#ifdef CONFIG_CPU_SUP_AMD static DEFINE_RAW_SPINLOCK(amd_nb_lock); static __initconst u64 amd_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */ [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */ [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */ [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */ [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */ [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */ [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; /* * AMD Performance Monitor K7 and later. */ static const u64 amd_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080, [PERF_COUNT_HW_CACHE_MISSES] = 0x0081, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, }; static u64 amd_pmu_event_map(int hw_event) { return amd_perfmon_event_map[hw_event]; } static u64 amd_pmu_raw_event(u64 hw_event) { return hw_event & AMD64_RAW_EVENT_MASK; } /* * AMD64 events are detected based on their event codes. */ static inline int amd_is_nb_event(struct hw_perf_event *hwc) { return (hwc->config & 0xe0) == 0xe0; } static inline int amd_has_nb(struct cpu_hw_events *cpuc) { struct amd_nb *nb = cpuc->amd_nb; return nb && nb->nb_id != -1; } static void amd_put_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct amd_nb *nb = cpuc->amd_nb; int i; /* * only care about NB events */ if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc))) return; /* * need to scan whole list because event may not have * been assigned during scheduling * * no race condition possible because event can only * be removed on one CPU at a time AND PMU is disabled * when we come here */ for (i = 0; i < x86_pmu.num_counters; i++) { if (nb->owners[i] == event) { cmpxchg(nb->owners+i, event, NULL); break; } } } /* * AMD64 NorthBridge events need special treatment because * counter access needs to be synchronized across all cores * of a package. Refer to BKDG section 3.12 * * NB events are events measuring L3 cache, Hypertransport * traffic. They are identified by an event code >= 0xe00. * They measure events on the NorthBride which is shared * by all cores on a package. NB events are counted on a * shared set of counters. When a NB event is programmed * in a counter, the data actually comes from a shared * counter. Thus, access to those counters needs to be * synchronized. * * We implement the synchronization such that no two cores * can be measuring NB events using the same counters. Thus, * we maintain a per-NB allocation table. The available slot * is propagated using the event_constraint structure. * * We provide only one choice for each NB event based on * the fact that only NB events have restrictions. Consequently, * if a counter is available, there is a guarantee the NB event * will be assigned to it. If no slot is available, an empty * constraint is returned and scheduling will eventually fail * for this event. * * Note that all cores attached the same NB compete for the same * counters to host NB events, this is why we use atomic ops. Some * multi-chip CPUs may have more than one NB. * * Given that resources are allocated (cmpxchg), they must be * eventually freed for others to use. This is accomplished by * calling amd_put_event_constraints(). * * Non NB events are not impacted by this restriction. */ static struct event_constraint * amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct amd_nb *nb = cpuc->amd_nb; struct perf_event *old = NULL; int max = x86_pmu.num_counters; int i, j, k = -1; /* * if not NB event or no NB, then no constraints */ if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc))) return &unconstrained; /* * detect if already present, if so reuse * * cannot merge with actual allocation * because of possible holes * * event can already be present yet not assigned (in hwc->idx) * because of successive calls to x86_schedule_events() from * hw_perf_group_sched_in() without hw_perf_enable() */ for (i = 0; i < max; i++) { /* * keep track of first free slot */ if (k == -1 && !nb->owners[i]) k = i; /* already present, reuse */ if (nb->owners[i] == event) goto done; } /* * not present, so grab a new slot * starting either at: */ if (hwc->idx != -1) { /* previous assignment */ i = hwc->idx; } else if (k != -1) { /* start from free slot found */ i = k; } else { /* * event not found, no slot found in * first pass, try again from the * beginning */ i = 0; } j = i; do { old = cmpxchg(nb->owners+i, NULL, event); if (!old) break; if (++i == max) i = 0; } while (i != j); done: if (!old) return &nb->event_constraints[i]; return &emptyconstraint; } static struct amd_nb *amd_alloc_nb(int cpu, int nb_id) { struct amd_nb *nb; int i; nb = kmalloc(sizeof(struct amd_nb), GFP_KERNEL); if (!nb) return NULL; memset(nb, 0, sizeof(*nb)); nb->nb_id = nb_id; /* * initialize all possible NB constraints */ for (i = 0; i < x86_pmu.num_counters; i++) { __set_bit(i, nb->event_constraints[i].idxmsk); nb->event_constraints[i].weight = 1; } return nb; } static int amd_pmu_cpu_prepare(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); WARN_ON_ONCE(cpuc->amd_nb); if (boot_cpu_data.x86_max_cores < 2) return NOTIFY_OK; cpuc->amd_nb = amd_alloc_nb(cpu, -1); if (!cpuc->amd_nb) return NOTIFY_BAD; return NOTIFY_OK; } static void amd_pmu_cpu_starting(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); struct amd_nb *nb; int i, nb_id; if (boot_cpu_data.x86_max_cores < 2) return; nb_id = amd_get_nb_id(cpu); WARN_ON_ONCE(nb_id == BAD_APICID); raw_spin_lock(&amd_nb_lock); for_each_online_cpu(i) { nb = per_cpu(cpu_hw_events, i).amd_nb; if (WARN_ON_ONCE(!nb)) continue; if (nb->nb_id == nb_id) { kfree(cpuc->amd_nb); cpuc->amd_nb = nb; break; } } cpuc->amd_nb->nb_id = nb_id; cpuc->amd_nb->refcnt++; raw_spin_unlock(&amd_nb_lock); } static void amd_pmu_cpu_dead(int cpu) { struct cpu_hw_events *cpuhw; if (boot_cpu_data.x86_max_cores < 2) return; cpuhw = &per_cpu(cpu_hw_events, cpu); raw_spin_lock(&amd_nb_lock); if (cpuhw->amd_nb) { struct amd_nb *nb = cpuhw->amd_nb; if (nb->nb_id == -1 || --nb->refcnt == 0) kfree(nb); cpuhw->amd_nb = NULL; } raw_spin_unlock(&amd_nb_lock); } static __initconst struct x86_pmu amd_pmu = { .name = "AMD", .handle_irq = x86_pmu_handle_irq, .disable_all = x86_pmu_disable_all, .enable_all = x86_pmu_enable_all, .enable = x86_pmu_enable_event, .disable = x86_pmu_disable_event, .hw_config = x86_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_K7_EVNTSEL0, .perfctr = MSR_K7_PERFCTR0, .event_map = amd_pmu_event_map, .raw_event = amd_pmu_raw_event, .max_events = ARRAY_SIZE(amd_perfmon_event_map), .num_counters = 4, .cntval_bits = 48, .cntval_mask = (1ULL << 48) - 1, .apic = 1, /* use highest bit to detect overflow */ .max_period = (1ULL << 47) - 1, .get_event_constraints = amd_get_event_constraints, .put_event_constraints = amd_put_event_constraints, .cpu_prepare = amd_pmu_cpu_prepare, .cpu_starting = amd_pmu_cpu_starting, .cpu_dead = amd_pmu_cpu_dead, }; static __init int amd_pmu_init(void) { /* Performance-monitoring supported from K7 and later: */ if (boot_cpu_data.x86 < 6) return -ENODEV; x86_pmu = amd_pmu; /* Events are common for all AMDs */ memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids)); return 0; } #else /* CONFIG_CPU_SUP_AMD */ static int amd_pmu_init(void) { return 0; } #endif