/* * apb_timer.c: Driver for Langwell APB timers * * (C) Copyright 2009 Intel Corporation * Author: Jacob Pan (jacob.jun.pan@intel.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. * * Note: * Langwell is the south complex of Intel Moorestown MID platform. There are * eight external timers in total that can be used by the operating system. * The timer information, such as frequency and addresses, is provided to the * OS via SFI tables. * Timer interrupts are routed via FW/HW emulated IOAPIC independently via * individual redirection table entries (RTE). * Unlike HPET, there is no master counter, therefore one of the timers are * used as clocksource. The overall allocation looks like: * - timer 0 - NR_CPUs for per cpu timer * - one timer for clocksource * - one timer for watchdog driver. * It is also worth notice that APB timer does not support true one-shot mode, * free-running mode will be used here to emulate one-shot mode. * APB timer can also be used as broadcast timer along with per cpu local APIC * timer, but by default APB timer has higher rating than local APIC timers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define APBT_CLOCKEVENT_RATING 110 #define APBT_CLOCKSOURCE_RATING 250 #define APBT_CLOCKEVENT0_NUM (0) #define APBT_CLOCKSOURCE_NUM (2) static phys_addr_t apbt_address; static int apb_timer_block_enabled; static void __iomem *apbt_virt_address; /* * Common DW APB timer info */ static unsigned long apbt_freq; struct apbt_dev { struct dw_apb_clock_event_device *timer; unsigned int num; int cpu; unsigned int irq; char name[10]; }; static struct dw_apb_clocksource *clocksource_apbt; static inline void __iomem *adev_virt_addr(struct apbt_dev *adev) { return apbt_virt_address + adev->num * APBTMRS_REG_SIZE; } static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); #ifdef CONFIG_SMP static unsigned int apbt_num_timers_used; #endif static inline void apbt_set_mapping(void) { struct sfi_timer_table_entry *mtmr; int phy_cs_timer_id = 0; if (apbt_virt_address) { pr_debug("APBT base already mapped\n"); return; } mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); if (mtmr == NULL) { printk(KERN_ERR "Failed to get MTMR %d from SFI\n", APBT_CLOCKEVENT0_NUM); return; } apbt_address = (phys_addr_t)mtmr->phys_addr; if (!apbt_address) { printk(KERN_WARNING "No timer base from SFI, use default\n"); apbt_address = APBT_DEFAULT_BASE; } apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); if (!apbt_virt_address) { pr_debug("Failed mapping APBT phy address at %lu\n",\ (unsigned long)apbt_address); goto panic_noapbt; } apbt_freq = mtmr->freq_hz; sfi_free_mtmr(mtmr); /* Now figure out the physical timer id for clocksource device */ mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); if (mtmr == NULL) goto panic_noapbt; /* Now figure out the physical timer id */ pr_debug("Use timer %d for clocksource\n", (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE); phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE; clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING, "apbt0", apbt_virt_address + phy_cs_timer_id * APBTMRS_REG_SIZE, apbt_freq); return; panic_noapbt: panic("Failed to setup APB system timer\n"); } static inline void apbt_clear_mapping(void) { iounmap(apbt_virt_address); apbt_virt_address = NULL; } static int __init apbt_clockevent_register(void) { struct sfi_timer_table_entry *mtmr; struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev); mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); if (mtmr == NULL) { printk(KERN_ERR "Failed to get MTMR %d from SFI\n", APBT_CLOCKEVENT0_NUM); return -ENODEV; } adev->num = smp_processor_id(); adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0", intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ? APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING, adev_virt_addr(adev), 0, apbt_freq); /* Firmware does EOI handling for us. */ adev->timer->eoi = NULL; if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { global_clock_event = &adev->timer->ced; printk(KERN_DEBUG "%s clockevent registered as global\n", global_clock_event->name); } dw_apb_clockevent_register(adev->timer); sfi_free_mtmr(mtmr); return 0; } #ifdef CONFIG_SMP static void apbt_setup_irq(struct apbt_dev *adev) { irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); } /* Should be called with per cpu */ void apbt_setup_secondary_clock(void) { struct apbt_dev *adev; int cpu; /* Don't register boot CPU clockevent */ cpu = smp_processor_id(); if (!cpu) return; adev = this_cpu_ptr(&cpu_apbt_dev); if (!adev->timer) { adev->timer = dw_apb_clockevent_init(cpu, adev->name, APBT_CLOCKEVENT_RATING, adev_virt_addr(adev), adev->irq, apbt_freq); adev->timer->eoi = NULL; } else { dw_apb_clockevent_resume(adev->timer); } printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n", cpu, adev->name, adev->cpu); apbt_setup_irq(adev); dw_apb_clockevent_register(adev->timer); return; } /* * this notify handler process CPU hotplug events. in case of S0i3, nonboot * cpus are disabled/enabled frequently, for performance reasons, we keep the * per cpu timer irq registered so that we do need to do free_irq/request_irq. * * TODO: it might be more reliable to directly disable percpu clockevent device * without the notifier chain. currently, cpu 0 may get interrupts from other * cpu timers during the offline process due to the ordering of notification. * the extra interrupt is harmless. */ static int apbt_cpuhp_notify(struct notifier_block *n, unsigned long action, void *hcpu) { unsigned long cpu = (unsigned long)hcpu; struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); switch (action & 0xf) { case CPU_DEAD: dw_apb_clockevent_pause(adev->timer); if (system_state == SYSTEM_RUNNING) { pr_debug("skipping APBT CPU %lu offline\n", cpu); } else { pr_debug("APBT clockevent for cpu %lu offline\n", cpu); dw_apb_clockevent_stop(adev->timer); } break; default: pr_debug("APBT notified %lu, no action\n", action); } return NOTIFY_OK; } static __init int apbt_late_init(void) { if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT || !apb_timer_block_enabled) return 0; /* This notifier should be called after workqueue is ready */ hotcpu_notifier(apbt_cpuhp_notify, -20); return 0; } fs_initcall(apbt_late_init); #else void apbt_setup_secondary_clock(void) {} #endif /* CONFIG_SMP */ static int apbt_clocksource_register(void) { u64 start, now; cycle_t t1; /* Start the counter, use timer 2 as source, timer 0/1 for event */ dw_apb_clocksource_start(clocksource_apbt); /* Verify whether apbt counter works */ t1 = dw_apb_clocksource_read(clocksource_apbt); rdtscll(start); /* * We don't know the TSC frequency yet, but waiting for * 200000 TSC cycles is safe: * 4 GHz == 50us * 1 GHz == 200us */ do { rep_nop(); rdtscll(now); } while ((now - start) < 200000UL); /* APBT is the only always on clocksource, it has to work! */ if (t1 == dw_apb_clocksource_read(clocksource_apbt)) panic("APBT counter not counting. APBT disabled\n"); dw_apb_clocksource_register(clocksource_apbt); return 0; } /* * Early setup the APBT timer, only use timer 0 for booting then switch to * per CPU timer if possible. * returns 1 if per cpu apbt is setup * returns 0 if no per cpu apbt is chosen * panic if set up failed, this is the only platform timer on Moorestown. */ void __init apbt_time_init(void) { #ifdef CONFIG_SMP int i; struct sfi_timer_table_entry *p_mtmr; struct apbt_dev *adev; #endif if (apb_timer_block_enabled) return; apbt_set_mapping(); if (!apbt_virt_address) goto out_noapbt; /* * Read the frequency and check for a sane value, for ESL model * we extend the possible clock range to allow time scaling. */ if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq); goto out_noapbt; } if (apbt_clocksource_register()) { pr_debug("APBT has failed to register clocksource\n"); goto out_noapbt; } if (!apbt_clockevent_register()) apb_timer_block_enabled = 1; else { pr_debug("APBT has failed to register clockevent\n"); goto out_noapbt; } #ifdef CONFIG_SMP /* kernel cmdline disable apb timer, so we will use lapic timers */ if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { printk(KERN_INFO "apbt: disabled per cpu timer\n"); return; } pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); if (num_possible_cpus() <= sfi_mtimer_num) apbt_num_timers_used = num_possible_cpus(); else apbt_num_timers_used = 1; pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); /* here we set up per CPU timer data structure */ for (i = 0; i < apbt_num_timers_used; i++) { adev = &per_cpu(cpu_apbt_dev, i); adev->num = i; adev->cpu = i; p_mtmr = sfi_get_mtmr(i); if (p_mtmr) adev->irq = p_mtmr->irq; else printk(KERN_ERR "Failed to get timer for cpu %d\n", i); snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i); } #endif return; out_noapbt: apbt_clear_mapping(); apb_timer_block_enabled = 0; panic("failed to enable APB timer\n"); } /* called before apb_timer_enable, use early map */ unsigned long apbt_quick_calibrate(void) { int i, scale; u64 old, new; cycle_t t1, t2; unsigned long khz = 0; u32 loop, shift; apbt_set_mapping(); dw_apb_clocksource_start(clocksource_apbt); /* check if the timer can count down, otherwise return */ old = dw_apb_clocksource_read(clocksource_apbt); i = 10000; while (--i) { if (old != dw_apb_clocksource_read(clocksource_apbt)) break; } if (!i) goto failed; /* count 16 ms */ loop = (apbt_freq / 1000) << 4; /* restart the timer to ensure it won't get to 0 in the calibration */ dw_apb_clocksource_start(clocksource_apbt); old = dw_apb_clocksource_read(clocksource_apbt); old += loop; t1 = native_read_tsc(); do { new = dw_apb_clocksource_read(clocksource_apbt); } while (new < old); t2 = native_read_tsc(); shift = 5; if (unlikely(loop >> shift == 0)) { printk(KERN_INFO "APBT TSC calibration failed, not enough resolution\n"); return 0; } scale = (int)div_u64((t2 - t1), loop >> shift); khz = (scale * (apbt_freq / 1000)) >> shift; printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); return khz; failed: return 0; }