfp(mapping, i, GFP_HIGHUSER | __GFP_COLD | __GFP_RECLAIMABLE | gfpmask); if (IS_ERR(page)) goto err_pages; obj->pages[i] = page; } if (obj->tiling_mode != I915_TILING_NONE) i915_gem_object_do_bit_17_swizzle(obj); return 0; err_pages: while (i--) page_cache_release(obj->pages[i]); drm_free_large(obj->pages); obj->pages = NULL; return PTR_ERR(page); } static void i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) { int page_count = obj->base.size / PAGE_SIZE; int i; BUG_ON(obj->madv == __I915_MADV_PURGED); if (obj->tiling_mode != I915_TILING_NONE) i915_gem_object_save_bit_17_swizzle(obj); if (obj->madv == I915_MADV_DONTNEED) obj->dirty = 0; for (i = 0; i < page_count; i++) { if (obj->dirty) set_page_dirty(obj->pages[i]); if (obj->madv == I915_MADV_WILLNEED) mark_page_accessed(obj->pages[i]); page_cache_release(obj->pages[i]); } obj->dirty = 0; drm_free_large(obj->pages); obj->pages = NULL; } static uint32_t i915_gem_next_request_seqno(struct drm_device *dev, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; return ring->outstanding_lazy_request = dev_priv->next_seqno; } static void i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, struct intel_ring_buffer *ring) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t seqno = i915_gem_next_request_seqno(dev, ring); BUG_ON(ring == NULL); obj->ring = ring; /* Add a reference if we're newly entering the active list. */ if (!obj->active) { drm_gem_object_reference(&obj->base); obj->active = 1; } /* Move from whatever list we were on to the tail of execution. */ list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); list_move_tail(&obj->ring_list, &ring->active_list); obj->last_rendering_seqno = seqno; if (obj->fenced_gpu_access) { struct drm_i915_fence_reg *reg; BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE); obj->last_fenced_seqno = seqno; obj->last_fenced_ring = ring; reg = &dev_priv->fence_regs[obj->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); } } static void i915_gem_object_move_off_active(struct drm_i915_gem_object *obj) { list_del_init(&obj->ring_list); obj->last_rendering_seqno = 0; obj->last_fenced_seqno = 0; } static void i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; BUG_ON(!obj->active); list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list); i915_gem_object_move_off_active(obj); } static void i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (obj->pin_count != 0) list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list); else list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); BUG_ON(!list_empty(&obj->gpu_write_list)); BUG_ON(!obj->active); obj->ring = NULL; i915_gem_object_move_off_active(obj); obj->fenced_gpu_access = false; obj->last_fenced_ring = NULL; obj->active = 0; drm_gem_object_unreference(&obj->base); WARN_ON(i915_verify_lists(dev)); } /* Immediately discard the backing storage */ static void i915_gem_object_truncate(struct drm_i915_gem_object *obj) { struct inode *inode; /* Our goal here is to return as much of the memory as * is possible back to the system as we are called from OOM. * To do this we must instruct the shmfs to drop all of its * backing pages, *now*. Here we mirror the actions taken * when by shmem_delete_inode() to release the backing store. */ inode = obj->base.filp->f_path.dentry->d_inode; truncate_inode_pages(inode->i_mapping, 0); if (inode->i_op->truncate_range) inode->i_op->truncate_range(inode, 0, (loff_t)-1); obj->madv = __I915_MADV_PURGED; } static inline int i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) { return obj->madv == I915_MADV_DONTNEED; } static void i915_gem_process_flushing_list(struct drm_device *dev, uint32_t flush_domains, struct intel_ring_buffer *ring) { struct drm_i915_gem_object *obj, *next; list_for_each_entry_safe(obj, next, &ring->gpu_write_list, gpu_write_list) { if (obj->base.write_domain & flush_domains) { uint32_t old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; list_del_init(&obj->gpu_write_list); i915_gem_object_move_to_active(obj, ring); trace_i915_gem_object_change_domain(obj, obj->base.read_domains, old_write_domain); } } } int i915_add_request(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_request *request, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_file_private *file_priv = NULL; uint32_t seqno; int was_empty; int ret; BUG_ON(request == NULL); if (file != NULL) file_priv = file->driver_priv; ret = ring->add_request(ring, &seqno); if (ret) return ret; ring->outstanding_lazy_request = false; request->seqno = seqno; request->ring = ring; request->emitted_jiffies = jiffies; was_empty = list_empty(&ring->request_list); list_add_tail(&request->list, &ring->request_list); if (file_priv) { spin_lock(&file_priv->mm.lock); request->file_priv = file_priv; list_add_tail(&request->client_list, &file_priv->mm.request_list); spin_unlock(&file_priv->mm.lock); } if (!dev_priv->mm.suspended) { mod_timer(&dev_priv->hangcheck_timer, jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)); if (was_empty) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); } return 0; } /** * Command execution barrier * * Ensures that all commands in the ring are finished * before signalling the CPU */ static void i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring) { uint32_t flush_domains = 0; /* The sampler always gets flushed on i965 (sigh) */ if (INTEL_INFO(dev)->gen >= 4) flush_domains |= I915_GEM_DOMAIN_SAMPLER; ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains); } static inline void i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) { struct drm_i915_file_private *file_priv = request->file_priv; if (!file_priv) return; spin_lock(&file_priv->mm.lock); list_del(&request->client_list); request->file_priv = NULL; spin_unlock(&file_priv->mm.lock); } static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, struct intel_ring_buffer *ring) { while (!list_empty(&ring->request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&ring->request_list, struct drm_i915_gem_request, list); list_del(&request->list); i915_gem_request_remove_from_client(request); kfree(request); } while (!list_empty(&ring->active_list)) { struct drm_i915_gem_object *obj; obj = list_first_entry(&ring->active_list, struct drm_i915_gem_object, ring_list); obj->base.write_domain = 0; list_del_init(&obj->gpu_write_list); i915_gem_object_move_to_inactive(obj); } } void i915_gem_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; int i; i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring); i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring); i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring); /* Remove anything from the flushing lists. The GPU cache is likely * to be lost on reset along with the data, so simply move the * lost bo to the inactive list. */ while (!list_empty(&dev_priv->mm.flushing_list)) { obj= list_first_entry(&dev_priv->mm.flushing_list, struct drm_i915_gem_object, mm_list); obj->base.write_domain = 0; list_del_init(&obj->gpu_write_list); i915_gem_object_move_to_inactive(obj); } /* Move everything out of the GPU domains to ensure we do any * necessary invalidation upon reuse. */ list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) { obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; } /* The fence registers are invalidated so clear them out */ for (i = 0; i < 16; i++) { struct drm_i915_fence_reg *reg; reg = &dev_priv->fence_regs[i]; if (!reg->obj) continue; i915_gem_clear_fence_reg(reg->obj); } } /** * This function clears the request list as sequence numbers are passed. */ static void i915_gem_retire_requests_ring(struct drm_device *dev, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t seqno; if (!ring->status_page.page_addr || list_empty(&ring->request_list)) return; WARN_ON(i915_verify_lists(dev)); seqno = ring->get_seqno(ring); while (!list_empty(&ring->request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&ring->request_list, struct drm_i915_gem_request, list); if (!i915_seqno_passed(seqno, request->seqno)) break; trace_i915_gem_request_retire(dev, request->seqno); list_del(&request->list); i915_gem_request_remove_from_client(request); kfree(request); } /* Move any buffers on the active list that are no longer referenced * by the ringbuffer to the flushing/inactive lists as appropriate. */ while (!list_empty(&ring->active_list)) { struct drm_i915_gem_object *obj; obj= list_first_entry(&ring->active_list, struct drm_i915_gem_object, ring_list); if (!i915_seqno_passed(seqno, obj->last_rendering_seqno)) break; if (obj->base.write_domain != 0) i915_gem_object_move_to_flushing(obj); else i915_gem_object_move_to_inactive(obj); } if (unlikely (dev_priv->trace_irq_seqno && i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) { ring->user_irq_put(ring); dev_priv->trace_irq_seqno = 0; } WARN_ON(i915_verify_lists(dev)); } void i915_gem_retire_requests(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; if (!list_empty(&dev_priv->mm.deferred_free_list)) { struct drm_i915_gem_object *obj, *next; /* We must be careful that during unbind() we do not * accidentally infinitely recurse into retire requests. * Currently: * retire -> free -> unbind -> wait -> retire_ring */ list_for_each_entry_safe(obj, next, &dev_priv->mm.deferred_free_list, mm_list) i915_gem_free_object_tail(obj); } i915_gem_retire_requests_ring(dev, &dev_priv->render_ring); i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring); i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring); } static void i915_gem_retire_work_handler(struct work_struct *work) { drm_i915_private_t *dev_priv; struct drm_device *dev; dev_priv = container_of(work, drm_i915_private_t, mm.retire_work.work); dev = dev_priv->dev; /* Come back later if the device is busy... */ if (!mutex_trylock(&dev->struct_mutex)) { queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); return; } i915_gem_retire_requests(dev); if (!dev_priv->mm.suspended && (!list_empty(&dev_priv->render_ring.request_list) || !list_empty(&dev_priv->bsd_ring.request_list) || !list_empty(&dev_priv->blt_ring.request_list))) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); mutex_unlock(&dev->struct_mutex); } int i915_do_wait_request(struct drm_device *dev, uint32_t seqno, bool interruptible, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; u32 ier; int ret = 0; BUG_ON(seqno == 0); if (atomic_read(&dev_priv->mm.wedged)) return -EAGAIN; if (seqno == ring->outstanding_lazy_request) { struct drm_i915_gem_request *request; request = kzalloc(sizeof(*request), GFP_KERNEL); if (request == NULL) return -ENOMEM; ret = i915_add_request(dev, NULL, request, ring); if (ret) { kfree(request); return ret; } seqno = request->seqno; } if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) { if (HAS_PCH_SPLIT(dev)) ier = I915_READ(DEIER) | I915_READ(GTIER); else ier = I915_READ(IER); if (!ier) { DRM_ERROR("something (likely vbetool) disabled " "interrupts, re-enabling\n"); i915_driver_irq_preinstall(dev); i915_driver_irq_postinstall(dev); } trace_i915_gem_request_wait_begin(dev, seqno); ring->waiting_seqno = seqno; ring->user_irq_get(ring); if (interruptible) ret = wait_event_interruptible(ring->irq_queue, i915_seqno_passed(ring->get_seqno(ring), seqno) || atomic_read(&dev_priv->mm.wedged)); else wait_event(ring->irq_queue, i915_seqno_passed(ring->get_seqno(ring), seqno) || atomic_read(&dev_priv->mm.wedged)); ring->user_irq_put(ring); ring->waiting_seqno = 0; trace_i915_gem_request_wait_end(dev, seqno); } if (atomic_read(&dev_priv->mm.wedged)) ret = -EAGAIN; if (ret && ret != -ERESTARTSYS) DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n", __func__, ret, seqno, ring->get_seqno(ring), dev_priv->next_seqno); /* Directly dispatch request retiring. While we have the work queue * to handle this, the waiter on a request often wants an associated * buffer to have made it to the inactive list, and we would need * a separate wait queue to handle that. */ if (ret == 0) i915_gem_retire_requests_ring(dev, ring); return ret; } /** * Waits for a sequence number to be signaled, and cleans up the * request and object lists appropriately for that event. */ static int i915_wait_request(struct drm_device *dev, uint32_t seqno, struct intel_ring_buffer *ring) { return i915_do_wait_request(dev, seqno, 1, ring); } static void i915_gem_flush_ring(struct drm_device *dev, struct intel_ring_buffer *ring, uint32_t invalidate_domains, uint32_t flush_domains) { ring->flush(ring, invalidate_domains, flush_domains); i915_gem_process_flushing_list(dev, flush_domains, ring); } static void i915_gem_flush(struct drm_device *dev, uint32_t invalidate_domains, uint32_t flush_domains, uint32_t flush_rings) { drm_i915_private_t *dev_priv = dev->dev_private; if (flush_domains & I915_GEM_DOMAIN_CPU) intel_gtt_chipset_flush(); if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) { if (flush_rings & RING_RENDER) i915_gem_flush_ring(dev, &dev_priv->render_ring, invalidate_domains, flush_domains); if (flush_rings & RING_BSD) i915_gem_flush_ring(dev, &dev_priv->bsd_ring, invalidate_domains, flush_domains); if (flush_rings & RING_BLT) i915_gem_flush_ring(dev, &dev_priv->blt_ring, invalidate_domains, flush_domains); } } /** * Ensures that all rendering to the object has completed and the object is * safe to unbind from the GTT or access from the CPU. */ static int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, bool interruptible) { struct drm_device *dev = obj->base.dev; int ret; /* This function only exists to support waiting for existing rendering, * not for emitting required flushes. */ BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0); /* If there is rendering queued on the buffer being evicted, wait for * it. */ if (obj->active) { ret = i915_do_wait_request(dev, obj->last_rendering_seqno, interruptible, obj->ring); if (ret) return ret; } return 0; } /** * Unbinds an object from the GTT aperture. */ int i915_gem_object_unbind(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret = 0; if (obj->gtt_space == NULL) return 0; if (obj->pin_count != 0) { DRM_ERROR("Attempting to unbind pinned buffer\n"); return -EINVAL; } /* blow away mappings if mapped through GTT */ i915_gem_release_mmap(obj); /* Move the object to the CPU domain to ensure that * any possible CPU writes while it's not in the GTT * are flushed when we go to remap it. This will * also ensure that all pending GPU writes are finished * before we unbind. */ ret = i915_gem_object_set_to_cpu_domain(obj, 1); if (ret == -ERESTARTSYS) return ret; /* Continue on if we fail due to EIO, the GPU is hung so we * should be safe and we need to cleanup or else we might * cause memory corruption through use-after-free. */ if (ret) { i915_gem_clflush_object(obj); obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; } /* release the fence reg _after_ flushing */ if (obj->fence_reg != I915_FENCE_REG_NONE) i915_gem_clear_fence_reg(obj); i915_gem_gtt_unbind_object(obj); i915_gem_object_put_pages_gtt(obj); i915_gem_info_remove_gtt(dev_priv, obj); list_del_init(&obj->mm_list); /* Avoid an unnecessary call to unbind on rebind. */ obj->map_and_fenceable = true; drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; obj->gtt_offset = 0; if (i915_gem_object_is_purgeable(obj)) i915_gem_object_truncate(obj); trace_i915_gem_object_unbind(obj); return ret; } static int i915_ring_idle(struct drm_device *dev, struct intel_ring_buffer *ring) { if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list)) return 0; i915_gem_flush_ring(dev, ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); return i915_wait_request(dev, i915_gem_next_request_seqno(dev, ring), ring); } int i915_gpu_idle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; bool lists_empty; int ret; lists_empty = (list_empty(&dev_priv->mm.flushing_list) && list_empty(&dev_priv->mm.active_list)); if (lists_empty) return 0; /* Flush everything onto the inactive list. */ ret = i915_ring_idle(dev, &dev_priv->render_ring); if (ret) return ret; ret = i915_ring_idle(dev, &dev_priv->bsd_ring); if (ret) return ret; ret = i915_ring_idle(dev, &dev_priv->blt_ring); if (ret) return ret; return 0; } static void sandybridge_write_fence_reg(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 size = obj->gtt_space->size; int regnum = obj->fence_reg; uint64_t val; val = (uint64_t)((obj->gtt_offset + size - 4096) & 0xfffff000) << 32; val |= obj->gtt_offset & 0xfffff000; val |= (uint64_t)((obj->stride / 128) - 1) << SANDYBRIDGE_FENCE_PITCH_SHIFT; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I965_FENCE_TILING_Y_SHIFT; val |= I965_FENCE_REG_VALID; I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val); } static void i965_write_fence_reg(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 size = obj->gtt_space->size; int regnum = obj->fence_reg; uint64_t val; val = (uint64_t)((obj->gtt_offset + size - 4096) & 0xfffff000) << 32; val |= obj->gtt_offset & 0xfffff000; val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I965_FENCE_TILING_Y_SHIFT; val |= I965_FENCE_REG_VALID; I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val); } static void i915_write_fence_reg(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 size = obj->gtt_space->size; uint32_t fence_reg, val, pitch_val; int tile_width; if ((obj->gtt_offset & ~I915_FENCE_START_MASK) || (obj->gtt_offset & (size - 1))) { WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n", __func__, obj->gtt_offset, obj->map_and_fenceable, size, obj->gtt_space->start, obj->gtt_space->size); return; } if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) tile_width = 128; else tile_width = 512; /* Note: pitch better be a power of two tile widths */ pitch_val = obj->stride / tile_width; pitch_val = ffs(pitch_val) - 1; if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL); else WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL); val = obj->gtt_offset; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I830_FENCE_TILING_Y_SHIFT; val |= I915_FENCE_SIZE_BITS(size); val |= pitch_val << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; fence_reg = obj->fence_reg; if (fence_reg < 8) fence_reg = FENCE_REG_830_0 + fence_reg * 4; else fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4; I915_WRITE(fence_reg, val); } static void i830_write_fence_reg(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 size = obj->gtt_space->size; int regnum = obj->fence_reg; uint32_t val; uint32_t pitch_val; uint32_t fence_size_bits; if ((obj->gtt_offset & ~I830_FENCE_START_MASK) || (obj->gtt_offset & (obj->base.size - 1))) { WARN(1, "%s: object 0x%08x not 512K or size aligned\n", __func__, obj->gtt_offset); return; } pitch_val = obj->stride / 128; pitch_val = ffs(pitch_val) - 1; WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL); val = obj->gtt_offset; if (obj->tiling_mode == I915_TILING_Y) val |= 1 << I830_FENCE_TILING_Y_SHIFT; fence_size_bits = I830_FENCE_SIZE_BITS(size); WARN_ON(fence_size_bits & ~0x00000f00); val |= fence_size_bits; val |= pitch_val << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val); } static int i915_find_fence_reg(struct drm_device *dev, bool interruptible) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_fence_reg *reg; struct drm_i915_gem_object *obj = NULL; int i, avail, ret; /* First try to find a free reg */ avail = 0; for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { reg = &dev_priv->fence_regs[i]; if (!reg->obj) return i; if (!reg->obj->pin_count) avail++; } if (avail == 0) return -ENOSPC; /* None available, try to steal one or wait for a user to finish */ avail = I915_FENCE_REG_NONE; list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { obj = reg->obj; if (obj->pin_count) continue; /* found one! */ avail = obj->fence_reg; break; } BUG_ON(avail == I915_FENCE_REG_NONE); /* We only have a reference on obj from the active list. put_fence_reg * might drop that one, causing a use-after-free in it. So hold a * private reference to obj like the other callers of put_fence_reg * (set_tiling ioctl) do. */ drm_gem_object_reference(&obj->base); ret = i915_gem_object_put_fence_reg(obj, interruptible); drm_gem_object_unreference(&obj->base); if (ret != 0) return ret; return avail; } /** * i915_gem_object_get_fence_reg - set up a fence reg for an object * @obj: object to map through a fence reg * * When mapping objects through the GTT, userspace wants to be able to write * to them without having to worry about swizzling if the object is tiled. * * This function walks the fence regs looking for a free one for @obj, * stealing one if it can't find any. * * It then sets up the reg based on the object's properties: address, pitch * and tiling format. */ int i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj, bool interruptible) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_fence_reg *reg = NULL; int ret; /* Just update our place in the LRU if our fence is getting used. */ if (obj->fence_reg != I915_FENCE_REG_NONE) { reg = &dev_priv->fence_regs[obj->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); return 0; } switch (obj->tiling_mode) { case I915_TILING_NONE: WARN(1, "allocating a fence for non-tiled object?\n"); break; case I915_TILING_X: if (!obj->stride) return -EINVAL; WARN((obj->stride & (512 - 1)), "object 0x%08x is X tiled but has non-512B pitch\n", obj->gtt_offset); break; case I915_TILING_Y: if (!obj->stride) return -EINVAL; WARN((obj->stride & (128 - 1)), "object 0x%08x is Y tiled but has non-128B pitch\n", obj->gtt_offset); break; } ret = i915_find_fence_reg(dev, interruptible); if (ret < 0) return ret; obj->fence_reg = ret; reg = &dev_priv->fence_regs[obj->fence_reg]; list_add_tail(®->lru_list, &dev_priv->mm.fence_list); reg->obj = obj; switch (INTEL_INFO(dev)->gen) { case 6: sandybridge_write_fence_reg(obj); break; case 5: case 4: i965_write_fence_reg(obj); break; case 3: i915_write_fence_reg(obj); break; case 2: i830_write_fence_reg(obj); break; } trace_i915_gem_object_get_fence(obj, obj->fence_reg, obj->tiling_mode); return 0; } /** * i915_gem_clear_fence_reg - clear out fence register info * @obj: object to clear * * Zeroes out the fence register itself and clears out the associated * data structures in dev_priv and obj. */ static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg]; uint32_t fence_reg; switch (INTEL_INFO(dev)->gen) { case 6: I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (obj->fence_reg * 8), 0); break; case 5: case 4: I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0); break; case 3: if (obj->fence_reg >= 8) fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4; else case 2: fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4; I915_WRITE(fence_reg, 0); break; } reg->obj = NULL; obj->fence_reg = I915_FENCE_REG_NONE; list_del_init(®->lru_list); } /** * i915_gem_object_put_fence_reg - waits on outstanding fenced access * to the buffer to finish, and then resets the fence register. * @obj: tiled object holding a fence register. * @bool: whether the wait upon the fence is interruptible * * Zeroes out the fence register itself and clears out the associated * data structures in dev_priv and obj. */ int i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj, bool interruptible) { struct drm_device *dev = obj->base.dev; int ret; if (obj->fence_reg == I915_FENCE_REG_NONE) return 0; /* If we've changed tiling, GTT-mappings of the object * need to re-fault to ensure that the correct fence register * setup is in place. */ i915_gem_release_mmap(obj); /* On the i915, GPU access to tiled buffers is via a fence, * therefore we must wait for any outstanding access to complete * before clearing the fence. */ if (obj->fenced_gpu_access) { ret = i915_gem_object_flush_gpu_write_domain(obj, NULL); if (ret) return ret; obj->fenced_gpu_access = false; } if (obj->last_fenced_seqno) { ret = i915_do_wait_request(dev, obj->last_fenced_seqno, interruptible, obj->last_fenced_ring); if (ret) return ret; obj->last_fenced_seqno = false; } i915_gem_object_flush_gtt_write_domain(obj); i915_gem_clear_fence_reg(obj); return 0; } /** * Finds free space in the GTT aperture and binds the object there. */ static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, unsigned alignment, bool map_and_fenceable) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_mm_node *free_space; gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN; u32 size, fence_size, fence_alignment, unfenced_alignment; bool mappable, fenceable; int ret; if (obj->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to bind a purgeable object\n"); return -EINVAL; } fence_size = i915_gem_get_gtt_size(obj); fence_alignment = i915_gem_get_gtt_alignment(obj); unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj); if (alignment == 0) alignment = map_and_fenceable ? fence_alignment : unfenced_alignment; if (map_and_fenceable && alignment & (fence_alignment - 1)) { DRM_ERROR("Invalid object alignment requested %u\n", alignment); return -EINVAL; } size = map_and_fenceable ? fence_size : obj->base.size; /* If the object is bigger than the entire aperture, reject it early * before evicting everything in a vain attempt to find space. */ if (obj->base.size > (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { DRM_ERROR("Attempting to bind an object larger than the aperture\n"); return -E2BIG; } search_free: if (map_and_fenceable) free_space = drm_mm_search_free_in_range(&dev_priv->mm.gtt_space, size, alignment, 0, dev_priv->mm.gtt_mappable_end, 0); else free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, size, alignment, 0); if (free_space != NULL) { if (map_and_fenceable) obj->gtt_space = drm_mm_get_block_range_generic(free_space, size, alignment, 0, dev_priv->mm.gtt_mappable_end, 0); else obj->gtt_space = drm_mm_get_block(free_space, size, alignment); } if (obj->gtt_space == NULL) { /* If the gtt is empty and we're still having trouble * fitting our object in, we're out of memory. */ ret = i915_gem_evict_something(dev, size, alignment, map_and_fenceable); if (ret) return ret; goto search_free; } ret = i915_gem_object_get_pages_gtt(obj, gfpmask); if (ret) { drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; if (ret == -ENOMEM) { /* first try to clear up some space from the GTT */ ret = i915_gem_evict_something(dev, size, alignment, map_and_fenceable); if (ret) { /* now try to shrink everyone else */ if (gfpmask) { gfpmask = 0; goto search_free; } return ret; } goto search_free; } return ret; } ret = i915_gem_gtt_bind_object(obj); if (ret) { i915_gem_object_put_pages_gtt(obj); drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; ret = i915_gem_evict_something(dev, size, alignment, map_and_fenceable); if (ret) return ret; goto search_free; } obj->gtt_offset = obj->gtt_space->start; /* keep track of bounds object by adding it to the inactive list */ list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); i915_gem_info_add_gtt(dev_priv, obj); /* Assert that the object is not currently in any GPU domain. As it * wasn't in the GTT, there shouldn't be any way it could have been in * a GPU cache */ BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable); fenceable = obj->gtt_space->size == fence_size && (obj->gtt_space->start & (fence_alignment -1)) == 0; mappable = obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; obj->map_and_fenceable = mappable && fenceable; return 0; } void i915_gem_clflush_object(struct drm_i915_gem_object *obj) { /* If we don't have a page list set up, then we're not pinned * to GPU, and we can ignore the cache flush because it'll happen * again at bind time. */ if (obj->pages == NULL) return; trace_i915_gem_object_clflush(obj); drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE); } /** Flushes any GPU write domain for the object if it's dirty. */ static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj, struct intel_ring_buffer *pipelined) { struct drm_device *dev = obj->base.dev; if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0) return 0; /* Queue the GPU write cache flushing we need. */ i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain); BUG_ON(obj->base.write_domain); if (pipelined && pipelined == obj->ring) return 0; return i915_gem_object_wait_rendering(obj, true); } /** Flushes the GTT write domain for the object if it's dirty. */ static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) { uint32_t old_write_domain; if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) return; /* No actual flushing is required for the GTT write domain. Writes * to it immediately go to main memory as far as we know, so there's * no chipset flush. It also doesn't land in render cache. */ i915_gem_release_mmap(obj); old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->base.read_domains, old_write_domain); } /** Flushes the CPU write domain for the object if it's dirty. */ static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) { uint32_t old_write_domain; if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) return; i915_gem_clflush_object(obj); intel_gtt_chipset_flush(); old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->base.read_domains, old_write_domain); } /** * Moves a single object to the GTT read, and possibly write domain. * * This function returns when the move is complete, including waiting on * flushes to occur. */ int i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, int write) { uint32_t old_write_domain, old_read_domains; int ret; /* Not valid to be called on unbound objects. */ if (obj->gtt_space == NULL) return -EINVAL; ret = i915_gem_object_flush_gpu_write_domain(obj, NULL); if (ret != 0) return ret; i915_gem_object_flush_cpu_write_domain(obj); if (write) { ret = i915_gem_object_wait_rendering(obj, true); if (ret) return ret; } old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); obj->base.read_domains |= I915_GEM_DOMAIN_GTT; if (write) { obj->base.read_domains = I915_GEM_DOMAIN_GTT; obj->base.write_domain = I915_GEM_DOMAIN_GTT; obj->dirty = 1; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return 0; } /* * Prepare buffer for display plane. Use uninterruptible for possible flush * wait, as in modesetting process we're not supposed to be interrupted. */ int i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj, struct intel_ring_buffer *pipelined) { uint32_t old_read_domains; int ret; /* Not valid to be called on unbound objects. */ if (obj->gtt_space == NULL) return -EINVAL; ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined); if (ret) return ret; /* Currently, we are always called from an non-interruptible context. */ if (!pipelined) { ret = i915_gem_object_wait_rendering(obj, false); if (ret) return ret; } i915_gem_object_flush_cpu_write_domain(obj); old_read_domains = obj->base.read_domains; obj->base.read_domains |= I915_GEM_DOMAIN_GTT; trace_i915_gem_object_change_domain(obj, old_read_domains, obj->base.write_domain); return 0; } int i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj, bool interruptible) { if (!obj->active) return 0; if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) i915_gem_flush_ring(obj->base.dev, obj->ring, 0, obj->base.write_domain); return i915_gem_object_wait_rendering(obj, interruptible); } /** * Moves a single object to the CPU read, and possibly write domain. * * This function returns when the move is complete, including waiting on * flushes to occur. */ static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) { uint32_t old_write_domain, old_read_domains; int ret; ret = i915_gem_object_flush_gpu_write_domain(obj, false); if (ret != 0) return ret; i915_gem_object_flush_gtt_write_domain(obj); /* If we have a partially-valid cache of the object in the CPU, * finish invalidating it and free the per-page flags. */ i915_gem_object_set_to_full_cpu_read_domain(obj); if (write) { ret = i915_gem_object_wait_rendering(obj, true); if (ret) return ret; } old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* Flush the CPU cache if it's still invalid. */ if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { i915_gem_clflush_object(obj); obj->base.read_domains |= I915_GEM_DOMAIN_CPU; } /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); /* If we're writing through the CPU, then the GPU read domains will * need to be invalidated at next use. */ if (write) { obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->base.write_domain = I915_GEM_DOMAIN_CPU; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return 0; } /* * Set the next domain for the specified object. This * may not actually perform the necessary flushing/invaliding though, * as that may want to be batched with other set_domain operations * * This is (we hope) the only really tricky part of gem. The goal * is fairly simple -- track which caches hold bits of the object * and make sure they remain coherent. A few concrete examples may * help to explain how it works. For shorthand, we use the notation * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the * a pair of read and write domain masks. * * Case 1: the batch buffer * * 1. Allocated * 2. Written by CPU * 3. Mapped to GTT * 4. Read by GPU * 5. Unmapped from GTT * 6. Freed * * Let's take these a step at a time * * 1. Allocated * Pages allocated from the kernel may still have * cache contents, so we set them to (CPU, CPU) always. * 2. Written by CPU (using pwrite) * The pwrite function calls set_domain (CPU, CPU) and * this function does nothing (as nothing changes) * 3. Mapped by GTT * This function asserts that the object is not * currently in any GPU-based read or write domains * 4. Read by GPU * i915_gem_execbuffer calls set_domain (COMMAND, 0). * As write_domain is zero, this function adds in the * current read domains (CPU+COMMAND, 0). * flush_domains is set to CPU. * invalidate_domains is set to COMMAND * clflush is run to get data out of the CPU caches * then i915_dev_set_domain calls i915_gem_flush to * emit an MI_FLUSH and drm_agp_chipset_flush * 5. Unmapped from GTT * i915_gem_object_unbind calls set_domain (CPU, CPU) * flush_domains and invalidate_domains end up both zero * so no flushing/invalidating happens * 6. Freed * yay, done * * Case 2: The shared render buffer * * 1. Allocated * 2. Mapped to GTT * 3. Read/written by GPU * 4. set_domain to (CPU,CPU) * 5. Read/written by CPU * 6. Read/written by GPU * * 1. Allocated * Same as last example, (CPU, CPU) * 2. Mapped to GTT * Nothing changes (assertions find that it is not in the GPU) * 3. Read/written by GPU * execbuffer calls set_domain (RENDER, RENDER) * flush_domains gets CPU * invalidate_domains gets GPU * clflush (obj) * MI_FLUSH and drm_agp_chipset_flush * 4. set_domain (CPU, CPU) * flush_domains gets GPU * invalidate_domains gets CPU * wait_rendering (obj) to make sure all drawing is complete. * This will include an MI_FLUSH to get the data from GPU * to memory * clflush (obj) to invalidate the CPU cache * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) * 5. Read/written by CPU * cache lines are loaded and dirtied * 6. Read written by GPU * Same as last GPU access * * Case 3: The constant buffer * * 1. Allocated * 2. Written by CPU * 3. Read by GPU * 4. Updated (written) by CPU again * 5. Read by GPU * * 1. Allocated * (CPU, CPU) * 2. Written by CPU * (CPU, CPU) * 3. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush * 4. Updated (written) by CPU again * (CPU, CPU) * flush_domains = 0 (no previous write domain) * invalidate_domains = 0 (no new read domains) * 5. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush */ static void i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj, struct intel_ring_buffer *ring, struct change_domains *cd) { uint32_t invalidate_domains = 0, flush_domains = 0; /* * If the object isn't moving to a new write domain, * let the object stay in multiple read domains */ if (obj->base.pending_write_domain == 0) obj->base.pending_read_domains |= obj->base.read_domains; /* * Flush the current write domain if * the new read domains don't match. Invalidate * any read domains which differ from the old * write domain */ if (obj->base.write_domain && (((obj->base.write_domain != obj->base.pending_read_domains || obj->ring != ring)) || (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) { flush_domains |= obj->base.write_domain; invalidate_domains |= obj->base.pending_read_domains & ~obj->base.write_domain; } /* * Invalidate any read caches which may have * stale data. That is, any new read domains. */ invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains; if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) i915_gem_clflush_object(obj); /* blow away mappings if mapped through GTT */ if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT) i915_gem_release_mmap(obj); /* The actual obj->write_domain will be updated with * pending_write_domain after we emit the accumulated flush for all * of our domain changes in execbuffers (which clears objects' * write_domains). So if we have a current write domain that we * aren't changing, set pending_write_domain to that. */ if (flush_domains == 0 && obj->base.pending_write_domain == 0) obj->base.pending_write_domain = obj->base.write_domain; cd->invalidate_domains |= invalidate_domains; cd->flush_domains |= flush_domains; if (flush_domains & I915_GEM_GPU_DOMAINS) cd->flush_rings |= obj->ring->id; if (invalidate_domains & I915_GEM_GPU_DOMAINS) cd->flush_rings |= ring->id; } /** * Moves the object from a partially CPU read to a full one. * * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(), * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU). */ static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj) { if (!obj->page_cpu_valid) return; /* If we're partially in the CPU read domain, finish moving it in. */ if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) { int i; for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) { if (obj->page_cpu_valid[i]) continue; drm_clflush_pages(obj->pages + i, 1); } } /* Free the page_cpu_valid mappings which are now stale, whether * or not we've got I915_GEM_DOMAIN_CPU. */ kfree(obj->page_cpu_valid); obj->page_cpu_valid = NULL; } /** * Set the CPU read domain on a range of the object. * * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's * not entirely valid. The page_cpu_valid member of the object flags which * pages have been flushed, and will be respected by * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping * of the whole object. * * This function returns when the move is complete, including waiting on * flushes to occur. */ static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj, uint64_t offset, uint64_t size) { uint32_t old_read_domains; int i, ret; if (offset == 0 && size == obj->base.size) return i915_gem_object_set_to_cpu_domain(obj, 0); ret = i915_gem_object_flush_gpu_write_domain(obj, false); if (ret != 0) return ret; i915_gem_object_flush_gtt_write_domain(obj); /* If we're already fully in the CPU read domain, we're done. */ if (obj->page_cpu_valid == NULL && (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0) return 0; /* Otherwise, create/clear the per-page CPU read domain flag if we're * newly adding I915_GEM_DOMAIN_CPU */ if (obj->page_cpu_valid == NULL) { obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE, GFP_KERNEL); if (obj->page_cpu_valid == NULL) return -ENOMEM; } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE); /* Flush the cache on any pages that are still invalid from the CPU's * perspective. */ for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; i++) { if (obj->page_cpu_valid[i]) continue; drm_clflush_pages(obj->pages + i, 1); obj->page_cpu_valid[i] = 1; } /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); old_read_domains = obj->base.read_domains; obj->base.read_domains |= I915_GEM_DOMAIN_CPU; trace_i915_gem_object_change_domain(obj, old_read_domains, obj->base.write_domain); return 0; } static int i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj, struct drm_file *file_priv, struct drm_i915_gem_exec_object2 *entry, struct drm_i915_gem_relocation_entry *reloc) { struct drm_device *dev = obj->base.dev; struct drm_gem_object *target_obj; uint32_t target_offset; int ret = -EINVAL; target_obj = drm_gem_object_lookup(dev, file_priv, reloc->target_handle); if (target_obj == NULL) return -ENOENT; target_offset = to_intel_bo(target_obj)->gtt_offset; #if WATCH_RELOC DRM_INFO("%s: obj %p offset %08x target %d " "read %08x write %08x gtt %08x " "presumed %08x delta %08x\n", __func__, obj, (int) reloc->offset, (int) reloc->target_handle, (int) reloc->read_domains, (int) reloc->write_domain, (int) target_offset, (int) reloc->presumed_offset, reloc->delta); #endif /* The target buffer should have appeared before us in the * exec_object list, so it should have a GTT space bound by now. */ if (target_offset == 0) { DRM_ERROR("No GTT space found for object %d\n", reloc->target_handle); goto err; } /* Validate that the target is in a valid r/w GPU domain */ if (reloc->write_domain & (reloc->write_domain - 1)) { DRM_ERROR("reloc with multiple write domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); goto err; } if (reloc->write_domain & I915_GEM_DOMAIN_CPU || reloc->read_domains & I915_GEM_DOMAIN_CPU) { DRM_ERROR("reloc with read/write CPU domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); goto err; } if (reloc->write_domain && target_obj->pending_write_domain && reloc->write_domain != target_obj->pending_write_domain) { DRM_ERROR("Write domain conflict: " "obj %p target %d offset %d " "new %08x old %08x\n", obj, reloc->target_handle, (int) reloc->offset, reloc->write_domain, target_obj->pending_write_domain); goto err; } target_obj->pending_read_domains |= reloc->read_domains; target_obj->pending_write_domain |= reloc->write_domain; /* If the relocation already has the right value in it, no * more work needs to be done. */ if (target_offset == reloc->presumed_offset) goto out; /* Check that the relocation address is valid... */ if (reloc->offset > obj->base.size - 4) { DRM_ERROR("Relocation beyond object bounds: " "obj %p target %d offset %d size %d.\n", obj, reloc->target_handle, (int) reloc->offset, (int) obj->base.size); goto err; } if (reloc->offset & 3) { DRM_ERROR("Relocation not 4-byte aligned: " "obj %p target %d offset %d.\n", obj, reloc->target_handle, (int) reloc->offset); goto err; } /* and points to somewhere within the target object. */ if (reloc->delta >= target_obj->size) { DRM_ERROR("Relocation beyond target object bounds: " "obj %p target %d delta %d size %d.\n", obj, reloc->target_handle, (int) reloc->delta, (int) target_obj->size); goto err; } reloc->delta += target_offset; if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) { uint32_t page_offset = reloc->offset & ~PAGE_MASK; char *vaddr; vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]); *(uint32_t *)(vaddr + page_offset) = reloc->delta; kunmap_atomic(vaddr); } else { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t __iomem *reloc_entry; void __iomem *reloc_page; ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret) goto err; /* Map the page containing the relocation we're going to perform. */ reloc->offset += obj->gtt_offset; reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, reloc->offset & PAGE_MASK); reloc_entry = (uint32_t __iomem *) (reloc_page + (reloc->offset & ~PAGE_MASK)); iowrite32(reloc->delta, reloc_entry); io_mapping_unmap_atomic(reloc_page); } /* and update the user's relocation entry */ reloc->presumed_offset = target_offset; out: ret = 0; err: drm_gem_object_unreference(target_obj); return ret; } static int i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj, struct drm_file *file_priv, struct drm_i915_gem_exec_object2 *entry) { struct drm_i915_gem_relocation_entry __user *user_relocs; int i, ret; user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr; for (i = 0; i < entry->relocation_count; i++) { struct drm_i915_gem_relocation_entry reloc; if (__copy_from_user_inatomic(&reloc, user_relocs+i, sizeof(reloc))) return -EFAULT; ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc); if (ret) return ret; if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset, &reloc.presumed_offset, sizeof(reloc.presumed_offset))) return -EFAULT; } return 0; } static int i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj, struct drm_file *file_priv, struct drm_i915_gem_exec_object2 *entry, struct drm_i915_gem_relocation_entry *relocs) { int i, ret; for (i = 0; i < entry->relocation_count; i++) { ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]); if (ret) return ret; } return 0; } static int i915_gem_execbuffer_relocate(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_object **object_list, struct drm_i915_gem_exec_object2 *exec_list, int count) { int i, ret; for (i = 0; i < count; i++) { struct drm_i915_gem_object *obj = object_list[i]; obj->base.pending_read_domains = 0; obj->base.pending_write_domain = 0; ret = i915_gem_execbuffer_relocate_object(obj, file, &exec_list[i]); if (ret) return ret; } return 0; } static int i915_gem_execbuffer_reserve(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_object **object_list, struct drm_i915_gem_exec_object2 *exec_list, int count) { int ret, i, retry; /* Attempt to pin all of the buffers into the GTT. * This is done in 3 phases: * * 1a. Unbind all objects that do not match the GTT constraints for * the execbuffer (fenceable, mappable, alignment etc). * 1b. Increment pin count for already bound objects. * 2. Bind new objects. * 3. Decrement pin count. * * This avoid unnecessary unbinding of later objects in order to makr * room for the earlier objects *unless* we need to defragment. */ retry = 0; do { ret = 0; /* Unbind any ill-fitting objects or pin. */ for (i = 0; i < count; i++) { struct drm_i915_gem_object *obj = object_list[i]; struct drm_i915_gem_exec_object2 *entry = &exec_list[i]; bool need_fence, need_mappable; if (!obj->gtt_space) continue; need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode != I915_TILING_NONE; need_mappable = entry->relocation_count ? true : need_fence; if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) || (need_mappable && !obj->map_and_fenceable)) ret = i915_gem_object_unbind(obj); else ret = i915_gem_object_pin(obj, entry->alignment, need_mappable); if (ret) { count = i; goto err; } } /* Bind fresh objects */ for (i = 0; i < count; i++) { struct drm_i915_gem_exec_object2 *entry = &exec_list[i]; struct drm_i915_gem_object *obj = object_list[i]; bool need_fence; need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode != I915_TILING_NONE; if (!obj->gtt_space) { bool need_mappable = entry->relocation_count ? true : need_fence; ret = i915_gem_object_pin(obj, entry->alignment, need_mappable); if (ret) break; } if (need_fence) { ret = i915_gem_object_get_fence_reg(obj, true); if (ret) break; obj->pending_fenced_gpu_access = true; } entry->offset = obj->gtt_offset; } err: /* Decrement pin count for bound objects */ for (i = 0; i < count; i++) { struct drm_i915_gem_object *obj = object_list[i]; if (obj->gtt_space) i915_gem_object_unpin(obj); } if (ret != -ENOSPC || retry > 1) return ret; /* First attempt, just clear anything that is purgeable. * Second attempt, clear the entire GTT. */ ret = i915_gem_evict_everything(dev, retry == 0); if (ret) return ret; retry++; } while (1); } static int i915_gem_execbuffer_relocate_slow(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_object **object_list, struct drm_i915_gem_exec_object2 *exec_list, int count) { struct drm_i915_gem_relocation_entry *reloc; int i, total, ret; for (i = 0; i < count; i++) object_list[i]->in_execbuffer = false; mutex_unlock(&dev->struct_mutex); total = 0; for (i = 0; i < count; i++) total += exec_list[i].relocation_count; reloc = drm_malloc_ab(total, sizeof(*reloc)); if (reloc == NULL) { mutex_lock(&dev->struct_mutex); return -ENOMEM; } total = 0; for (i = 0; i < count; i++) { struct drm_i915_gem_relocation_entry __user *user_relocs; user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr; if (copy_from_user(reloc+total, user_relocs, exec_list[i].relocation_count * sizeof(*reloc))) { ret = -EFAULT; mutex_lock(&dev->struct_mutex); goto err; } total += exec_list[i].relocation_count; } ret = i915_mutex_lock_interruptible(dev); if (ret) { mutex_lock(&dev->struct_mutex); goto err; } ret = i915_gem_execbuffer_reserve(dev, file, object_list, exec_list, count); if (ret) goto err; total = 0; for (i = 0; i < count; i++) { struct drm_i915_gem_object *obj = object_list[i]; obj->base.pending_read_domains = 0; obj->base.pending_write_domain = 0; ret = i915_gem_execbuffer_relocate_object_slow(obj, file, &exec_list[i], reloc + total); if (ret) goto err; total += exec_list[i].relocation_count; } /* Leave the user relocations as are, this is the painfully slow path, * and we want to avoid the complication of dropping the lock whilst * having buffers reserved in the aperture and so causing spurious * ENOSPC for random operations. */ err: drm_free_large(reloc); return ret; } static int i915_gem_execbuffer_move_to_gpu(struct drm_device *dev, struct drm_file *file, struct intel_ring_buffer *ring, struct drm_i915_gem_object **objects, int count) { struct change_domains cd; int ret, i; cd.invalidate_domains = 0; cd.flush_domains = 0; cd.flush_rings = 0; for (i = 0; i < count; i++) i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd); if (cd.invalidate_domains | cd.flush_domains) { #if WATCH_EXEC DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", __func__, cd.invalidate_domains, cd.flush_domains); #endif i915_gem_flush(dev, cd.invalidate_domains, cd.flush_domains, cd.flush_rings); } for (i = 0; i < count; i++) { struct drm_i915_gem_object *obj = objects[i]; /* XXX replace with semaphores */ if (obj->ring && ring != obj->ring) { ret = i915_gem_object_wait_rendering(obj, true); if (ret) return ret; } } return 0; } /* Throttle our rendering by waiting until the ring has completed our requests * emitted over 20 msec ago. * * Note that if we were to use the current jiffies each time around the loop, * we wouldn't escape the function with any frames outstanding if the time to * render a frame was over 20ms. * * This should get us reasonable parallelism between CPU and GPU but also * relatively low latency when blocking on a particular request to finish. */ static int i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_file_private *file_priv = file->driver_priv; unsigned long recent_enough = jiffies - msecs_to_jiffies(20); struct drm_i915_gem_request *request; struct intel_ring_buffer *ring = NULL; u32 seqno = 0; int ret; spin_lock(&file_priv->mm.lock); list_for_each_entry(request, &file_priv->mm.request_list, client_list) { if (time_after_eq(request->emitted_jiffies, recent_enough)) break; ring = request->ring; seqno = request->seqno; } spin_unlock(&file_priv->mm.lock); if (seqno == 0) return 0; ret = 0; if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) { /* And wait for the seqno passing without holding any locks and * causing extra latency for others. This is safe as the irq * generation is designed to be run atomically and so is * lockless. */ ring->user_irq_get(ring); ret = wait_event_interruptible(ring->irq_queue, i915_seqno_passed(ring->get_seqno(ring), seqno) || atomic_read(&dev_priv->mm.wedged)); ring->user_irq_put(ring); if (ret == 0 && atomic_read(&dev_priv->mm.wedged)) ret = -EIO; } if (ret == 0) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); return ret; } static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec, uint64_t exec_offset) { uint32_t exec_start, exec_len; exec_start = (uint32_t) exec_offset + exec->batch_start_offset; exec_len = (uint32_t) exec->batch_len; if ((exec_start | exec_len) & 0x7) return -EINVAL; if (!exec_start) return -EINVAL; return 0; } static int validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count) { int i; for (i = 0; i < count; i++) { char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr; int length; /* limited by fault_in_pages_readable() */ /* First check for malicious input causing overflow */ if (exec[i].relocation_count > INT_MAX / sizeof(struct drm_i915_gem_relocation_entry)) return -EINVAL; length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry); if (!access_ok(VERIFY_READ, ptr, length)) return -EFAULT; /* we may also need to update the presumed offsets */ if (!access_ok(VERIFY_WRITE, ptr, length)) return -EFAULT; if (fault_in_pages_readable(ptr, length)) return -EFAULT; } return 0; } static int i915_gem_do_execbuffer(struct drm_device *dev, void *data, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec_list) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object **object_list = NULL; struct drm_i915_gem_object *batch_obj; struct drm_clip_rect *cliprects = NULL; struct drm_i915_gem_request *request = NULL; int ret, i, flips; uint64_t exec_offset; struct intel_ring_buffer *ring = NULL; ret = i915_gem_check_is_wedged(dev); if (ret) return ret; ret = validate_exec_list(exec_list, args->buffer_count); if (ret) return ret; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif switch (args->flags & I915_EXEC_RING_MASK) { case I915_EXEC_DEFAULT: case I915_EXEC_RENDER: ring = &dev_priv->render_ring; break; case I915_EXEC_BSD: if (!HAS_BSD(dev)) { DRM_ERROR("execbuf with invalid ring (BSD)\n"); return -EINVAL; } ring = &dev_priv->bsd_ring; break; case I915_EXEC_BLT: if (!HAS_BLT(dev)) { DRM_ERROR("execbuf with invalid ring (BLT)\n"); return -EINVAL; } ring = &dev_priv->blt_ring; break; default: DRM_ERROR("execbuf with unknown ring: %d\n", (int)(args->flags & I915_EXEC_RING_MASK)); return -EINVAL; } if (args->buffer_count < 1) { DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count); if (object_list == NULL) { DRM_ERROR("Failed to allocate object list for %d buffers\n", args->buffer_count); ret = -ENOMEM; goto pre_mutex_err; } if (args->num_cliprects != 0) { cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects), GFP_KERNEL); if (cliprects == NULL) { ret = -ENOMEM; goto pre_mutex_err; } ret = copy_from_user(cliprects, (struct drm_clip_rect __user *) (uintptr_t) args->cliprects_ptr, sizeof(*cliprects) * args->num_cliprects); if (ret != 0) { DRM_ERROR("copy %d cliprects failed: %d\n", args->num_cliprects, ret); ret = -EFAULT; goto pre_mutex_err; } } request = kzalloc(sizeof(*request), GFP_KERNEL); if (request == NULL) { ret = -ENOMEM; goto pre_mutex_err; } ret = i915_mutex_lock_interruptible(dev); if (ret) goto pre_mutex_err; if (dev_priv->mm.suspended) { mutex_unlock(&dev->struct_mutex); ret = -EBUSY; goto pre_mutex_err; } /* Look up object handles */ for (i = 0; i < args->buffer_count; i++) { struct drm_i915_gem_object *obj; obj = to_intel_bo (drm_gem_object_lookup(dev, file, exec_list[i].handle)); if (obj == NULL) { DRM_ERROR("Invalid object handle %d at index %d\n", exec_list[i].handle, i); /* prevent error path from reading uninitialized data */ args->buffer_count = i; ret = -ENOENT; goto err; } object_list[i] = obj; if (obj->in_execbuffer) { DRM_ERROR("Object %p appears more than once in object list\n", obj); /* prevent error path from reading uninitialized data */ args->buffer_count = i + 1; ret = -EINVAL; goto err; } obj->in_execbuffer = true; obj->pending_fenced_gpu_access = false; } /* Move the objects en-masse into the GTT, evicting if necessary. */ ret = i915_gem_execbuffer_reserve(dev, file, object_list, exec_list, args->buffer_count); if (ret) goto err; /* The objects are in their final locations, apply the relocations. */ ret = i915_gem_execbuffer_relocate(dev, file, object_list, exec_list, args->buffer_count); if (ret) { if (ret == -EFAULT) { ret = i915_gem_execbuffer_relocate_slow(dev, file, object_list, exec_list, args->buffer_count); BUG_ON(!mutex_is_locked(&dev->struct_mutex)); } if (ret) goto err; } /* Set the pending read domains for the batch buffer to COMMAND */ batch_obj = object_list[args->buffer_count-1]; if (batch_obj->base.pending_write_domain) { DRM_ERROR("Attempting to use self-modifying batch buffer\n"); ret = -EINVAL; goto err; } batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND; /* Sanity check the batch buffer */ exec_offset = batch_obj->gtt_offset; ret = i915_gem_check_execbuffer(args, exec_offset); if (ret != 0) { DRM_ERROR("execbuf with invalid offset/length\n"); goto err; } ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring, object_list, args->buffer_count); if (ret) goto err; #if WATCH_COHERENCY for (i = 0; i < args->buffer_count; i++) { i915_gem_object_check_coherency(object_list[i], exec_list[i].handle); } #endif #if WATCH_EXEC i915_gem_dump_object(batch_obj, args->batch_len, __func__, ~0); #endif /* Check for any pending flips. As we only maintain a flip queue depth * of 1, we can simply insert a WAIT for the next display flip prior * to executing the batch and avoid stalling the CPU. */ flips = 0; for (i = 0; i < args->buffer_count; i++) { if (object_list[i]->base.write_domain) flips |= atomic_read(&object_list[i]->pending_flip); } if (flips) { int plane, flip_mask; for (plane = 0; flips >> plane; plane++) { if (((flips >> plane) & 1) == 0) continue; if (plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; ret = intel_ring_begin(ring, 2); if (ret) goto err; intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); } } /* Exec the batchbuffer */ ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset); if (ret) { DRM_ERROR("dispatch failed %d\n", ret); goto err; } for (i = 0; i < args->buffer_count; i++) { struct drm_i915_gem_object *obj = object_list[i]; obj->base.read_domains = obj->base.pending_read_domains; obj->base.write_domain = obj->base.pending_write_domain; obj->fenced_gpu_access = obj->pending_fenced_gpu_access; i915_gem_object_move_to_active(obj, ring); if (obj->base.write_domain) { obj->dirty = 1; list_move_tail(&obj->gpu_write_list, &ring->gpu_write_list); intel_mark_busy(dev, obj); } trace_i915_gem_object_change_domain(obj, obj->base.read_domains, obj->base.write_domain); } /* * Ensure that the commands in the batch buffer are * finished before the interrupt fires */ i915_retire_commands(dev, ring); if (i915_add_request(dev, file, request, ring)) i915_gem_next_request_seqno(dev, ring); else request = NULL; err: for (i = 0; i < args->buffer_count; i++) { object_list[i]->in_execbuffer = false; drm_gem_object_unreference(&object_list[i]->base); } mutex_unlock(&dev->struct_mutex); pre_mutex_err: drm_free_large(object_list); kfree(cliprects); kfree(request); return ret; } /* * Legacy execbuffer just creates an exec2 list from the original exec object * list array and passes it to the real function. */ int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_execbuffer2 exec2; struct drm_i915_gem_exec_object *exec_list = NULL; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret, i; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif if (args->buffer_count < 1) { DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } /* Copy in the exec list from userland */ exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count); exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); if (exec_list == NULL || exec2_list == NULL) { DRM_ERROR("Failed to allocate exec list for %d buffers\n", args->buffer_count); drm_free_large(exec_list); drm_free_large(exec2_list); return -ENOMEM; } ret = copy_from_user(exec_list, (struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, sizeof(*exec_list) * args->buffer_count); if (ret != 0) { DRM_ERROR("copy %d exec entries failed %d\n", args->buffer_count, ret); drm_free_large(exec_list); drm_free_large(exec2_list); return -EFAULT; } for (i = 0; i < args->buffer_count; i++) { exec2_list[i].handle = exec_list[i].handle; exec2_list[i].relocation_count = exec_list[i].relocation_count; exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; exec2_list[i].alignment = exec_list[i].alignment; exec2_list[i].offset = exec_list[i].offset; if (INTEL_INFO(dev)->gen < 4) exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; else exec2_list[i].flags = 0; } exec2.buffers_ptr = args->buffers_ptr; exec2.buffer_count = args->buffer_count; exec2.batch_start_offset = args->batch_start_offset; exec2.batch_len = args->batch_len; exec2.DR1 = args->DR1; exec2.DR4 = args->DR4; exec2.num_cliprects = args->num_cliprects; exec2.cliprects_ptr = args->cliprects_ptr; exec2.flags = I915_EXEC_RENDER; ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ for (i = 0; i < args->buffer_count; i++) exec_list[i].offset = exec2_list[i].offset; /* ... and back out to userspace */ ret = copy_to_user((struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, exec_list, sizeof(*exec_list) * args->buffer_count); if (ret) { ret = -EFAULT; DRM_ERROR("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } drm_free_large(exec_list); drm_free_large(exec2_list); return ret; } int i915_gem_execbuffer2(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif if (args->buffer_count < 1) { DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count); return -EINVAL; } exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); if (exec2_list == NULL) { DRM_ERROR("Failed to allocate exec list for %d buffers\n", args->buffer_count); return -ENOMEM; } ret = copy_from_user(exec2_list, (struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, sizeof(*exec2_list) * args->buffer_count); if (ret != 0) { DRM_ERROR("copy %d exec entries failed %d\n", args->buffer_count, ret); drm_free_large(exec2_list); return -EFAULT; } ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ ret = copy_to_user((struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, exec2_list, sizeof(*exec2_list) * args->buffer_count); if (ret) { ret = -EFAULT; DRM_ERROR("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } drm_free_large(exec2_list); return ret; } int i915_gem_object_pin(struct drm_i915_gem_object *obj, uint32_t alignment, bool map_and_fenceable) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT); WARN_ON(i915_verify_lists(dev)); if (obj->gtt_space != NULL) { if ((alignment && obj->gtt_offset & (alignment - 1)) || (map_and_fenceable && !obj->map_and_fenceable)) { WARN(obj->pin_count, "bo is already pinned with incorrect alignment:" " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," " obj->map_and_fenceable=%d\n", obj->gtt_offset, alignment, map_and_fenceable, obj->map_and_fenceable); ret = i915_gem_object_unbind(obj); if (ret) return ret; } } if (obj->gtt_space == NULL) { ret = i915_gem_object_bind_to_gtt(obj, alignment, map_and_fenceable); if (ret) return ret; } if (obj->pin_count++ == 0) { i915_gem_info_add_pin(dev_priv, obj, map_and_fenceable); if (!obj->active) list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list); } BUG_ON(!obj->pin_mappable && map_and_fenceable); WARN_ON(i915_verify_lists(dev)); return 0; } void i915_gem_object_unpin(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; WARN_ON(i915_verify_lists(dev)); BUG_ON(obj->pin_count == 0); BUG_ON(obj->gtt_space == NULL); if (--obj->pin_count == 0) { if (!obj->active) list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); i915_gem_info_remove_pin(dev_priv, obj); } WARN_ON(i915_verify_lists(dev)); } int i915_gem_pin_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pin *args = data; struct drm_i915_gem_object *obj; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } if (obj->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to pin a purgeable buffer\n"); ret = -EINVAL; goto out; } if (obj->pin_filp != NULL && obj->pin_filp != file) { DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", args->handle); ret = -EINVAL; goto out; } obj->user_pin_count++; obj->pin_filp = file; if (obj->user_pin_count == 1) { ret = i915_gem_object_pin(obj, args->alignment, true); if (ret) goto out; } /* XXX - flush the CPU caches for pinned objects * as the X server doesn't manage domains yet */ i915_gem_object_flush_cpu_write_domain(obj); args->offset = obj->gtt_offset; out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_unpin_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pin *args = data; struct drm_i915_gem_object *obj; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } if (obj->pin_filp != file) { DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", args->handle); ret = -EINVAL; goto out; } obj->user_pin_count--; if (obj->user_pin_count == 0) { obj->pin_filp = NULL; i915_gem_object_unpin(obj); } out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_busy_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_busy *args = data; struct drm_i915_gem_object *obj; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } /* Count all active objects as busy, even if they are currently not used * by the gpu. Users of this interface expect objects to eventually * become non-busy without any further actions, therefore emit any * necessary flushes here. */ args->busy = obj->active; if (args->busy) { /* Unconditionally flush objects, even when the gpu still uses this * object. Userspace calling this function indicates that it wants to * use this buffer rather sooner than later, so issuing the required * flush earlier is beneficial. */ if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain); /* Update the active list for the hardware's current position. * Otherwise this only updates on a delayed timer or when irqs * are actually unmasked, and our working set ends up being * larger than required. */ i915_gem_retire_requests_ring(dev, obj->ring); args->busy = obj->active; } drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { return i915_gem_ring_throttle(dev, file_priv); } int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_madvise *args = data; struct drm_i915_gem_object *obj; int ret; switch (args->madv) { case I915_MADV_DONTNEED: case I915_MADV_WILLNEED: break; default: return -EINVAL; } ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); if (obj == NULL) { ret = -ENOENT; goto unlock; } if (obj->pin_count) { ret = -EINVAL; goto out; } if (obj->madv != __I915_MADV_PURGED) obj->madv = args->madv; /* if the object is no longer bound, discard its backing storage */ if (i915_gem_object_is_purgeable(obj) && obj->gtt_space == NULL) i915_gem_object_truncate(obj); args->retained = obj->madv != __I915_MADV_PURGED; out: drm_gem_object_unreference(&obj->base); unlock: mutex_unlock(&dev->struct_mutex); return ret; } struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, size_t size) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (obj == NULL) return NULL; if (drm_gem_object_init(dev, &obj->base, size) != 0) { kfree(obj); return NULL; } i915_gem_info_add_obj(dev_priv, size); obj->base.write_domain = I915_GEM_DOMAIN_CPU; obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->agp_type = AGP_USER_MEMORY; obj->base.driver_private = NULL; obj->fence_reg = I915_FENCE_REG_NONE; INIT_LIST_HEAD(&obj->mm_list); INIT_LIST_HEAD(&obj->gtt_list); INIT_LIST_HEAD(&obj->ring_list); INIT_LIST_HEAD(&obj->gpu_write_list); obj->madv = I915_MADV_WILLNEED; /* Avoid an unnecessary call to unbind on the first bind. */ obj->map_and_fenceable = true; return obj; } int i915_gem_init_object(struct drm_gem_object *obj) { BUG(); return 0; } static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; ret = i915_gem_object_unbind(obj); if (ret == -ERESTARTSYS) { list_move(&obj->mm_list, &dev_priv->mm.deferred_free_list); return; } if (obj->base.map_list.map) i915_gem_free_mmap_offset(obj); drm_gem_object_release(&obj->base); i915_gem_info_remove_obj(dev_priv, obj->base.size); kfree(obj->page_cpu_valid); kfree(obj->bit_17); kfree(obj); } void i915_gem_free_object(struct drm_gem_object *gem_obj) { struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); struct drm_device *dev = obj->base.dev; trace_i915_gem_object_destroy(obj); while (obj->pin_count > 0) i915_gem_object_unpin(obj); if (obj->phys_obj) i915_gem_detach_phys_object(dev, obj); i915_gem_free_object_tail(obj); } int i915_gem_idle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; mutex_lock(&dev->struct_mutex); if (dev_priv->mm.suspended) { mutex_unlock(&dev->struct_mutex); return 0; } ret = i915_gpu_idle(dev); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } /* Under UMS, be paranoid and evict. */ if (!drm_core_check_feature(dev, DRIVER_MODESET)) { ret = i915_gem_evict_inactive(dev, false); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } } /* Hack! Don't let anybody do execbuf while we don't control the chip. * We need to replace this with a semaphore, or something. * And not confound mm.suspended! */ dev_priv->mm.suspended = 1; del_timer_sync(&dev_priv->hangcheck_timer); i915_kernel_lost_context(dev); i915_gem_cleanup_ringbuffer(dev); mutex_unlock(&dev->struct_mutex); /* Cancel the retire work handler, which should be idle now. */ cancel_delayed_work_sync(&dev_priv->mm.retire_work); return 0; } int i915_gem_init_ringbuffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; ret = intel_init_render_ring_buffer(dev); if (ret) return ret; if (HAS_BSD(dev)) { ret = intel_init_bsd_ring_buffer(dev); if (ret) goto cleanup_render_ring; } if (HAS_BLT(dev)) { ret = intel_init_blt_ring_buffer(dev); if (ret) goto cleanup_bsd_ring; } dev_priv->next_seqno = 1; return 0; cleanup_bsd_ring: intel_cleanup_ring_buffer(&dev_priv->bsd_ring); cleanup_render_ring: intel_cleanup_ring_buffer(&dev_priv->render_ring); return ret; } void i915_gem_cleanup_ringbuffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; intel_cleanup_ring_buffer(&dev_priv->render_ring); intel_cleanup_ring_buffer(&dev_priv->bsd_ring); intel_cleanup_ring_buffer(&dev_priv->blt_ring); } int i915_gem_entervt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; if (atomic_read(&dev_priv->mm.wedged)) { DRM_ERROR("Reenabling wedged hardware, good luck\n"); atomic_set(&dev_priv->mm.wedged, 0); } mutex_lock(&dev->struct_mutex); dev_priv->mm.suspended = 0; ret = i915_gem_init_ringbuffer(dev); if (ret != 0) { mutex_unlock(&dev->struct_mutex); return ret; } BUG_ON(!list_empty(&dev_priv->mm.active_list)); BUG_ON(!list_empty(&dev_priv->render_ring.active_list)); BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list)); BUG_ON(!list_empty(&dev_priv->blt_ring.active_list)); BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); BUG_ON(!list_empty(&dev_priv->render_ring.request_list)); BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list)); BUG_ON(!list_empty(&dev_priv->blt_ring.request_list)); mutex_unlock(&dev->struct_mutex); ret = drm_irq_install(dev); if (ret) goto cleanup_ringbuffer; return 0; cleanup_ringbuffer: mutex_lock(&dev->struct_mutex); i915_gem_cleanup_ringbuffer(dev); dev_priv->mm.suspended = 1; mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; drm_irq_uninstall(dev); return i915_gem_idle(dev); } void i915_gem_lastclose(struct drm_device *dev) { int ret; if (drm_core_check_feature(dev, DRIVER_MODESET)) return; ret = i915_gem_idle(dev); if (ret) DRM_ERROR("failed to idle hardware: %d\n", ret); } static void init_ring_lists(struct intel_ring_buffer *ring) { INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); INIT_LIST_HEAD(&ring->gpu_write_list); } void i915_gem_load(struct drm_device *dev) { int i; drm_i915_private_t *dev_priv = dev->dev_private; INIT_LIST_HEAD(&dev_priv->mm.active_list); INIT_LIST_HEAD(&dev_priv->mm.flushing_list); INIT_LIST_HEAD(&dev_priv->mm.inactive_list); INIT_LIST_HEAD(&dev_priv->mm.pinned_list); INIT_LIST_HEAD(&dev_priv->mm.fence_list); INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list); INIT_LIST_HEAD(&dev_priv->mm.gtt_list); init_ring_lists(&dev_priv->render_ring); init_ring_lists(&dev_priv->bsd_ring); init_ring_lists(&dev_priv->blt_ring); for (i = 0; i < 16; i++) INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); INIT_DELAYED_WORK(&dev_priv->mm.retire_work, i915_gem_retire_work_handler); init_completion(&dev_priv->error_completion); /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ if (IS_GEN3(dev)) { u32 tmp = I915_READ(MI_ARB_STATE); if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) { /* arb state is a masked write, so set bit + bit in mask */ tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT); I915_WRITE(MI_ARB_STATE, tmp); } } /* Old X drivers will take 0-2 for front, back, depth buffers */ if (!drm_core_check_feature(dev, DRIVER_MODESET)) dev_priv->fence_reg_start = 3; if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) dev_priv->num_fence_regs = 16; else dev_priv->num_fence_regs = 8; /* Initialize fence registers to zero */ switch (INTEL_INFO(dev)->gen) { case 6: for (i = 0; i < 16; i++) I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0); break; case 5: case 4: for (i = 0; i < 16; i++) I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0); break; case 3: if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) for (i = 0; i < 8; i++) I915_WRITE(FENCE_REG_945_8 + (i * 4), 0); case 2: for (i = 0; i < 8; i++) I915_WRITE(FENCE_REG_830_0 + (i * 4), 0); break; } i915_gem_detect_bit_6_swizzle(dev); init_waitqueue_head(&dev_priv->pending_flip_queue); dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; register_shrinker(&dev_priv->mm.inactive_shrinker); } /* * Create a physically contiguous memory object for this object * e.g. for cursor + overlay regs */ static int i915_gem_init_phys_object(struct drm_device *dev, int id, int size, int align) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_phys_object *phys_obj; int ret; if (dev_priv->mm.phys_objs[id - 1] || !size) return 0; phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); if (!phys_obj) return -ENOMEM; phys_obj->id = id; phys_obj->handle = drm_pci_alloc(dev, size, align); if (!phys_obj->handle) { ret = -ENOMEM; goto kfree_obj; } #ifdef CONFIG_X86 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); #endif dev_priv->mm.phys_objs[id - 1] = phys_obj; return 0; kfree_obj: kfree(phys_obj); return ret; } static void i915_gem_free_phys_object(struct drm_device *dev, int id) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_phys_object *phys_obj; if (!dev_priv->mm.phys_objs[id - 1]) return; phys_obj = dev_priv->mm.phys_objs[id - 1]; if (phys_obj->cur_obj) { i915_gem_detach_phys_object(dev, phys_obj->cur_obj); } #ifdef CONFIG_X86 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); #endif drm_pci_free(dev, phys_obj->handle); kfree(phys_obj); dev_priv->mm.phys_objs[id - 1] = NULL; } void i915_gem_free_all_phys_object(struct drm_device *dev) { int i; for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) i915_gem_free_phys_object(dev, i); } void i915_gem_detach_phys_object(struct drm_device *dev, struct drm_i915_gem_object *obj) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; char *vaddr; int i; int page_count; if (!obj->phys_obj) return; vaddr = obj->phys_obj->handle->vaddr; page_count = obj->base.size / PAGE_SIZE; for (i = 0; i < page_count; i++) { struct page *page = read_cache_page_gfp(mapping, i, GFP_HIGHUSER | __GFP_RECLAIMABLE); if (!IS_ERR(page)) { char *dst = kmap_atomic(page); memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); kunmap_atomic(dst); drm_clflush_pages(&page, 1); set_page_dirty(page); mark_page_accessed(page); page_cache_release(page); } } intel_gtt_chipset_flush(); obj->phys_obj->cur_obj = NULL; obj->phys_obj = NULL; } int i915_gem_attach_phys_object(struct drm_device *dev, struct drm_i915_gem_object *obj, int id, int align) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; drm_i915_private_t *dev_priv = dev->dev_private; int ret = 0; int page_count; int i; if (id > I915_MAX_PHYS_OBJECT) return -EINVAL; if (obj->phys_obj) { if (obj->phys_obj->id == id) return 0; i915_gem_detach_phys_object(dev, obj); } /* create a new object */ if (!dev_priv->mm.phys_objs[id - 1]) { ret = i915_gem_init_phys_object(dev, id, obj->base.size, align); if (ret) { DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->base.size); return ret; } } /* bind to the object */ obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; obj->phys_obj->cur_obj = obj; page_count = obj->base.size / PAGE_SIZE; for (i = 0; i < page_count; i++) { struct page *page; char *dst, *src; page = read_cache_page_gfp(mapping, i, GFP_HIGHUSER | __GFP_RECLAIMABLE); if (IS_ERR(page)) return PTR_ERR(page); src = kmap_atomic(page); dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); memcpy(dst, src, PAGE_SIZE); kunmap_atomic(src); mark_page_accessed(page); page_cache_release(page); } return 0; } static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { void *vaddr = obj->phys_obj->handle->vaddr + args->offset; char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { unsigned long unwritten; /* The physical object once assigned is fixed for the lifetime * of the obj, so we can safely drop the lock and continue * to access vaddr. */ mutex_unlock(&dev->struct_mutex); unwritten = copy_from_user(vaddr, user_data, args->size); mutex_lock(&dev->struct_mutex); if (unwritten) return -EFAULT; } intel_gtt_chipset_flush(); return 0; } void i915_gem_release(struct drm_device *dev, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; /* Clean up our request list when the client is going away, so that * later retire_requests won't dereference our soon-to-be-gone * file_priv. */ spin_lock(&file_priv->mm.lock); while (!list_empty(&file_priv->mm.request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&file_priv->mm.request_list, struct drm_i915_gem_request, client_list); list_del(&request->client_list); request->file_priv = NULL; } spin_unlock(&file_priv->mm.lock); } static int i915_gpu_is_active(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int lists_empty; lists_empty = list_empty(&dev_priv->mm.flushing_list) && list_empty(&dev_priv->mm.active_list); return !lists_empty; } static int i915_gem_inactive_shrink(struct shrinker *shrinker, int nr_to_scan, gfp_t gfp_mask) { struct drm_i915_private *dev_priv = container_of(shrinker, struct drm_i915_private, mm.inactive_shrinker); struct drm_device *dev = dev_priv->dev; struct drm_i915_gem_object *obj, *next; int cnt; if (!mutex_trylock(&dev->struct_mutex)) return 0; /* "fast-path" to count number of available objects */ if (nr_to_scan == 0) { cnt = 0; list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) cnt++; mutex_unlock(&dev->struct_mutex); return cnt / 100 * sysctl_vfs_cache_pressure; } rescan: /* first scan for clean buffers */ i915_gem_retire_requests(dev); list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, mm_list) { if (i915_gem_object_is_purgeable(obj)) { i915_gem_object_unbind(obj); if (--nr_to_scan == 0) break; } } /* second pass, evict/count anything still on the inactive list */ cnt = 0; list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, mm_list) { if (nr_to_scan) { i915_gem_object_unbind(obj); nr_to_scan--; } else cnt++; } if (nr_to_scan && i915_gpu_is_active(dev)) { /* * We are desperate for pages, so as a last resort, wait * for the GPU to finish and discard whatever we can. * This has a dramatic impact to reduce the number of * OOM-killer events whilst running the GPU aggressively. */ if (i915_gpu_idle(dev) == 0) goto rescan; } mutex_unlock(&dev->struct_mutex); return cnt / 100 * sysctl_vfs_cache_pressure; }