/* * Contains common pci routines for ALL ppc platform * (based on pci_32.c and pci_64.c) * * Port for PPC64 David Engebretsen, IBM Corp. * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. * * Copyright (C) 2003 Anton Blanchard , IBM * Rework, based on alpha PCI code. * * Common pmac/prep/chrp pci routines. -- Cort * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static DEFINE_SPINLOCK(hose_spinlock); /* XXX kill that some day ... */ static int global_phb_number; /* Global phb counter */ /* ISA Memory physical address */ resource_size_t isa_mem_base; /* Default PCI flags is 0 on ppc32, modified at boot on ppc64 */ unsigned int ppc_pci_flags = 0; static struct dma_mapping_ops *pci_dma_ops; void set_pci_dma_ops(struct dma_mapping_ops *dma_ops) { pci_dma_ops = dma_ops; } struct dma_mapping_ops *get_pci_dma_ops(void) { return pci_dma_ops; } EXPORT_SYMBOL(get_pci_dma_ops); int pci_set_dma_mask(struct pci_dev *dev, u64 mask) { return dma_set_mask(&dev->dev, mask); } int pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) { int rc; rc = dma_set_mask(&dev->dev, mask); dev->dev.coherent_dma_mask = dev->dma_mask; return rc; } struct pci_controller *pcibios_alloc_controller(struct device_node *dev) { struct pci_controller *phb; phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); if (phb == NULL) return NULL; spin_lock(&hose_spinlock); phb->global_number = global_phb_number++; list_add_tail(&phb->list_node, &hose_list); spin_unlock(&hose_spinlock); phb->dn = dev; phb->is_dynamic = mem_init_done; #ifdef CONFIG_PPC64 if (dev) { int nid = of_node_to_nid(dev); if (nid < 0 || !node_online(nid)) nid = -1; PHB_SET_NODE(phb, nid); } #endif return phb; } void pcibios_free_controller(struct pci_controller *phb) { spin_lock(&hose_spinlock); list_del(&phb->list_node); spin_unlock(&hose_spinlock); if (phb->is_dynamic) kfree(phb); } int pcibios_vaddr_is_ioport(void __iomem *address) { int ret = 0; struct pci_controller *hose; unsigned long size; spin_lock(&hose_spinlock); list_for_each_entry(hose, &hose_list, list_node) { #ifdef CONFIG_PPC64 size = hose->pci_io_size; #else size = hose->io_resource.end - hose->io_resource.start + 1; #endif if (address >= hose->io_base_virt && address < (hose->io_base_virt + size)) { ret = 1; break; } } spin_unlock(&hose_spinlock); return ret; } /* * Return the domain number for this bus. */ int pci_domain_nr(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); return hose->global_number; } EXPORT_SYMBOL(pci_domain_nr); #ifdef CONFIG_PPC_OF /* This routine is meant to be used early during boot, when the * PCI bus numbers have not yet been assigned, and you need to * issue PCI config cycles to an OF device. * It could also be used to "fix" RTAS config cycles if you want * to set pci_assign_all_buses to 1 and still use RTAS for PCI * config cycles. */ struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) { if (!have_of) return NULL; while(node) { struct pci_controller *hose, *tmp; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) if (hose->dn == node) return hose; node = node->parent; } return NULL; } static ssize_t pci_show_devspec(struct device *dev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev; struct device_node *np; pdev = to_pci_dev (dev); np = pci_device_to_OF_node(pdev); if (np == NULL || np->full_name == NULL) return 0; return sprintf(buf, "%s", np->full_name); } static DEVICE_ATTR(devspec, S_IRUGO, pci_show_devspec, NULL); #endif /* CONFIG_PPC_OF */ /* Add sysfs properties */ int pcibios_add_platform_entries(struct pci_dev *pdev) { #ifdef CONFIG_PPC_OF return device_create_file(&pdev->dev, &dev_attr_devspec); #else return 0; #endif /* CONFIG_PPC_OF */ } char __devinit *pcibios_setup(char *str) { return str; } void __devinit pcibios_setup_new_device(struct pci_dev *dev) { struct dev_archdata *sd = &dev->dev.archdata; sd->of_node = pci_device_to_OF_node(dev); pr_debug("PCI: device %s OF node: %s\n", pci_name(dev), sd->of_node ? sd->of_node->full_name : ""); sd->dma_ops = pci_dma_ops; #ifdef CONFIG_PPC32 sd->dma_data = (void *)PCI_DRAM_OFFSET; #endif set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); if (ppc_md.pci_dma_dev_setup) ppc_md.pci_dma_dev_setup(dev); } EXPORT_SYMBOL(pcibios_setup_new_device); /* * Reads the interrupt pin to determine if interrupt is use by card. * If the interrupt is used, then gets the interrupt line from the * openfirmware and sets it in the pci_dev and pci_config line. */ int pci_read_irq_line(struct pci_dev *pci_dev) { struct of_irq oirq; unsigned int virq; /* The current device-tree that iSeries generates from the HV * PCI informations doesn't contain proper interrupt routing, * and all the fallback would do is print out crap, so we * don't attempt to resolve the interrupts here at all, some * iSeries specific fixup does it. * * In the long run, we will hopefully fix the generated device-tree * instead. */ #ifdef CONFIG_PPC_ISERIES if (firmware_has_feature(FW_FEATURE_ISERIES)) return -1; #endif pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); #ifdef DEBUG memset(&oirq, 0xff, sizeof(oirq)); #endif /* Try to get a mapping from the device-tree */ if (of_irq_map_pci(pci_dev, &oirq)) { u8 line, pin; /* If that fails, lets fallback to what is in the config * space and map that through the default controller. We * also set the type to level low since that's what PCI * interrupts are. If your platform does differently, then * either provide a proper interrupt tree or don't use this * function. */ if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) return -1; if (pin == 0) return -1; if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || line == 0xff || line == 0) { return -1; } pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", line, pin); virq = irq_create_mapping(NULL, line); if (virq != NO_IRQ) set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); } else { pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n", oirq.size, oirq.specifier[0], oirq.specifier[1], oirq.controller->full_name); virq = irq_create_of_mapping(oirq.controller, oirq.specifier, oirq.size); } if(virq == NO_IRQ) { pr_debug(" Failed to map !\n"); return -1; } pr_debug(" Mapped to linux irq %d\n", virq); pci_dev->irq = virq; return 0; } EXPORT_SYMBOL(pci_read_irq_line); /* * Platform support for /proc/bus/pci/X/Y mmap()s, * modelled on the sparc64 implementation by Dave Miller. * -- paulus. */ /* * Adjust vm_pgoff of VMA such that it is the physical page offset * corresponding to the 32-bit pci bus offset for DEV requested by the user. * * Basically, the user finds the base address for his device which he wishes * to mmap. They read the 32-bit value from the config space base register, * add whatever PAGE_SIZE multiple offset they wish, and feed this into the * offset parameter of mmap on /proc/bus/pci/XXX for that device. * * Returns negative error code on failure, zero on success. */ static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, resource_size_t *offset, enum pci_mmap_state mmap_state) { struct pci_controller *hose = pci_bus_to_host(dev->bus); unsigned long io_offset = 0; int i, res_bit; if (hose == 0) return NULL; /* should never happen */ /* If memory, add on the PCI bridge address offset */ if (mmap_state == pci_mmap_mem) { #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ *offset += hose->pci_mem_offset; #endif res_bit = IORESOURCE_MEM; } else { io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; *offset += io_offset; res_bit = IORESOURCE_IO; } /* * Check that the offset requested corresponds to one of the * resources of the device. */ for (i = 0; i <= PCI_ROM_RESOURCE; i++) { struct resource *rp = &dev->resource[i]; int flags = rp->flags; /* treat ROM as memory (should be already) */ if (i == PCI_ROM_RESOURCE) flags |= IORESOURCE_MEM; /* Active and same type? */ if ((flags & res_bit) == 0) continue; /* In the range of this resource? */ if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) continue; /* found it! construct the final physical address */ if (mmap_state == pci_mmap_io) *offset += hose->io_base_phys - io_offset; return rp; } return NULL; } /* * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci * device mapping. */ static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp, pgprot_t protection, enum pci_mmap_state mmap_state, int write_combine) { unsigned long prot = pgprot_val(protection); /* Write combine is always 0 on non-memory space mappings. On * memory space, if the user didn't pass 1, we check for a * "prefetchable" resource. This is a bit hackish, but we use * this to workaround the inability of /sysfs to provide a write * combine bit */ if (mmap_state != pci_mmap_mem) write_combine = 0; else if (write_combine == 0) { if (rp->flags & IORESOURCE_PREFETCH) write_combine = 1; } /* XXX would be nice to have a way to ask for write-through */ prot |= _PAGE_NO_CACHE; if (write_combine) prot &= ~_PAGE_GUARDED; else prot |= _PAGE_GUARDED; return __pgprot(prot); } /* * This one is used by /dev/mem and fbdev who have no clue about the * PCI device, it tries to find the PCI device first and calls the * above routine */ pgprot_t pci_phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t protection) { struct pci_dev *pdev = NULL; struct resource *found = NULL; unsigned long prot = pgprot_val(protection); resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; int i; if (page_is_ram(pfn)) return __pgprot(prot); prot |= _PAGE_NO_CACHE | _PAGE_GUARDED; for_each_pci_dev(pdev) { for (i = 0; i <= PCI_ROM_RESOURCE; i++) { struct resource *rp = &pdev->resource[i]; int flags = rp->flags; /* Active and same type? */ if ((flags & IORESOURCE_MEM) == 0) continue; /* In the range of this resource? */ if (offset < (rp->start & PAGE_MASK) || offset > rp->end) continue; found = rp; break; } if (found) break; } if (found) { if (found->flags & IORESOURCE_PREFETCH) prot &= ~_PAGE_GUARDED; pci_dev_put(pdev); } pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", (unsigned long long)offset, prot); return __pgprot(prot); } /* * Perform the actual remap of the pages for a PCI device mapping, as * appropriate for this architecture. The region in the process to map * is described by vm_start and vm_end members of VMA, the base physical * address is found in vm_pgoff. * The pci device structure is provided so that architectures may make mapping * decisions on a per-device or per-bus basis. * * Returns a negative error code on failure, zero on success. */ int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { resource_size_t offset = ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; struct resource *rp; int ret; rp = __pci_mmap_make_offset(dev, &offset, mmap_state); if (rp == NULL) return -EINVAL; vma->vm_pgoff = offset >> PAGE_SHIFT; vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp, vma->vm_page_prot, mmap_state, write_combine); ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); return ret; } /* This provides legacy IO read access on a bus */ int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) { unsigned long offset; struct pci_controller *hose = pci_bus_to_host(bus); struct resource *rp = &hose->io_resource; void __iomem *addr; /* Check if port can be supported by that bus. We only check * the ranges of the PHB though, not the bus itself as the rules * for forwarding legacy cycles down bridges are not our problem * here. So if the host bridge supports it, we do it. */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; offset += port; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (offset < rp->start || (offset + size) > rp->end) return -ENXIO; addr = hose->io_base_virt + port; switch(size) { case 1: *((u8 *)val) = in_8(addr); return 1; case 2: if (port & 1) return -EINVAL; *((u16 *)val) = in_le16(addr); return 2; case 4: if (port & 3) return -EINVAL; *((u32 *)val) = in_le32(addr); return 4; } return -EINVAL; } /* This provides legacy IO write access on a bus */ int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) { unsigned long offset; struct pci_controller *hose = pci_bus_to_host(bus); struct resource *rp = &hose->io_resource; void __iomem *addr; /* Check if port can be supported by that bus. We only check * the ranges of the PHB though, not the bus itself as the rules * for forwarding legacy cycles down bridges are not our problem * here. So if the host bridge supports it, we do it. */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; offset += port; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (offset < rp->start || (offset + size) > rp->end) return -ENXIO; addr = hose->io_base_virt + port; /* WARNING: The generic code is idiotic. It gets passed a pointer * to what can be a 1, 2 or 4 byte quantity and always reads that * as a u32, which means that we have to correct the location of * the data read within those 32 bits for size 1 and 2 */ switch(size) { case 1: out_8(addr, val >> 24); return 1; case 2: if (port & 1) return -EINVAL; out_le16(addr, val >> 16); return 2; case 4: if (port & 3) return -EINVAL; out_le32(addr, val); return 4; } return -EINVAL; } /* This provides legacy IO or memory mmap access on a bus */ int pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, enum pci_mmap_state mmap_state) { struct pci_controller *hose = pci_bus_to_host(bus); resource_size_t offset = ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; resource_size_t size = vma->vm_end - vma->vm_start; struct resource *rp; pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", pci_domain_nr(bus), bus->number, mmap_state == pci_mmap_mem ? "MEM" : "IO", (unsigned long long)offset, (unsigned long long)(offset + size - 1)); if (mmap_state == pci_mmap_mem) { if ((offset + size) > hose->isa_mem_size) return -ENXIO; offset += hose->isa_mem_phys; } else { unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; unsigned long roffset = offset + io_offset; rp = &hose->io_resource; if (!(rp->flags & IORESOURCE_IO)) return -ENXIO; if (roffset < rp->start || (roffset + size) > rp->end) return -ENXIO; offset += hose->io_base_phys; } pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); vma->vm_pgoff = offset >> PAGE_SHIFT; vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_NO_CACHE | _PAGE_GUARDED); return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); } void pci_resource_to_user(const struct pci_dev *dev, int bar, const struct resource *rsrc, resource_size_t *start, resource_size_t *end) { struct pci_controller *hose = pci_bus_to_host(dev->bus); resource_size_t offset = 0; if (hose == NULL) return; if (rsrc->flags & IORESOURCE_IO) offset = (unsigned long)hose->io_base_virt - _IO_BASE; /* We pass a fully fixed up address to userland for MMIO instead of * a BAR value because X is lame and expects to be able to use that * to pass to /dev/mem ! * * That means that we'll have potentially 64 bits values where some * userland apps only expect 32 (like X itself since it thinks only * Sparc has 64 bits MMIO) but if we don't do that, we break it on * 32 bits CHRPs :-( * * Hopefully, the sysfs insterface is immune to that gunk. Once X * has been fixed (and the fix spread enough), we can re-enable the * 2 lines below and pass down a BAR value to userland. In that case * we'll also have to re-enable the matching code in * __pci_mmap_make_offset(). * * BenH. */ #if 0 else if (rsrc->flags & IORESOURCE_MEM) offset = hose->pci_mem_offset; #endif *start = rsrc->start - offset; *end = rsrc->end - offset; } /** * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree * @hose: newly allocated pci_controller to be setup * @dev: device node of the host bridge * @primary: set if primary bus (32 bits only, soon to be deprecated) * * This function will parse the "ranges" property of a PCI host bridge device * node and setup the resource mapping of a pci controller based on its * content. * * Life would be boring if it wasn't for a few issues that we have to deal * with here: * * - We can only cope with one IO space range and up to 3 Memory space * ranges. However, some machines (thanks Apple !) tend to split their * space into lots of small contiguous ranges. So we have to coalesce. * * - We can only cope with all memory ranges having the same offset * between CPU addresses and PCI addresses. Unfortunately, some bridges * are setup for a large 1:1 mapping along with a small "window" which * maps PCI address 0 to some arbitrary high address of the CPU space in * order to give access to the ISA memory hole. * The way out of here that I've chosen for now is to always set the * offset based on the first resource found, then override it if we * have a different offset and the previous was set by an ISA hole. * * - Some busses have IO space not starting at 0, which causes trouble with * the way we do our IO resource renumbering. The code somewhat deals with * it for 64 bits but I would expect problems on 32 bits. * * - Some 32 bits platforms such as 4xx can have physical space larger than * 32 bits so we need to use 64 bits values for the parsing */ void __devinit pci_process_bridge_OF_ranges(struct pci_controller *hose, struct device_node *dev, int primary) { const u32 *ranges; int rlen; int pna = of_n_addr_cells(dev); int np = pna + 5; int memno = 0, isa_hole = -1; u32 pci_space; unsigned long long pci_addr, cpu_addr, pci_next, cpu_next, size; unsigned long long isa_mb = 0; struct resource *res; printk(KERN_INFO "PCI host bridge %s %s ranges:\n", dev->full_name, primary ? "(primary)" : ""); /* Get ranges property */ ranges = of_get_property(dev, "ranges", &rlen); if (ranges == NULL) return; /* Parse it */ while ((rlen -= np * 4) >= 0) { /* Read next ranges element */ pci_space = ranges[0]; pci_addr = of_read_number(ranges + 1, 2); cpu_addr = of_translate_address(dev, ranges + 3); size = of_read_number(ranges + pna + 3, 2); ranges += np; /* If we failed translation or got a zero-sized region * (some FW try to feed us with non sensical zero sized regions * such as power3 which look like some kind of attempt at exposing * the VGA memory hole) */ if (cpu_addr == OF_BAD_ADDR || size == 0) continue; /* Now consume following elements while they are contiguous */ for (; rlen >= np * sizeof(u32); ranges += np, rlen -= np * 4) { if (ranges[0] != pci_space) break; pci_next = of_read_number(ranges + 1, 2); cpu_next = of_translate_address(dev, ranges + 3); if (pci_next != pci_addr + size || cpu_next != cpu_addr + size) break; size += of_read_number(ranges + pna + 3, 2); } /* Act based on address space type */ res = NULL; switch ((pci_space >> 24) & 0x3) { case 1: /* PCI IO space */ printk(KERN_INFO " IO 0x%016llx..0x%016llx -> 0x%016llx\n", cpu_addr, cpu_addr + size - 1, pci_addr); /* We support only one IO range */ if (hose->pci_io_size) { printk(KERN_INFO " \\--> Skipped (too many) !\n"); continue; } #ifdef CONFIG_PPC32 /* On 32 bits, limit I/O space to 16MB */ if (size > 0x01000000) size = 0x01000000; /* 32 bits needs to map IOs here */ hose->io_base_virt = ioremap(cpu_addr, size); /* Expect trouble if pci_addr is not 0 */ if (primary) isa_io_base = (unsigned long)hose->io_base_virt; #endif /* CONFIG_PPC32 */ /* pci_io_size and io_base_phys always represent IO * space starting at 0 so we factor in pci_addr */ hose->pci_io_size = pci_addr + size; hose->io_base_phys = cpu_addr - pci_addr; /* Build resource */ res = &hose->io_resource; res->flags = IORESOURCE_IO; res->start = pci_addr; break; case 2: /* PCI Memory space */ case 3: /* PCI 64 bits Memory space */ printk(KERN_INFO " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", cpu_addr, cpu_addr + size - 1, pci_addr, (pci_space & 0x40000000) ? "Prefetch" : ""); /* We support only 3 memory ranges */ if (memno >= 3) { printk(KERN_INFO " \\--> Skipped (too many) !\n"); continue; } /* Handles ISA memory hole space here */ if (pci_addr == 0) { isa_mb = cpu_addr; isa_hole = memno; if (primary || isa_mem_base == 0) isa_mem_base = cpu_addr; hose->isa_mem_phys = cpu_addr; hose->isa_mem_size = size; } /* We get the PCI/Mem offset from the first range or * the, current one if the offset came from an ISA * hole. If they don't match, bugger. */ if (memno == 0 || (isa_hole >= 0 && pci_addr != 0 && hose->pci_mem_offset == isa_mb)) hose->pci_mem_offset = cpu_addr - pci_addr; else if (pci_addr != 0 && hose->pci_mem_offset != cpu_addr - pci_addr) { printk(KERN_INFO " \\--> Skipped (offset mismatch) !\n"); continue; } /* Build resource */ res = &hose->mem_resources[memno++]; res->flags = IORESOURCE_MEM; if (pci_space & 0x40000000) res->flags |= IORESOURCE_PREFETCH; res->start = cpu_addr; break; } if (res != NULL) { res->name = dev->full_name; res->end = res->start + size - 1; res->parent = NULL; res->sibling = NULL; res->child = NULL; } } /* If there's an ISA hole and the pci_mem_offset is -not- matching * the ISA hole offset, then we need to remove the ISA hole from * the resource list for that brige */ if (isa_hole >= 0 && hose->pci_mem_offset != isa_mb) { unsigned int next = isa_hole + 1; printk(KERN_INFO " Removing ISA hole at 0x%016llx\n", isa_mb); if (next < memno) memmove(&hose->mem_resources[isa_hole], &hose->mem_resources[next], sizeof(struct resource) * (memno - next)); hose->mem_resources[--memno].flags = 0; } } /* Decide whether to display the domain number in /proc */ int pci_proc_domain(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); if (!(ppc_pci_flags & PPC_PCI_ENABLE_PROC_DOMAINS)) return 0; if (ppc_pci_flags & PPC_PCI_COMPAT_DOMAIN_0) return hose->global_number != 0; return 1; } void pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region, struct resource *res) { resource_size_t offset = 0, mask = (resource_size_t)-1; struct pci_controller *hose = pci_bus_to_host(dev->bus); if (!hose) return; if (res->flags & IORESOURCE_IO) { offset = (unsigned long)hose->io_base_virt - _IO_BASE; mask = 0xffffffffu; } else if (res->flags & IORESOURCE_MEM) offset = hose->pci_mem_offset; region->start = (res->start - offset) & mask; region->end = (res->end - offset) & mask; } EXPORT_SYMBOL(pcibios_resource_to_bus); void pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res, struct pci_bus_region *region) { resource_size_t offset = 0, mask = (resource_size_t)-1; struct pci_controller *hose = pci_bus_to_host(dev->bus); if (!hose) return; if (res->flags & IORESOURCE_IO) { offset = (unsigned long)hose->io_base_virt - _IO_BASE; mask = 0xffffffffu; } else if (res->flags & IORESOURCE_MEM) offset = hose->pci_mem_offset; res->start = (region->start + offset) & mask; res->end = (region->end + offset) & mask; } EXPORT_SYMBOL(pcibios_bus_to_resource); /* Fixup a bus resource into a linux resource */ static void __devinit fixup_resource(struct resource *res, struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); resource_size_t offset = 0, mask = (resource_size_t)-1; if (res->flags & IORESOURCE_IO) { offset = (unsigned long)hose->io_base_virt - _IO_BASE; mask = 0xffffffffu; } else if (res->flags & IORESOURCE_MEM) offset = hose->pci_mem_offset; res->start = (res->start + offset) & mask; res->end = (res->end + offset) & mask; } /* This header fixup will do the resource fixup for all devices as they are * probed, but not for bridge ranges */ static void __devinit pcibios_fixup_resources(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); int i; if (!hose) { printk(KERN_ERR "No host bridge for PCI dev %s !\n", pci_name(dev)); return; } for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { struct resource *res = dev->resource + i; if (!res->flags) continue; /* On platforms that have PPC_PCI_PROBE_ONLY set, we don't * consider 0 as an unassigned BAR value. It's technically * a valid value, but linux doesn't like it... so when we can * re-assign things, we do so, but if we can't, we keep it * around and hope for the best... */ if (res->start == 0 && !(ppc_pci_flags & PPC_PCI_PROBE_ONLY)) { pr_debug("PCI:%s Resource %d %016llx-%016llx [%x] is unassigned\n", pci_name(dev), i, (unsigned long long)res->start, (unsigned long long)res->end, (unsigned int)res->flags); res->end -= res->start; res->start = 0; res->flags |= IORESOURCE_UNSET; continue; } pr_debug("PCI:%s Resource %d %016llx-%016llx [%x] fixup...\n", pci_name(dev), i, (unsigned long long)res->start,\ (unsigned long long)res->end, (unsigned int)res->flags); fixup_resource(res, dev); pr_debug("PCI:%s %016llx-%016llx\n", pci_name(dev), (unsigned long long)res->start, (unsigned long long)res->end); } /* Call machine specific resource fixup */ if (ppc_md.pcibios_fixup_resources) ppc_md.pcibios_fixup_resources(dev); } DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); /* This function tries to figure out if a bridge resource has been initialized * by the firmware or not. It doesn't have to be absolutely bullet proof, but * things go more smoothly when it gets it right. It should covers cases such * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges */ static int __devinit pcibios_uninitialized_bridge_resource(struct pci_bus *bus, struct resource *res) { struct pci_controller *hose = pci_bus_to_host(bus); struct pci_dev *dev = bus->self; resource_size_t offset; u16 command; int i; /* We don't do anything if PCI_PROBE_ONLY is set */ if (ppc_pci_flags & PPC_PCI_PROBE_ONLY) return 0; /* Job is a bit different between memory and IO */ if (res->flags & IORESOURCE_MEM) { /* If the BAR is non-0 (res != pci_mem_offset) then it's probably been * initialized by somebody */ if (res->start != hose->pci_mem_offset) return 0; /* The BAR is 0, let's check if memory decoding is enabled on * the bridge. If not, we consider it unassigned */ pci_read_config_word(dev, PCI_COMMAND, &command); if ((command & PCI_COMMAND_MEMORY) == 0) return 1; /* Memory decoding is enabled and the BAR is 0. If any of the bridge * resources covers that starting address (0 then it's good enough for * us for memory */ for (i = 0; i < 3; i++) { if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && hose->mem_resources[i].start == hose->pci_mem_offset) return 0; } /* Well, it starts at 0 and we know it will collide so we may as * well consider it as unassigned. That covers the Apple case. */ return 1; } else { /* If the BAR is non-0, then we consider it assigned */ offset = (unsigned long)hose->io_base_virt - _IO_BASE; if (((res->start - offset) & 0xfffffffful) != 0) return 0; /* Here, we are a bit different than memory as typically IO space * starting at low addresses -is- valid. What we do instead if that * we consider as unassigned anything that doesn't have IO enabled * in the PCI command register, and that's it. */ pci_read_config_word(dev, PCI_COMMAND, &command); if (command & PCI_COMMAND_IO) return 0; /* It's starting at 0 and IO is disabled in the bridge, consider * it unassigned */ return 1; } } /* Fixup resources of a PCI<->PCI bridge */ static void __devinit pcibios_fixup_bridge(struct pci_bus *bus) { struct resource *res; int i; struct pci_dev *dev = bus->self; for (i = 0; i < PCI_BUS_NUM_RESOURCES; ++i) { if ((res = bus->resource[i]) == NULL) continue; if (!res->flags) continue; if (i >= 3 && bus->self->transparent) continue; pr_debug("PCI:%s Bus rsrc %d %016llx-%016llx [%x] fixup...\n", pci_name(dev), i, (unsigned long long)res->start,\ (unsigned long long)res->end, (unsigned int)res->flags); /* Perform fixup */ fixup_resource(res, dev); /* Try to detect uninitialized P2P bridge resources, * and clear them out so they get re-assigned later */ if (pcibios_uninitialized_bridge_resource(bus, res)) { res->flags = 0; pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); } else { pr_debug("PCI:%s %016llx-%016llx\n", pci_name(dev), (unsigned long long)res->start, (unsigned long long)res->end); } } } static void __devinit __pcibios_fixup_bus(struct pci_bus *bus) { struct pci_dev *dev = bus->self; pr_debug("PCI: Fixup bus %d (%s)\n", bus->number, dev ? pci_name(dev) : "PHB"); /* Fixup PCI<->PCI bridges. Host bridges are handled separately, for * now differently between 32 and 64 bits. */ if (dev != NULL) pcibios_fixup_bridge(bus); /* Additional setup that is different between 32 and 64 bits for now */ pcibios_do_bus_setup(bus); /* Platform specific bus fixups */ if (ppc_md.pcibios_fixup_bus) ppc_md.pcibios_fixup_bus(bus); /* Read default IRQs and fixup if necessary */ list_for_each_entry(dev, &bus->devices, bus_list) { pci_read_irq_line(dev); if (ppc_md.pci_irq_fixup) ppc_md.pci_irq_fixup(dev); } } void __devinit pcibios_fixup_bus(struct pci_bus *bus) { /* When called from the generic PCI probe, read PCI<->PCI bridge * bases before proceeding */ if (bus->self != NULL) pci_read_bridge_bases(bus); __pcibios_fixup_bus(bus); } EXPORT_SYMBOL(pcibios_fixup_bus); /* When building a bus from the OF tree rather than probing, we need a * slightly different version of the fixup which doesn't read the * bridge bases using config space accesses */ void __devinit pcibios_fixup_of_probed_bus(struct pci_bus *bus) { __pcibios_fixup_bus(bus); } static int skip_isa_ioresource_align(struct pci_dev *dev) { if ((ppc_pci_flags & PPC_PCI_CAN_SKIP_ISA_ALIGN) && !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) return 1; return 0; } /* * We need to avoid collisions with `mirrored' VGA ports * and other strange ISA hardware, so we always want the * addresses to be allocated in the 0x000-0x0ff region * modulo 0x400. * * Why? Because some silly external IO cards only decode * the low 10 bits of the IO address. The 0x00-0xff region * is reserved for motherboard devices that decode all 16 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, * but we want to try to avoid allocating at 0x2900-0x2bff * which might have be mirrored at 0x0100-0x03ff.. */ void pcibios_align_resource(void *data, struct resource *res, resource_size_t size, resource_size_t align) { struct pci_dev *dev = data; if (res->flags & IORESOURCE_IO) { resource_size_t start = res->start; if (skip_isa_ioresource_align(dev)) return; if (start & 0x300) { start = (start + 0x3ff) & ~0x3ff; res->start = start; } } } EXPORT_SYMBOL(pcibios_align_resource); /* * Reparent resource children of pr that conflict with res * under res, and make res replace those children. */ static int __init reparent_resources(struct resource *parent, struct resource *res) { struct resource *p, **pp; struct resource **firstpp = NULL; for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { if (p->end < res->start) continue; if (res->end < p->start) break; if (p->start < res->start || p->end > res->end) return -1; /* not completely contained */ if (firstpp == NULL) firstpp = pp; } if (firstpp == NULL) return -1; /* didn't find any conflicting entries? */ res->parent = parent; res->child = *firstpp; res->sibling = *pp; *firstpp = res; *pp = NULL; for (p = res->child; p != NULL; p = p->sibling) { p->parent = res; pr_debug("PCI: Reparented %s [%llx..%llx] under %s\n", p->name, (unsigned long long)p->start, (unsigned long long)p->end, res->name); } return 0; } /* * Handle resources of PCI devices. If the world were perfect, we could * just allocate all the resource regions and do nothing more. It isn't. * On the other hand, we cannot just re-allocate all devices, as it would * require us to know lots of host bridge internals. So we attempt to * keep as much of the original configuration as possible, but tweak it * when it's found to be wrong. * * Known BIOS problems we have to work around: * - I/O or memory regions not configured * - regions configured, but not enabled in the command register * - bogus I/O addresses above 64K used * - expansion ROMs left enabled (this may sound harmless, but given * the fact the PCI specs explicitly allow address decoders to be * shared between expansion ROMs and other resource regions, it's * at least dangerous) * * Our solution: * (1) Allocate resources for all buses behind PCI-to-PCI bridges. * This gives us fixed barriers on where we can allocate. * (2) Allocate resources for all enabled devices. If there is * a collision, just mark the resource as unallocated. Also * disable expansion ROMs during this step. * (3) Try to allocate resources for disabled devices. If the * resources were assigned correctly, everything goes well, * if they weren't, they won't disturb allocation of other * resources. * (4) Assign new addresses to resources which were either * not configured at all or misconfigured. If explicitly * requested by the user, configure expansion ROM address * as well. */ void pcibios_allocate_bus_resources(struct pci_bus *bus) { struct pci_bus *b; int i; struct resource *res, *pr; for (i = 0; i < PCI_BUS_NUM_RESOURCES; ++i) { if ((res = bus->resource[i]) == NULL || !res->flags || res->start > res->end) continue; if (bus->parent == NULL) pr = (res->flags & IORESOURCE_IO) ? &ioport_resource : &iomem_resource; else { /* Don't bother with non-root busses when * re-assigning all resources. We clear the * resource flags as if they were colliding * and as such ensure proper re-allocation * later. */ if (ppc_pci_flags & PPC_PCI_REASSIGN_ALL_RSRC) goto clear_resource; pr = pci_find_parent_resource(bus->self, res); if (pr == res) { /* this happens when the generic PCI * code (wrongly) decides that this * bridge is transparent -- paulus */ continue; } } pr_debug("PCI: %s (bus %d) bridge rsrc %d: %016llx-%016llx " "[0x%x], parent %p (%s)\n", bus->self ? pci_name(bus->self) : "PHB", bus->number, i, (unsigned long long)res->start, (unsigned long long)res->end, (unsigned int)res->flags, pr, (pr && pr->name) ? pr->name : "nil"); if (pr && !(pr->flags & IORESOURCE_UNSET)) { if (request_resource(pr, res) == 0) continue; /* * Must be a conflict with an existing entry. * Move that entry (or entries) under the * bridge resource and try again. */ if (reparent_resources(pr, res) == 0) continue; } printk(KERN_WARNING "PCI: Cannot allocate resource region " "%d of PCI bridge %d, will remap\n", i, bus->number); clear_resource: res->flags = 0; } list_for_each_entry(b, &bus->children, node) pcibios_allocate_bus_resources(b); } static inline void __devinit alloc_resource(struct pci_dev *dev, int idx) { struct resource *pr, *r = &dev->resource[idx]; pr_debug("PCI: Allocating %s: Resource %d: %016llx..%016llx [%x]\n", pci_name(dev), idx, (unsigned long long)r->start, (unsigned long long)r->end, (unsigned int)r->flags); pr = pci_find_parent_resource(dev, r); if (!pr || (pr->flags & IORESOURCE_UNSET) || request_resource(pr, r) < 0) { printk(KERN_WARNING "PCI: Cannot allocate resource region %d" " of device %s, will remap\n", idx, pci_name(dev)); if (pr) pr_debug("PCI: parent is %p: %016llx-%016llx [%x]\n", pr, (unsigned long long)pr->start, (unsigned long long)pr->end, (unsigned int)pr->flags); /* We'll assign a new address later */ r->flags |= IORESOURCE_UNSET; r->end -= r->start; r->start = 0; } } static void __init pcibios_allocate_resources(int pass) { struct pci_dev *dev = NULL; int idx, disabled; u16 command; struct resource *r; for_each_pci_dev(dev) { pci_read_config_word(dev, PCI_COMMAND, &command); for (idx = 0; idx < 6; idx++) { r = &dev->resource[idx]; if (r->parent) /* Already allocated */ continue; if (!r->flags || (r->flags & IORESOURCE_UNSET)) continue; /* Not assigned at all */ if (r->flags & IORESOURCE_IO) disabled = !(command & PCI_COMMAND_IO); else disabled = !(command & PCI_COMMAND_MEMORY); if (pass == disabled) alloc_resource(dev, idx); } if (pass) continue; r = &dev->resource[PCI_ROM_RESOURCE]; if (r->flags & IORESOURCE_ROM_ENABLE) { /* Turn the ROM off, leave the resource region, * but keep it unregistered. */ u32 reg; pr_debug("PCI: Switching off ROM of %s\n", pci_name(dev)); r->flags &= ~IORESOURCE_ROM_ENABLE; pci_read_config_dword(dev, dev->rom_base_reg, ®); pci_write_config_dword(dev, dev->rom_base_reg, reg & ~PCI_ROM_ADDRESS_ENABLE); } } } void __init pcibios_resource_survey(void) { struct pci_bus *b; /* Allocate and assign resources. If we re-assign everything, then * we skip the allocate phase */ list_for_each_entry(b, &pci_root_buses, node) pcibios_allocate_bus_resources(b); if (!(ppc_pci_flags & PPC_PCI_REASSIGN_ALL_RSRC)) { pcibios_allocate_resources(0); pcibios_allocate_resources(1); } if (!(ppc_pci_flags & PPC_PCI_PROBE_ONLY)) { pr_debug("PCI: Assigning unassigned resouces...\n"); pci_assign_unassigned_resources(); } /* Call machine dependent fixup */ if (ppc_md.pcibios_fixup) ppc_md.pcibios_fixup(); } #ifdef CONFIG_HOTPLUG /* This is used by the pSeries hotplug driver to allocate resource * of newly plugged busses. We can try to consolidate with the * rest of the code later, for now, keep it as-is */ void __devinit pcibios_claim_one_bus(struct pci_bus *bus) { struct pci_dev *dev; struct pci_bus *child_bus; list_for_each_entry(dev, &bus->devices, bus_list) { int i; for (i = 0; i < PCI_NUM_RESOURCES; i++) { struct resource *r = &dev->resource[i]; if (r->parent || !r->start || !r->flags) continue; pci_claim_resource(dev, i); } } list_for_each_entry(child_bus, &bus->children, node) pcibios_claim_one_bus(child_bus); } EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); #endif /* CONFIG_HOTPLUG */ int pcibios_enable_device(struct pci_dev *dev, int mask) { if (ppc_md.pcibios_enable_device_hook) if (ppc_md.pcibios_enable_device_hook(dev)) return -EINVAL; return pci_enable_resources(dev, mask); }