/* * PPC64 (POWER4) Huge TLB Page Support for Kernel. * * Copyright (C) 2003 David Gibson, IBM Corporation. * * Based on the IA-32 version: * Copyright (C) 2002, Rohit Seth */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PAGE_SHIFT_64K 16 #define PAGE_SHIFT_16M 24 #define PAGE_SHIFT_16G 34 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT) #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT) #define MAX_NUMBER_GPAGES 1024 /* Tracks the 16G pages after the device tree is scanned and before the * huge_boot_pages list is ready. */ static unsigned long gpage_freearray[MAX_NUMBER_GPAGES]; static unsigned nr_gpages; /* Array of valid huge page sizes - non-zero value(hugepte_shift) is * stored for the huge page sizes that are valid. */ unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */ #define hugepte_shift mmu_huge_psizes #define HUGEPTE_INDEX_SIZE(psize) (mmu_huge_psizes[(psize)]) #define PTRS_PER_HUGEPTE(psize) (1 << mmu_huge_psizes[psize]) #define HUGEPD_SHIFT(psize) (mmu_psize_to_shift(psize) \ + HUGEPTE_INDEX_SIZE(psize)) #define HUGEPD_SIZE(psize) (1UL << HUGEPD_SHIFT(psize)) #define HUGEPD_MASK(psize) (~(HUGEPD_SIZE(psize)-1)) /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad() * will choke on pointers to hugepte tables, which is handy for * catching screwups early. */ #define HUGEPD_OK 0x1 typedef struct { unsigned long pd; } hugepd_t; #define hugepd_none(hpd) ((hpd).pd == 0) static inline int shift_to_mmu_psize(unsigned int shift) { switch (shift) { #ifndef CONFIG_PPC_64K_PAGES case PAGE_SHIFT_64K: return MMU_PAGE_64K; #endif case PAGE_SHIFT_16M: return MMU_PAGE_16M; case PAGE_SHIFT_16G: return MMU_PAGE_16G; } return -1; } static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) { if (mmu_psize_defs[mmu_psize].shift) return mmu_psize_defs[mmu_psize].shift; BUG(); } static inline pte_t *hugepd_page(hugepd_t hpd) { BUG_ON(!(hpd.pd & HUGEPD_OK)); return (pte_t *)(hpd.pd & ~HUGEPD_OK); } static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, struct hstate *hstate) { unsigned int shift = huge_page_shift(hstate); int psize = shift_to_mmu_psize(shift); unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1)); pte_t *dir = hugepd_page(*hpdp); return dir + idx; } static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, unsigned long address, unsigned int psize) { pte_t *new = kmem_cache_zalloc(PGT_CACHE(hugepte_shift[psize]), GFP_KERNEL|__GFP_REPEAT); if (! new) return -ENOMEM; spin_lock(&mm->page_table_lock); if (!hugepd_none(*hpdp)) kmem_cache_free(PGT_CACHE(hugepte_shift[psize]), new); else hpdp->pd = (unsigned long)new | HUGEPD_OK; spin_unlock(&mm->page_table_lock); return 0; } static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate) { if (huge_page_shift(hstate) < PUD_SHIFT) return pud_offset(pgd, addr); else return (pud_t *) pgd; } static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, struct hstate *hstate) { if (huge_page_shift(hstate) < PUD_SHIFT) return pud_alloc(mm, pgd, addr); else return (pud_t *) pgd; } static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate) { if (huge_page_shift(hstate) < PMD_SHIFT) return pmd_offset(pud, addr); else return (pmd_t *) pud; } static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr, struct hstate *hstate) { if (huge_page_shift(hstate) < PMD_SHIFT) return pmd_alloc(mm, pud, addr); else return (pmd_t *) pud; } /* Build list of addresses of gigantic pages. This function is used in early * boot before the buddy or bootmem allocator is setup. */ void add_gpage(unsigned long addr, unsigned long page_size, unsigned long number_of_pages) { if (!addr) return; while (number_of_pages > 0) { gpage_freearray[nr_gpages] = addr; nr_gpages++; number_of_pages--; addr += page_size; } } /* Moves the gigantic page addresses from the temporary list to the * huge_boot_pages list. */ int alloc_bootmem_huge_page(struct hstate *hstate) { struct huge_bootmem_page *m; if (nr_gpages == 0) return 0; m = phys_to_virt(gpage_freearray[--nr_gpages]); gpage_freearray[nr_gpages] = 0; list_add(&m->list, &huge_boot_pages); m->hstate = hstate; return 1; } /* Modelled after find_linux_pte() */ pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) { pgd_t *pg; pud_t *pu; pmd_t *pm; unsigned int psize; unsigned int shift; unsigned long sz; struct hstate *hstate; psize = get_slice_psize(mm, addr); shift = mmu_psize_to_shift(psize); sz = ((1UL) << shift); hstate = size_to_hstate(sz); addr &= hstate->mask; pg = pgd_offset(mm, addr); if (!pgd_none(*pg)) { pu = hpud_offset(pg, addr, hstate); if (!pud_none(*pu)) { pm = hpmd_offset(pu, addr, hstate); if (!pmd_none(*pm)) return hugepte_offset((hugepd_t *)pm, addr, hstate); } } return NULL; } pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pg; pud_t *pu; pmd_t *pm; hugepd_t *hpdp = NULL; struct hstate *hstate; unsigned int psize; hstate = size_to_hstate(sz); psize = get_slice_psize(mm, addr); BUG_ON(!mmu_huge_psizes[psize]); addr &= hstate->mask; pg = pgd_offset(mm, addr); pu = hpud_alloc(mm, pg, addr, hstate); if (pu) { pm = hpmd_alloc(mm, pu, addr, hstate); if (pm) hpdp = (hugepd_t *)pm; } if (! hpdp) return NULL; if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize)) return NULL; return hugepte_offset(hpdp, addr, hstate); } int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) { return 0; } static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp, unsigned int psize) { pte_t *hugepte = hugepd_page(*hpdp); hpdp->pd = 0; tlb->need_flush = 1; pgtable_free_tlb(tlb, hugepte, hugepte_shift[psize]); } static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling, unsigned int psize) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none(*pmd)) continue; free_hugepte_range(tlb, (hugepd_t *)pmd, psize); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); } static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; unsigned int shift; unsigned int psize = get_slice_psize(tlb->mm, addr); shift = mmu_psize_to_shift(psize); start = addr; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); if (shift < PMD_SHIFT) { if (pud_none_or_clear_bad(pud)) continue; hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling, psize); } else { if (pud_none(*pud)) continue; free_hugepte_range(tlb, (hugepd_t *)pud, psize); } } while (pud++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(pgd, start); pgd_clear(pgd); pud_free_tlb(tlb, pud, start); } /* * This function frees user-level page tables of a process. * * Must be called with pagetable lock held. */ void hugetlb_free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; unsigned long start; /* * Comments below take from the normal free_pgd_range(). They * apply here too. The tests against HUGEPD_MASK below are * essential, because we *don't* test for this at the bottom * level. Without them we'll attempt to free a hugepte table * when we unmap just part of it, even if there are other * active mappings using it. * * The next few lines have given us lots of grief... * * Why are we testing HUGEPD* at this top level? Because * often there will be no work to do at all, and we'd prefer * not to go all the way down to the bottom just to discover * that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we * must be careful to reject "the opposite 0" before it * confuses the subsequent tests. But what about where end is * brought down by HUGEPD_SIZE below? no, end can't go down to * 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ unsigned int psize = get_slice_psize(tlb->mm, addr); addr &= HUGEPD_MASK(psize); if (addr < floor) { addr += HUGEPD_SIZE(psize); if (!addr) return; } if (ceiling) { ceiling &= HUGEPD_MASK(psize); if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= HUGEPD_SIZE(psize); if (addr > end - 1) return; start = addr; pgd = pgd_offset(tlb->mm, addr); do { psize = get_slice_psize(tlb->mm, addr); BUG_ON(!mmu_huge_psizes[psize]); next = pgd_addr_end(addr, end); if (mmu_psize_to_shift(psize) < PUD_SHIFT) { if (pgd_none_or_clear_bad(pgd)) continue; hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); } else { if (pgd_none(*pgd)) continue; free_hugepte_range(tlb, (hugepd_t *)pgd, psize); } } while (pgd++, addr = next, addr != end); } void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { if (pte_present(*ptep)) { /* We open-code pte_clear because we need to pass the right * argument to hpte_need_flush (huge / !huge). Might not be * necessary anymore if we make hpte_need_flush() get the * page size from the slices */ pte_update(mm, addr, ptep, ~0UL, 1); } *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); } pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1); return __pte(old); } struct page * follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) { pte_t *ptep; struct page *page; unsigned int mmu_psize = get_slice_psize(mm, address); /* Verify it is a huge page else bail. */ if (!mmu_huge_psizes[mmu_psize]) return ERR_PTR(-EINVAL); ptep = huge_pte_offset(mm, address); page = pte_page(*ptep); if (page) { unsigned int shift = mmu_psize_to_shift(mmu_psize); unsigned long sz = ((1UL) << shift); page += (address % sz) / PAGE_SIZE; } return page; } int pmd_huge(pmd_t pmd) { return 0; } int pud_huge(pud_t pud) { return 0; } struct page * follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write) { BUG(); return NULL; } unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct hstate *hstate = hstate_file(file); int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); if (!mmu_huge_psizes[mmu_psize]) return -EINVAL; return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); } unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); return 1UL << mmu_psize_to_shift(psize); } /* * Called by asm hashtable.S for doing lazy icache flush */ static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags, pte_t pte, int trap, unsigned long sz) { struct page *page; int i; if (!pfn_valid(pte_pfn(pte))) return rflags; page = pte_page(pte); /* page is dirty */ if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { if (trap == 0x400) { for (i = 0; i < (sz / PAGE_SIZE); i++) __flush_dcache_icache(page_address(page+i)); set_bit(PG_arch_1, &page->flags); } else { rflags |= HPTE_R_N; } } return rflags; } int hash_huge_page(struct mm_struct *mm, unsigned long access, unsigned long ea, unsigned long vsid, int local, unsigned long trap) { pte_t *ptep; unsigned long old_pte, new_pte; unsigned long va, rflags, pa, sz; long slot; int err = 1; int ssize = user_segment_size(ea); unsigned int mmu_psize; int shift; mmu_psize = get_slice_psize(mm, ea); if (!mmu_huge_psizes[mmu_psize]) goto out; ptep = huge_pte_offset(mm, ea); /* Search the Linux page table for a match with va */ va = hpt_va(ea, vsid, ssize); /* * If no pte found or not present, send the problem up to * do_page_fault */ if (unlikely(!ptep || pte_none(*ptep))) goto out; /* * Check the user's access rights to the page. If access should be * prevented then send the problem up to do_page_fault. */ if (unlikely(access & ~pte_val(*ptep))) goto out; /* * At this point, we have a pte (old_pte) which can be used to build * or update an HPTE. There are 2 cases: * * 1. There is a valid (present) pte with no associated HPTE (this is * the most common case) * 2. There is a valid (present) pte with an associated HPTE. The * current values of the pp bits in the HPTE prevent access * because we are doing software DIRTY bit management and the * page is currently not DIRTY. */ do { old_pte = pte_val(*ptep); if (old_pte & _PAGE_BUSY) goto out; new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED; } while(old_pte != __cmpxchg_u64((unsigned long *)ptep, old_pte, new_pte)); rflags = 0x2 | (!(new_pte & _PAGE_RW)); /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N); shift = mmu_psize_to_shift(mmu_psize); sz = ((1UL) << shift); if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) /* No CPU has hugepages but lacks no execute, so we * don't need to worry about that case */ rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte), trap, sz); /* Check if pte already has an hpte (case 2) */ if (unlikely(old_pte & _PAGE_HASHPTE)) { /* There MIGHT be an HPTE for this pte */ unsigned long hash, slot; hash = hpt_hash(va, shift, ssize); if (old_pte & _PAGE_F_SECOND) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += (old_pte & _PAGE_F_GIX) >> 12; if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize, ssize, local) == -1) old_pte &= ~_PAGE_HPTEFLAGS; } if (likely(!(old_pte & _PAGE_HASHPTE))) { unsigned long hash = hpt_hash(va, shift, ssize); unsigned long hpte_group; pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT; repeat: hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; /* clear HPTE slot informations in new PTE */ #ifdef CONFIG_PPC_64K_PAGES new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0; #else new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE; #endif /* Add in WIMG bits */ rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT | _PAGE_GUARDED)); /* Insert into the hash table, primary slot */ slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0, mmu_psize, ssize); /* Primary is full, try the secondary */ if (unlikely(slot == -1)) { hpte_group = ((~hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, HPTE_V_SECONDARY, mmu_psize, ssize); if (slot == -1) { if (mftb() & 0x1) hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP)&~0x7UL; ppc_md.hpte_remove(hpte_group); goto repeat; } } if (unlikely(slot == -2)) panic("hash_huge_page: pte_insert failed\n"); new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX); } /* * No need to use ldarx/stdcx here */ *ptep = __pte(new_pte & ~_PAGE_BUSY); err = 0; out: return err; } static void __init set_huge_psize(int psize) { /* Check that it is a page size supported by the hardware and * that it fits within pagetable limits. */ if (mmu_psize_defs[psize].shift && mmu_psize_defs[psize].shift < SID_SHIFT_1T && (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT || mmu_psize_defs[psize].shift == PAGE_SHIFT_64K || mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) { /* Return if huge page size has already been setup or is the * same as the base page size. */ if (mmu_huge_psizes[psize] || mmu_psize_defs[psize].shift == PAGE_SHIFT) return; hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT); switch (mmu_psize_defs[psize].shift) { case PAGE_SHIFT_64K: /* We only allow 64k hpages with 4k base page, * which was checked above, and always put them * at the PMD */ hugepte_shift[psize] = PMD_SHIFT; break; case PAGE_SHIFT_16M: /* 16M pages can be at two different levels * of pagestables based on base page size */ if (PAGE_SHIFT == PAGE_SHIFT_64K) hugepte_shift[psize] = PMD_SHIFT; else /* 4k base page */ hugepte_shift[psize] = PUD_SHIFT; break; case PAGE_SHIFT_16G: /* 16G pages are always at PGD level */ hugepte_shift[psize] = PGDIR_SHIFT; break; } hugepte_shift[psize] -= mmu_psize_defs[psize].shift; } else hugepte_shift[psize] = 0; } static int __init hugepage_setup_sz(char *str) { unsigned long long size; int mmu_psize; int shift; size = memparse(str, &str); shift = __ffs(size); mmu_psize = shift_to_mmu_psize(shift); if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift) set_huge_psize(mmu_psize); else printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); return 1; } __setup("hugepagesz=", hugepage_setup_sz); static int __init hugetlbpage_init(void) { unsigned int psize; if (!cpu_has_feature(CPU_FTR_16M_PAGE)) return -ENODEV; /* Add supported huge page sizes. Need to change * HUGE_MAX_HSTATE if the number of supported huge page sizes * changes. */ set_huge_psize(MMU_PAGE_16M); set_huge_psize(MMU_PAGE_16G); /* Temporarily disable support for 64K huge pages when 64K SPU local * store support is enabled as the current implementation conflicts. */ #ifndef CONFIG_SPU_FS_64K_LS set_huge_psize(MMU_PAGE_64K); #endif for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { if (mmu_huge_psizes[psize]) { pgtable_cache_add(hugepte_shift[psize], NULL); if (!PGT_CACHE(hugepte_shift[psize])) panic("hugetlbpage_init(): could not create " "pgtable cache for %d bit pagesize\n", mmu_psize_to_shift(psize)); } } return 0; } module_init(hugetlbpage_init);