/* * Infrastructure for profiling code inserted by 'gcc -pg'. * * Copyright (C) 2007-2008 Steven Rostedt * Copyright (C) 2004-2008 Ingo Molnar * * Originally ported from the -rt patch by: * Copyright (C) 2007 Arnaldo Carvalho de Melo * * Based on code in the latency_tracer, that is: * * Copyright (C) 2004-2006 Ingo Molnar * Copyright (C) 2004 William Lee Irwin III */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #define FTRACE_WARN_ON(cond) \ do { \ if (WARN_ON(cond)) \ ftrace_kill(); \ } while (0) #define FTRACE_WARN_ON_ONCE(cond) \ do { \ if (WARN_ON_ONCE(cond)) \ ftrace_kill(); \ } while (0) /* ftrace_enabled is a method to turn ftrace on or off */ int ftrace_enabled __read_mostly; static int last_ftrace_enabled; /* ftrace_pid_trace >= 0 will only trace threads with this pid */ static int ftrace_pid_trace = -1; /* Quick disabling of function tracer. */ int function_trace_stop; /* * ftrace_disabled is set when an anomaly is discovered. * ftrace_disabled is much stronger than ftrace_enabled. */ static int ftrace_disabled __read_mostly; static DEFINE_SPINLOCK(ftrace_lock); static DEFINE_MUTEX(ftrace_sysctl_lock); static DEFINE_MUTEX(ftrace_start_lock); static struct ftrace_ops ftrace_list_end __read_mostly = { .func = ftrace_stub, }; static struct ftrace_ops *ftrace_list __read_mostly = &ftrace_list_end; ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; ftrace_func_t __ftrace_trace_function __read_mostly = ftrace_stub; ftrace_func_t ftrace_pid_function __read_mostly = ftrace_stub; static void ftrace_list_func(unsigned long ip, unsigned long parent_ip) { struct ftrace_ops *op = ftrace_list; /* in case someone actually ports this to alpha! */ read_barrier_depends(); while (op != &ftrace_list_end) { /* silly alpha */ read_barrier_depends(); op->func(ip, parent_ip); op = op->next; }; } static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip) { if (current->pid != ftrace_pid_trace) return; ftrace_pid_function(ip, parent_ip); } static void set_ftrace_pid_function(ftrace_func_t func) { /* do not set ftrace_pid_function to itself! */ if (func != ftrace_pid_func) ftrace_pid_function = func; } /** * clear_ftrace_function - reset the ftrace function * * This NULLs the ftrace function and in essence stops * tracing. There may be lag */ void clear_ftrace_function(void) { ftrace_trace_function = ftrace_stub; __ftrace_trace_function = ftrace_stub; ftrace_pid_function = ftrace_stub; } #ifndef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST /* * For those archs that do not test ftrace_trace_stop in their * mcount call site, we need to do it from C. */ static void ftrace_test_stop_func(unsigned long ip, unsigned long parent_ip) { if (function_trace_stop) return; __ftrace_trace_function(ip, parent_ip); } #endif static int __register_ftrace_function(struct ftrace_ops *ops) { /* should not be called from interrupt context */ spin_lock(&ftrace_lock); ops->next = ftrace_list; /* * We are entering ops into the ftrace_list but another * CPU might be walking that list. We need to make sure * the ops->next pointer is valid before another CPU sees * the ops pointer included into the ftrace_list. */ smp_wmb(); ftrace_list = ops; if (ftrace_enabled) { ftrace_func_t func; if (ops->next == &ftrace_list_end) func = ops->func; else func = ftrace_list_func; if (ftrace_pid_trace >= 0) { set_ftrace_pid_function(func); func = ftrace_pid_func; } /* * For one func, simply call it directly. * For more than one func, call the chain. */ #ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST ftrace_trace_function = func; #else __ftrace_trace_function = func; ftrace_trace_function = ftrace_test_stop_func; #endif } spin_unlock(&ftrace_lock); return 0; } static int __unregister_ftrace_function(struct ftrace_ops *ops) { struct ftrace_ops **p; int ret = 0; /* should not be called from interrupt context */ spin_lock(&ftrace_lock); /* * If we are removing the last function, then simply point * to the ftrace_stub. */ if (ftrace_list == ops && ops->next == &ftrace_list_end) { ftrace_trace_function = ftrace_stub; ftrace_list = &ftrace_list_end; goto out; } for (p = &ftrace_list; *p != &ftrace_list_end; p = &(*p)->next) if (*p == ops) break; if (*p != ops) { ret = -1; goto out; } *p = (*p)->next; if (ftrace_enabled) { /* If we only have one func left, then call that directly */ if (ftrace_list->next == &ftrace_list_end) { ftrace_func_t func = ftrace_list->func; if (ftrace_pid_trace >= 0) { set_ftrace_pid_function(func); func = ftrace_pid_func; } #ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST ftrace_trace_function = func; #else __ftrace_trace_function = func; #endif } } out: spin_unlock(&ftrace_lock); return ret; } static void ftrace_update_pid_func(void) { ftrace_func_t func; /* should not be called from interrupt context */ spin_lock(&ftrace_lock); if (ftrace_trace_function == ftrace_stub) goto out; func = ftrace_trace_function; if (ftrace_pid_trace >= 0) { set_ftrace_pid_function(func); func = ftrace_pid_func; } else { if (func != ftrace_pid_func) goto out; set_ftrace_pid_function(func); } #ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST ftrace_trace_function = func; #else __ftrace_trace_function = func; #endif out: spin_unlock(&ftrace_lock); } #ifdef CONFIG_DYNAMIC_FTRACE #ifndef CONFIG_FTRACE_MCOUNT_RECORD # error Dynamic ftrace depends on MCOUNT_RECORD #endif /* * Since MCOUNT_ADDR may point to mcount itself, we do not want * to get it confused by reading a reference in the code as we * are parsing on objcopy output of text. Use a variable for * it instead. */ static unsigned long mcount_addr = MCOUNT_ADDR; enum { FTRACE_ENABLE_CALLS = (1 << 0), FTRACE_DISABLE_CALLS = (1 << 1), FTRACE_UPDATE_TRACE_FUNC = (1 << 2), FTRACE_ENABLE_MCOUNT = (1 << 3), FTRACE_DISABLE_MCOUNT = (1 << 4), FTRACE_START_FUNC_RET = (1 << 5), FTRACE_STOP_FUNC_RET = (1 << 6), }; static int ftrace_filtered; static LIST_HEAD(ftrace_new_addrs); static DEFINE_MUTEX(ftrace_regex_lock); struct ftrace_page { struct ftrace_page *next; unsigned long index; struct dyn_ftrace records[]; }; #define ENTRIES_PER_PAGE \ ((PAGE_SIZE - sizeof(struct ftrace_page)) / sizeof(struct dyn_ftrace)) /* estimate from running different kernels */ #define NR_TO_INIT 10000 static struct ftrace_page *ftrace_pages_start; static struct ftrace_page *ftrace_pages; static struct dyn_ftrace *ftrace_free_records; #ifdef CONFIG_KPROBES static int frozen_record_count; static inline void freeze_record(struct dyn_ftrace *rec) { if (!(rec->flags & FTRACE_FL_FROZEN)) { rec->flags |= FTRACE_FL_FROZEN; frozen_record_count++; } } static inline void unfreeze_record(struct dyn_ftrace *rec) { if (rec->flags & FTRACE_FL_FROZEN) { rec->flags &= ~FTRACE_FL_FROZEN; frozen_record_count--; } } static inline int record_frozen(struct dyn_ftrace *rec) { return rec->flags & FTRACE_FL_FROZEN; } #else # define freeze_record(rec) ({ 0; }) # define unfreeze_record(rec) ({ 0; }) # define record_frozen(rec) ({ 0; }) #endif /* CONFIG_KPROBES */ static void ftrace_free_rec(struct dyn_ftrace *rec) { rec->ip = (unsigned long)ftrace_free_records; ftrace_free_records = rec; rec->flags |= FTRACE_FL_FREE; } void ftrace_release(void *start, unsigned long size) { struct dyn_ftrace *rec; struct ftrace_page *pg; unsigned long s = (unsigned long)start; unsigned long e = s + size; int i; if (ftrace_disabled || !start) return; /* should not be called from interrupt context */ spin_lock(&ftrace_lock); for (pg = ftrace_pages_start; pg; pg = pg->next) { for (i = 0; i < pg->index; i++) { rec = &pg->records[i]; if ((rec->ip >= s) && (rec->ip < e)) ftrace_free_rec(rec); } } spin_unlock(&ftrace_lock); } static struct dyn_ftrace *ftrace_alloc_dyn_node(unsigned long ip) { struct dyn_ftrace *rec; /* First check for freed records */ if (ftrace_free_records) { rec = ftrace_free_records; if (unlikely(!(rec->flags & FTRACE_FL_FREE))) { FTRACE_WARN_ON_ONCE(1); ftrace_free_records = NULL; return NULL; } ftrace_free_records = (void *)rec->ip; memset(rec, 0, sizeof(*rec)); return rec; } if (ftrace_pages->index == ENTRIES_PER_PAGE) { if (!ftrace_pages->next) { /* allocate another page */ ftrace_pages->next = (void *)get_zeroed_page(GFP_KERNEL); if (!ftrace_pages->next) return NULL; } ftrace_pages = ftrace_pages->next; } return &ftrace_pages->records[ftrace_pages->index++]; } static struct dyn_ftrace * ftrace_record_ip(unsigned long ip) { struct dyn_ftrace *rec; if (ftrace_disabled) return NULL; rec = ftrace_alloc_dyn_node(ip); if (!rec) return NULL; rec->ip = ip; list_add(&rec->list, &ftrace_new_addrs); return rec; } static void print_ip_ins(const char *fmt, unsigned char *p) { int i; printk(KERN_CONT "%s", fmt); for (i = 0; i < MCOUNT_INSN_SIZE; i++) printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); } static void ftrace_bug(int failed, unsigned long ip) { switch (failed) { case -EFAULT: FTRACE_WARN_ON_ONCE(1); pr_info("ftrace faulted on modifying "); print_ip_sym(ip); break; case -EINVAL: FTRACE_WARN_ON_ONCE(1); pr_info("ftrace failed to modify "); print_ip_sym(ip); print_ip_ins(" actual: ", (unsigned char *)ip); printk(KERN_CONT "\n"); break; case -EPERM: FTRACE_WARN_ON_ONCE(1); pr_info("ftrace faulted on writing "); print_ip_sym(ip); break; default: FTRACE_WARN_ON_ONCE(1); pr_info("ftrace faulted on unknown error "); print_ip_sym(ip); } } static int __ftrace_replace_code(struct dyn_ftrace *rec, int enable) { unsigned long ip, fl; unsigned long ftrace_addr; ftrace_addr = (unsigned long)ftrace_caller; ip = rec->ip; /* * If this record is not to be traced and * it is not enabled then do nothing. * * If this record is not to be traced and * it is enabled then disabled it. * */ if (rec->flags & FTRACE_FL_NOTRACE) { if (rec->flags & FTRACE_FL_ENABLED) rec->flags &= ~FTRACE_FL_ENABLED; else return 0; } else if (ftrace_filtered && enable) { /* * Filtering is on: */ fl = rec->flags & (FTRACE_FL_FILTER | FTRACE_FL_ENABLED); /* Record is filtered and enabled, do nothing */ if (fl == (FTRACE_FL_FILTER | FTRACE_FL_ENABLED)) return 0; /* Record is not filtered and is not enabled do nothing */ if (!fl) return 0; /* Record is not filtered but enabled, disable it */ if (fl == FTRACE_FL_ENABLED) rec->flags &= ~FTRACE_FL_ENABLED; else /* Otherwise record is filtered but not enabled, enable it */ rec->flags |= FTRACE_FL_ENABLED; } else { /* Disable or not filtered */ if (enable) { /* if record is enabled, do nothing */ if (rec->flags & FTRACE_FL_ENABLED) return 0; rec->flags |= FTRACE_FL_ENABLED; } else { /* if record is not enabled do nothing */ if (!(rec->flags & FTRACE_FL_ENABLED)) return 0; rec->flags &= ~FTRACE_FL_ENABLED; } } if (rec->flags & FTRACE_FL_ENABLED) return ftrace_make_call(rec, ftrace_addr); else return ftrace_make_nop(NULL, rec, ftrace_addr); } static void ftrace_replace_code(int enable) { int i, failed; struct dyn_ftrace *rec; struct ftrace_page *pg; for (pg = ftrace_pages_start; pg; pg = pg->next) { for (i = 0; i < pg->index; i++) { rec = &pg->records[i]; /* * Skip over free records and records that have * failed. */ if (rec->flags & FTRACE_FL_FREE || rec->flags & FTRACE_FL_FAILED) continue; /* ignore updates to this record's mcount site */ if (get_kprobe((void *)rec->ip)) { freeze_record(rec); continue; } else { unfreeze_record(rec); } failed = __ftrace_replace_code(rec, enable); if (failed && (rec->flags & FTRACE_FL_CONVERTED)) { rec->flags |= FTRACE_FL_FAILED; if ((system_state == SYSTEM_BOOTING) || !core_kernel_text(rec->ip)) { ftrace_free_rec(rec); } else ftrace_bug(failed, rec->ip); } } } } static int ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec) { unsigned long ip; int ret; ip = rec->ip; ret = ftrace_make_nop(mod, rec, mcount_addr); if (ret) { ftrace_bug(ret, ip); rec->flags |= FTRACE_FL_FAILED; return 0; } return 1; } static int __ftrace_modify_code(void *data) { int *command = data; if (*command & FTRACE_ENABLE_CALLS) ftrace_replace_code(1); else if (*command & FTRACE_DISABLE_CALLS) ftrace_replace_code(0); if (*command & FTRACE_UPDATE_TRACE_FUNC) ftrace_update_ftrace_func(ftrace_trace_function); if (*command & FTRACE_START_FUNC_RET) ftrace_enable_ftrace_graph_caller(); else if (*command & FTRACE_STOP_FUNC_RET) ftrace_disable_ftrace_graph_caller(); return 0; } static void ftrace_run_update_code(int command) { stop_machine(__ftrace_modify_code, &command, NULL); } static ftrace_func_t saved_ftrace_func; static int ftrace_start_up; static void ftrace_startup_enable(int command) { if (saved_ftrace_func != ftrace_trace_function) { saved_ftrace_func = ftrace_trace_function; command |= FTRACE_UPDATE_TRACE_FUNC; } if (!command || !ftrace_enabled) return; ftrace_run_update_code(command); } static void ftrace_startup(int command) { if (unlikely(ftrace_disabled)) return; mutex_lock(&ftrace_start_lock); ftrace_start_up++; command |= FTRACE_ENABLE_CALLS; ftrace_startup_enable(command); mutex_unlock(&ftrace_start_lock); } static void ftrace_shutdown(int command) { if (unlikely(ftrace_disabled)) return; mutex_lock(&ftrace_start_lock); ftrace_start_up--; if (!ftrace_start_up) command |= FTRACE_DISABLE_CALLS; if (saved_ftrace_func != ftrace_trace_function) { saved_ftrace_func = ftrace_trace_function; command |= FTRACE_UPDATE_TRACE_FUNC; } if (!command || !ftrace_enabled) goto out; ftrace_run_update_code(command); out: mutex_unlock(&ftrace_start_lock); } static void ftrace_startup_sysctl(void) { int command = FTRACE_ENABLE_MCOUNT; if (unlikely(ftrace_disabled)) return; mutex_lock(&ftrace_start_lock); /* Force update next time */ saved_ftrace_func = NULL; /* ftrace_start_up is true if we want ftrace running */ if (ftrace_start_up) command |= FTRACE_ENABLE_CALLS; ftrace_run_update_code(command); mutex_unlock(&ftrace_start_lock); } static void ftrace_shutdown_sysctl(void) { int command = FTRACE_DISABLE_MCOUNT; if (unlikely(ftrace_disabled)) return; mutex_lock(&ftrace_start_lock); /* ftrace_start_up is true if ftrace is running */ if (ftrace_start_up) command |= FTRACE_DISABLE_CALLS; ftrace_run_update_code(command); mutex_unlock(&ftrace_start_lock); } static cycle_t ftrace_update_time; static unsigned long ftrace_update_cnt; unsigned long ftrace_update_tot_cnt; static int ftrace_update_code(struct module *mod) { struct dyn_ftrace *p, *t; cycle_t start, stop; start = ftrace_now(raw_smp_processor_id()); ftrace_update_cnt = 0; list_for_each_entry_safe(p, t, &ftrace_new_addrs, list) { /* If something went wrong, bail without enabling anything */ if (unlikely(ftrace_disabled)) return -1; list_del_init(&p->list); /* convert record (i.e, patch mcount-call with NOP) */ if (ftrace_code_disable(mod, p)) { p->flags |= FTRACE_FL_CONVERTED; ftrace_update_cnt++; } else ftrace_free_rec(p); } stop = ftrace_now(raw_smp_processor_id()); ftrace_update_time = stop - start; ftrace_update_tot_cnt += ftrace_update_cnt; return 0; } static int __init ftrace_dyn_table_alloc(unsigned long num_to_init) { struct ftrace_page *pg; int cnt; int i; /* allocate a few pages */ ftrace_pages_start = (void *)get_zeroed_page(GFP_KERNEL); if (!ftrace_pages_start) return -1; /* * Allocate a few more pages. * * TODO: have some parser search vmlinux before * final linking to find all calls to ftrace. * Then we can: * a) know how many pages to allocate. * and/or * b) set up the table then. * * The dynamic code is still necessary for * modules. */ pg = ftrace_pages = ftrace_pages_start; cnt = num_to_init / ENTRIES_PER_PAGE; pr_info("ftrace: allocating %ld entries in %d pages\n", num_to_init, cnt + 1); for (i = 0; i < cnt; i++) { pg->next = (void *)get_zeroed_page(GFP_KERNEL); /* If we fail, we'll try later anyway */ if (!pg->next) break; pg = pg->next; } return 0; } enum { FTRACE_ITER_FILTER = (1 << 0), FTRACE_ITER_CONT = (1 << 1), FTRACE_ITER_NOTRACE = (1 << 2), FTRACE_ITER_FAILURES = (1 << 3), }; #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ struct ftrace_iterator { loff_t pos; struct ftrace_page *pg; unsigned idx; unsigned flags; unsigned char buffer[FTRACE_BUFF_MAX+1]; unsigned buffer_idx; unsigned filtered; }; static void * t_next(struct seq_file *m, void *v, loff_t *pos) { struct ftrace_iterator *iter = m->private; struct dyn_ftrace *rec = NULL; (*pos)++; /* should not be called from interrupt context */ spin_lock(&ftrace_lock); retry: if (iter->idx >= iter->pg->index) { if (iter->pg->next) { iter->pg = iter->pg->next; iter->idx = 0; goto retry; } } else { rec = &iter->pg->records[iter->idx++]; if ((rec->flags & FTRACE_FL_FREE) || (!(iter->flags & FTRACE_ITER_FAILURES) && (rec->flags & FTRACE_FL_FAILED)) || ((iter->flags & FTRACE_ITER_FAILURES) && !(rec->flags & FTRACE_FL_FAILED)) || ((iter->flags & FTRACE_ITER_FILTER) && !(rec->flags & FTRACE_FL_FILTER)) || ((iter->flags & FTRACE_ITER_NOTRACE) && !(rec->flags & FTRACE_FL_NOTRACE))) { rec = NULL; goto retry; } } spin_unlock(&ftrace_lock); iter->pos = *pos; return rec; } static void *t_start(struct seq_file *m, loff_t *pos) { struct ftrace_iterator *iter = m->private; void *p = NULL; loff_t l = -1; if (*pos > iter->pos) *pos = iter->pos; l = *pos; p = t_next(m, p, &l); return p; } static void t_stop(struct seq_file *m, void *p) { } static int t_show(struct seq_file *m, void *v) { struct ftrace_iterator *iter = m->private; struct dyn_ftrace *rec = v; char str[KSYM_SYMBOL_LEN]; int ret = 0; if (!rec) return 0; kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); ret = seq_printf(m, "%s\n", str); if (ret < 0) { iter->pos--; iter->idx--; } return 0; } static struct seq_operations show_ftrace_seq_ops = { .start = t_start, .next = t_next, .stop = t_stop, .show = t_show, }; static int ftrace_avail_open(struct inode *inode, struct file *file) { struct ftrace_iterator *iter; int ret; if (unlikely(ftrace_disabled)) return -ENODEV; iter = kzalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; iter->pg = ftrace_pages_start; iter->pos = 0; ret = seq_open(file, &show_ftrace_seq_ops); if (!ret) { struct seq_file *m = file->private_data; m->private = iter; } else { kfree(iter); } return ret; } int ftrace_avail_release(struct inode *inode, struct file *file) { struct seq_file *m = (struct seq_file *)file->private_data; struct ftrace_iterator *iter = m->private; seq_release(inode, file); kfree(iter); return 0; } static int ftrace_failures_open(struct inode *inode, struct file *file) { int ret; struct seq_file *m; struct ftrace_iterator *iter; ret = ftrace_avail_open(inode, file); if (!ret) { m = (struct seq_file *)file->private_data; iter = (struct ftrace_iterator *)m->private; iter->flags = FTRACE_ITER_FAILURES; } return ret; } static void ftrace_filter_reset(int enable) { struct ftrace_page *pg; struct dyn_ftrace *rec; unsigned long type = enable ? FTRACE_FL_FILTER : FTRACE_FL_NOTRACE; unsigned i; /* should not be called from interrupt context */ spin_lock(&ftrace_lock); if (enable) ftrace_filtered = 0; pg = ftrace_pages_start; while (pg) { for (i = 0; i < pg->index; i++) { rec = &pg->records[i]; if (rec->flags & FTRACE_FL_FAILED) continue; rec->flags &= ~type; } pg = pg->next; } spin_unlock(&ftrace_lock); } static int ftrace_regex_open(struct inode *inode, struct file *file, int enable) { struct ftrace_iterator *iter; int ret = 0; if (unlikely(ftrace_disabled)) return -ENODEV; iter = kzalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; mutex_lock(&ftrace_regex_lock); if ((file->f_mode & FMODE_WRITE) && !(file->f_flags & O_APPEND)) ftrace_filter_reset(enable); if (file->f_mode & FMODE_READ) { iter->pg = ftrace_pages_start; iter->pos = 0; iter->flags = enable ? FTRACE_ITER_FILTER : FTRACE_ITER_NOTRACE; ret = seq_open(file, &show_ftrace_seq_ops); if (!ret) { struct seq_file *m = file->private_data; m->private = iter; } else kfree(iter); } else file->private_data = iter; mutex_unlock(&ftrace_regex_lock); return ret; } static int ftrace_filter_open(struct inode *inode, struct file *file) { return ftrace_regex_open(inode, file, 1); } static int ftrace_notrace_open(struct inode *inode, struct file *file) { return ftrace_regex_open(inode, file, 0); } static ssize_t ftrace_regex_read(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos) { if (file->f_mode & FMODE_READ) return seq_read(file, ubuf, cnt, ppos); else return -EPERM; } static loff_t ftrace_regex_lseek(struct file *file, loff_t offset, int origin) { loff_t ret; if (file->f_mode & FMODE_READ) ret = seq_lseek(file, offset, origin); else file->f_pos = ret = 1; return ret; } enum { MATCH_FULL, MATCH_FRONT_ONLY, MATCH_MIDDLE_ONLY, MATCH_END_ONLY, }; static void ftrace_match(unsigned char *buff, int len, int enable) { char str[KSYM_SYMBOL_LEN]; char *search = NULL; struct ftrace_page *pg; struct dyn_ftrace *rec; int type = MATCH_FULL; unsigned long flag = enable ? FTRACE_FL_FILTER : FTRACE_FL_NOTRACE; unsigned i, match = 0, search_len = 0; for (i = 0; i < len; i++) { if (buff[i] == '*') { if (!i) { search = buff + i + 1; type = MATCH_END_ONLY; search_len = len - (i + 1); } else { if (type == MATCH_END_ONLY) { type = MATCH_MIDDLE_ONLY; } else { match = i; type = MATCH_FRONT_ONLY; } buff[i] = 0; break; } } } /* should not be called from interrupt context */ spin_lock(&ftrace_lock); if (enable) ftrace_filtered = 1; pg = ftrace_pages_start; while (pg) { for (i = 0; i < pg->index; i++) { int matched = 0; char *ptr; rec = &pg->records[i]; if (rec->flags & FTRACE_FL_FAILED) continue; kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); switch (type) { case MATCH_FULL: if (strcmp(str, buff) == 0) matched = 1; break; case MATCH_FRONT_ONLY: if (memcmp(str, buff, match) == 0) matched = 1; break; case MATCH_MIDDLE_ONLY: if (strstr(str, search)) matched = 1; break; case MATCH_END_ONLY: ptr = strstr(str, search); if (ptr && (ptr[search_len] == 0)) matched = 1; break; } if (matched) rec->flags |= flag; } pg = pg->next; } spin_unlock(&ftrace_lock); } static ssize_t ftrace_regex_write(struct file *file, const char __user *ubuf, size_t cnt, loff_t *ppos, int enable) { struct ftrace_iterator *iter; char ch; size_t read = 0; ssize_t ret; if (!cnt || cnt < 0) return 0; mutex_lock(&ftrace_regex_lock); if (file->f_mode & FMODE_READ) { struct seq_file *m = file->private_data; iter = m->private; } else iter = file->private_data; if (!*ppos) { iter->flags &= ~FTRACE_ITER_CONT; iter->buffer_idx = 0; } ret = get_user(ch, ubuf++); if (ret) goto out; read++; cnt--; if (!(iter->flags & ~FTRACE_ITER_CONT)) { /* skip white space */ while (cnt && isspace(ch)) { ret = get_user(ch, ubuf++); if (ret) goto out; read++; cnt--; } if (isspace(ch)) { file->f_pos += read; ret = read; goto out; } iter->buffer_idx = 0; } while (cnt && !isspace(ch)) { if (iter->buffer_idx < FTRACE_BUFF_MAX) iter->buffer[iter->buffer_idx++] = ch; else { ret = -EINVAL; goto out; } ret = get_user(ch, ubuf++); if (ret) goto out; read++; cnt--; } if (isspace(ch)) { iter->filtered++; iter->buffer[iter->buffer_idx] = 0; ftrace_match(iter->buffer, iter->buffer_idx, enable); iter->buffer_idx = 0; } else iter->flags |= FTRACE_ITER_CONT; file->f_pos += read; ret = read; out: mutex_unlock(&ftrace_regex_lock); return ret; } static ssize_t ftrace_filter_write(struct file *file, const char __user *ubuf, size_t cnt, loff_t *ppos) { return ftrace_regex_write(file, ubuf, cnt, ppos, 1); } static ssize_t ftrace_notrace_write(struct file *file, const char __user *ubuf, size_t cnt, loff_t *ppos) { return ftrace_regex_write(file, ubuf, cnt, ppos, 0); } static void ftrace_set_regex(unsigned char *buf, int len, int reset, int enable) { if (unlikely(ftrace_disabled)) return; mutex_lock(&ftrace_regex_lock); if (reset) ftrace_filter_reset(enable); if (buf) ftrace_match(buf, len, enable); mutex_unlock(&ftrace_regex_lock); } /** * ftrace_set_filter - set a function to filter on in ftrace * @buf - the string that holds the function filter text. * @len - the length of the string. * @reset - non zero to reset all filters before applying this filter. * * Filters denote which functions should be enabled when tracing is enabled. * If @buf is NULL and reset is set, all functions will be enabled for tracing. */ void ftrace_set_filter(unsigned char *buf, int len, int reset) { ftrace_set_regex(buf, len, reset, 1); } /** * ftrace_set_notrace - set a function to not trace in ftrace * @buf - the string that holds the function notrace text. * @len - the length of the string. * @reset - non zero to reset all filters before applying this filter. * * Notrace Filters denote which functions should not be enabled when tracing * is enabled. If @buf is NULL and reset is set, all functions will be enabled * for tracing. */ void ftrace_set_notrace(unsigned char *buf, int len, int reset) { ftrace_set_regex(buf, len, reset, 0); } static int ftrace_regex_release(struct inode *inode, struct file *file, int enable) { struct seq_file *m = (struct seq_file *)file->private_data; struct ftrace_iterator *iter; mutex_lock(&ftrace_regex_lock); if (file->f_mode & FMODE_READ) { iter = m->private; seq_release(inode, file); } else iter = file->private_data; if (iter->buffer_idx) { iter->filtered++; iter->buffer[iter->buffer_idx] = 0; ftrace_match(iter->buffer, iter->buffer_idx, enable); } mutex_lock(&ftrace_sysctl_lock); mutex_lock(&ftrace_start_lock); if (ftrace_start_up && ftrace_enabled) ftrace_run_update_code(FTRACE_ENABLE_CALLS); mutex_unlock(&ftrace_start_lock); mutex_unlock(&ftrace_sysctl_lock); kfree(iter); mutex_unlock(&ftrace_regex_lock); return 0; } static int ftrace_filter_release(struct inode *inode, struct file *file) { return ftrace_regex_release(inode, file, 1); } static int ftrace_notrace_release(struct inode *inode, struct file *file) { return ftrace_regex_release(inode, file, 0); } static struct file_operations ftrace_avail_fops = { .open = ftrace_avail_open, .read = seq_read, .llseek = seq_lseek, .release = ftrace_avail_release, }; static struct file_operations ftrace_failures_fops = { .open = ftrace_failures_open, .read = seq_read, .llseek = seq_lseek, .release = ftrace_avail_release, }; static struct file_operations ftrace_filter_fops = { .open = ftrace_filter_open, .read = ftrace_regex_read, .write = ftrace_filter_write, .llseek = ftrace_regex_lseek, .release = ftrace_filter_release, }; static struct file_operations ftrace_notrace_fops = { .open = ftrace_notrace_open, .read = ftrace_regex_read, .write = ftrace_notrace_write, .llseek = ftrace_regex_lseek, .release = ftrace_notrace_release, }; static __init int ftrace_init_dyn_debugfs(struct dentry *d_tracer) { struct dentry *entry; entry = debugfs_create_file("available_filter_functions", 0444, d_tracer, NULL, &ftrace_avail_fops); if (!entry) pr_warning("Could not create debugfs " "'available_filter_functions' entry\n"); entry = debugfs_create_file("failures", 0444, d_tracer, NULL, &ftrace_failures_fops); if (!entry) pr_warning("Could not create debugfs 'failures' entry\n"); entry = debugfs_create_file("set_ftrace_filter", 0644, d_tracer, NULL, &ftrace_filter_fops); if (!entry) pr_warning("Could not create debugfs " "'set_ftrace_filter' entry\n"); entry = debugfs_create_file("set_ftrace_notrace", 0644, d_tracer, NULL, &ftrace_notrace_fops); if (!entry) pr_warning("Could not create debugfs " "'set_ftrace_notrace' entry\n"); return 0; } static int ftrace_convert_nops(struct module *mod, unsigned long *start, unsigned long *end) { unsigned long *p; unsigned long addr; unsigned long flags; mutex_lock(&ftrace_start_lock); p = start; while (p < end) { addr = ftrace_call_adjust(*p++); /* * Some architecture linkers will pad between * the different mcount_loc sections of different * object files to satisfy alignments. * Skip any NULL pointers. */ if (!addr) continue; ftrace_record_ip(addr); } /* disable interrupts to prevent kstop machine */ local_irq_save(flags); ftrace_update_code(mod); local_irq_restore(flags); mutex_unlock(&ftrace_start_lock); return 0; } void ftrace_init_module(struct module *mod, unsigned long *start, unsigned long *end) { if (ftrace_disabled || start == end) return; ftrace_convert_nops(mod, start, end); } extern unsigned long __start_mcount_loc[]; extern unsigned long __stop_mcount_loc[]; void __init ftrace_init(void) { unsigned long count, addr, flags; int ret; /* Keep the ftrace pointer to the stub */ addr = (unsigned long)ftrace_stub; local_irq_save(flags); ftrace_dyn_arch_init(&addr); local_irq_restore(flags); /* ftrace_dyn_arch_init places the return code in addr */ if (addr) goto failed; count = __stop_mcount_loc - __start_mcount_loc; ret = ftrace_dyn_table_alloc(count); if (ret) goto failed; last_ftrace_enabled = ftrace_enabled = 1; ret = ftrace_convert_nops(NULL, __start_mcount_loc, __stop_mcount_loc); return; failed: ftrace_disabled = 1; } #else static int __init ftrace_nodyn_init(void) { ftrace_enabled = 1; return 0; } device_initcall(ftrace_nodyn_init); static inline int ftrace_init_dyn_debugfs(struct dentry *d_tracer) { return 0; } static inline void ftrace_startup_enable(int command) { } /* Keep as macros so we do not need to define the commands */ # define ftrace_startup(command) do { } while (0) # define ftrace_shutdown(command) do { } while (0) # define ftrace_startup_sysctl() do { } while (0) # define ftrace_shutdown_sysctl() do { } while (0) #endif /* CONFIG_DYNAMIC_FTRACE */ static ssize_t ftrace_pid_read(struct file *file, char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[64]; int r; if (ftrace_pid_trace >= 0) r = sprintf(buf, "%u\n", ftrace_pid_trace); else r = sprintf(buf, "no pid\n"); return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); } static ssize_t ftrace_pid_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[64]; long val; int ret; if (cnt >= sizeof(buf)) return -EINVAL; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; ret = strict_strtol(buf, 10, &val); if (ret < 0) return ret; mutex_lock(&ftrace_start_lock); if (ret < 0) { /* disable pid tracing */ if (ftrace_pid_trace < 0) goto out; ftrace_pid_trace = -1; } else { if (ftrace_pid_trace == val) goto out; ftrace_pid_trace = val; } /* update the function call */ ftrace_update_pid_func(); ftrace_startup_enable(0); out: mutex_unlock(&ftrace_start_lock); return cnt; } static struct file_operations ftrace_pid_fops = { .read = ftrace_pid_read, .write = ftrace_pid_write, }; static __init int ftrace_init_debugfs(void) { struct dentry *d_tracer; struct dentry *entry; d_tracer = tracing_init_dentry(); if (!d_tracer) return 0; ftrace_init_dyn_debugfs(d_tracer); entry = debugfs_create_file("set_ftrace_pid", 0644, d_tracer, NULL, &ftrace_pid_fops); if (!entry) pr_warning("Could not create debugfs " "'set_ftrace_pid' entry\n"); return 0; } fs_initcall(ftrace_init_debugfs); /** * ftrace_kill - kill ftrace * * This function should be used by panic code. It stops ftrace * but in a not so nice way. If you need to simply kill ftrace * from a non-atomic section, use ftrace_kill. */ void ftrace_kill(void) { ftrace_disabled = 1; ftrace_enabled = 0; clear_ftrace_function(); } /** * register_ftrace_function - register a function for profiling * @ops - ops structure that holds the function for profiling. * * Register a function to be called by all functions in the * kernel. * * Note: @ops->func and all the functions it calls must be labeled * with "notrace", otherwise it will go into a * recursive loop. */ int register_ftrace_function(struct ftrace_ops *ops) { int ret; if (unlikely(ftrace_disabled)) return -1; mutex_lock(&ftrace_sysctl_lock); ret = __register_ftrace_function(ops); ftrace_startup(0); mutex_unlock(&ftrace_sysctl_lock); return ret; } /** * unregister_ftrace_function - unresgister a function for profiling. * @ops - ops structure that holds the function to unregister * * Unregister a function that was added to be called by ftrace profiling. */ int unregister_ftrace_function(struct ftrace_ops *ops) { int ret; mutex_lock(&ftrace_sysctl_lock); ret = __unregister_ftrace_function(ops); ftrace_shutdown(0); mutex_unlock(&ftrace_sysctl_lock); return ret; } int ftrace_enable_sysctl(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; if (unlikely(ftrace_disabled)) return -ENODEV; mutex_lock(&ftrace_sysctl_lock); ret = proc_dointvec(table, write, file, buffer, lenp, ppos); if (ret || !write || (last_ftrace_enabled == ftrace_enabled)) goto out; last_ftrace_enabled = ftrace_enabled; if (ftrace_enabled) { ftrace_startup_sysctl(); /* we are starting ftrace again */ if (ftrace_list != &ftrace_list_end) { if (ftrace_list->next == &ftrace_list_end) ftrace_trace_function = ftrace_list->func; else ftrace_trace_function = ftrace_list_func; } } else { /* stopping ftrace calls (just send to ftrace_stub) */ ftrace_trace_function = ftrace_stub; ftrace_shutdown_sysctl(); } out: mutex_unlock(&ftrace_sysctl_lock); return ret; } #ifdef CONFIG_FUNCTION_GRAPH_TRACER static atomic_t ftrace_graph_active; /* The callbacks that hook a function */ trace_func_graph_ret_t ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub; trace_func_graph_ent_t ftrace_graph_entry = (trace_func_graph_ent_t)ftrace_stub; /* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */ static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list) { int i; int ret = 0; unsigned long flags; int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE; struct task_struct *g, *t; for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) { ret_stack_list[i] = kmalloc(FTRACE_RETFUNC_DEPTH * sizeof(struct ftrace_ret_stack), GFP_KERNEL); if (!ret_stack_list[i]) { start = 0; end = i; ret = -ENOMEM; goto free; } } read_lock_irqsave(&tasklist_lock, flags); do_each_thread(g, t) { if (start == end) { ret = -EAGAIN; goto unlock; } if (t->ret_stack == NULL) { t->ret_stack = ret_stack_list[start++]; t->curr_ret_stack = -1; atomic_set(&t->trace_overrun, 0); } } while_each_thread(g, t); unlock: read_unlock_irqrestore(&tasklist_lock, flags); free: for (i = start; i < end; i++) kfree(ret_stack_list[i]); return ret; } /* Allocate a return stack for each task */ static int start_graph_tracing(void) { struct ftrace_ret_stack **ret_stack_list; int ret; ret_stack_list = kmalloc(FTRACE_RETSTACK_ALLOC_SIZE * sizeof(struct ftrace_ret_stack *), GFP_KERNEL); if (!ret_stack_list) return -ENOMEM; do { ret = alloc_retstack_tasklist(ret_stack_list); } while (ret == -EAGAIN); kfree(ret_stack_list); return ret; } int register_ftrace_graph(trace_func_graph_ret_t retfunc, trace_func_graph_ent_t entryfunc) { int ret = 0; mutex_lock(&ftrace_sysctl_lock); atomic_inc(&ftrace_graph_active); ret = start_graph_tracing(); if (ret) { atomic_dec(&ftrace_graph_active); goto out; } ftrace_graph_return = retfunc; ftrace_graph_entry = entryfunc; ftrace_startup(FTRACE_START_FUNC_RET); out: mutex_unlock(&ftrace_sysctl_lock); return ret; } void unregister_ftrace_graph(void) { mutex_lock(&ftrace_sysctl_lock); atomic_dec(&ftrace_graph_active); ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub; ftrace_graph_entry = (trace_func_graph_ent_t)ftrace_stub; ftrace_shutdown(FTRACE_STOP_FUNC_RET); mutex_unlock(&ftrace_sysctl_lock); } /* Allocate a return stack for newly created task */ void ftrace_graph_init_task(struct task_struct *t) { if (atomic_read(&ftrace_graph_active)) { t->ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH * sizeof(struct ftrace_ret_stack), GFP_KERNEL); if (!t->ret_stack) return; t->curr_ret_stack = -1; atomic_set(&t->trace_overrun, 0); } else t->ret_stack = NULL; } void ftrace_graph_exit_task(struct task_struct *t) { struct ftrace_ret_stack *ret_stack = t->ret_stack; t->ret_stack = NULL; /* NULL must become visible to IRQs before we free it: */ barrier(); kfree(ret_stack); } #endif