/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include "drmP.h" #include "radeon_drm.h" #include "radeon.h" #include "radeon_asic.h" #include "radeon_mode.h" #include "r600d.h" #include "atom.h" #include "avivod.h" #define PFP_UCODE_SIZE 576 #define PM4_UCODE_SIZE 1792 #define RLC_UCODE_SIZE 768 #define R700_PFP_UCODE_SIZE 848 #define R700_PM4_UCODE_SIZE 1360 #define R700_RLC_UCODE_SIZE 1024 /* Firmware Names */ MODULE_FIRMWARE("radeon/R600_pfp.bin"); MODULE_FIRMWARE("radeon/R600_me.bin"); MODULE_FIRMWARE("radeon/RV610_pfp.bin"); MODULE_FIRMWARE("radeon/RV610_me.bin"); MODULE_FIRMWARE("radeon/RV630_pfp.bin"); MODULE_FIRMWARE("radeon/RV630_me.bin"); MODULE_FIRMWARE("radeon/RV620_pfp.bin"); MODULE_FIRMWARE("radeon/RV620_me.bin"); MODULE_FIRMWARE("radeon/RV635_pfp.bin"); MODULE_FIRMWARE("radeon/RV635_me.bin"); MODULE_FIRMWARE("radeon/RV670_pfp.bin"); MODULE_FIRMWARE("radeon/RV670_me.bin"); MODULE_FIRMWARE("radeon/RS780_pfp.bin"); MODULE_FIRMWARE("radeon/RS780_me.bin"); MODULE_FIRMWARE("radeon/RV770_pfp.bin"); MODULE_FIRMWARE("radeon/RV770_me.bin"); MODULE_FIRMWARE("radeon/RV730_pfp.bin"); MODULE_FIRMWARE("radeon/RV730_me.bin"); MODULE_FIRMWARE("radeon/RV710_pfp.bin"); MODULE_FIRMWARE("radeon/RV710_me.bin"); MODULE_FIRMWARE("radeon/R600_rlc.bin"); MODULE_FIRMWARE("radeon/R700_rlc.bin"); int r600_debugfs_mc_info_init(struct radeon_device *rdev); /* r600,rv610,rv630,rv620,rv635,rv670 */ int r600_mc_wait_for_idle(struct radeon_device *rdev); void r600_gpu_init(struct radeon_device *rdev); void r600_fini(struct radeon_device *rdev); /* hpd for digital panel detect/disconnect */ bool r600_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd) { bool connected = false; if (ASIC_IS_DCE3(rdev)) { switch (hpd) { case RADEON_HPD_1: if (RREG32(DC_HPD1_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_2: if (RREG32(DC_HPD2_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_3: if (RREG32(DC_HPD3_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_4: if (RREG32(DC_HPD4_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; /* DCE 3.2 */ case RADEON_HPD_5: if (RREG32(DC_HPD5_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_6: if (RREG32(DC_HPD6_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; default: break; } } else { switch (hpd) { case RADEON_HPD_1: if (RREG32(DC_HOT_PLUG_DETECT1_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE) connected = true; break; case RADEON_HPD_2: if (RREG32(DC_HOT_PLUG_DETECT2_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE) connected = true; break; case RADEON_HPD_3: if (RREG32(DC_HOT_PLUG_DETECT3_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE) connected = true; break; default: break; } } return connected; } void r600_hpd_set_polarity(struct radeon_device *rdev, enum radeon_hpd_id hpd) { u32 tmp; bool connected = r600_hpd_sense(rdev, hpd); if (ASIC_IS_DCE3(rdev)) { switch (hpd) { case RADEON_HPD_1: tmp = RREG32(DC_HPD1_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD1_INT_CONTROL, tmp); break; case RADEON_HPD_2: tmp = RREG32(DC_HPD2_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD2_INT_CONTROL, tmp); break; case RADEON_HPD_3: tmp = RREG32(DC_HPD3_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD3_INT_CONTROL, tmp); break; case RADEON_HPD_4: tmp = RREG32(DC_HPD4_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD4_INT_CONTROL, tmp); break; case RADEON_HPD_5: tmp = RREG32(DC_HPD5_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD5_INT_CONTROL, tmp); break; /* DCE 3.2 */ case RADEON_HPD_6: tmp = RREG32(DC_HPD6_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD6_INT_CONTROL, tmp); break; default: break; } } else { switch (hpd) { case RADEON_HPD_1: tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL); if (connected) tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY; else tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp); break; case RADEON_HPD_2: tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL); if (connected) tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY; else tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp); break; case RADEON_HPD_3: tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL); if (connected) tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY; else tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp); break; default: break; } } } void r600_hpd_init(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; if (ASIC_IS_DCE3(rdev)) { u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) | DC_HPDx_RX_INT_TIMER(0xfa); if (ASIC_IS_DCE32(rdev)) tmp |= DC_HPDx_EN; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HPD1_CONTROL, tmp); rdev->irq.hpd[0] = true; break; case RADEON_HPD_2: WREG32(DC_HPD2_CONTROL, tmp); rdev->irq.hpd[1] = true; break; case RADEON_HPD_3: WREG32(DC_HPD3_CONTROL, tmp); rdev->irq.hpd[2] = true; break; case RADEON_HPD_4: WREG32(DC_HPD4_CONTROL, tmp); rdev->irq.hpd[3] = true; break; /* DCE 3.2 */ case RADEON_HPD_5: WREG32(DC_HPD5_CONTROL, tmp); rdev->irq.hpd[4] = true; break; case RADEON_HPD_6: WREG32(DC_HPD6_CONTROL, tmp); rdev->irq.hpd[5] = true; break; default: break; } } } else { list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HOT_PLUG_DETECT1_CONTROL, DC_HOT_PLUG_DETECTx_EN); rdev->irq.hpd[0] = true; break; case RADEON_HPD_2: WREG32(DC_HOT_PLUG_DETECT2_CONTROL, DC_HOT_PLUG_DETECTx_EN); rdev->irq.hpd[1] = true; break; case RADEON_HPD_3: WREG32(DC_HOT_PLUG_DETECT3_CONTROL, DC_HOT_PLUG_DETECTx_EN); rdev->irq.hpd[2] = true; break; default: break; } } } if (rdev->irq.installed) r600_irq_set(rdev); } void r600_hpd_fini(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; if (ASIC_IS_DCE3(rdev)) { list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HPD1_CONTROL, 0); rdev->irq.hpd[0] = false; break; case RADEON_HPD_2: WREG32(DC_HPD2_CONTROL, 0); rdev->irq.hpd[1] = false; break; case RADEON_HPD_3: WREG32(DC_HPD3_CONTROL, 0); rdev->irq.hpd[2] = false; break; case RADEON_HPD_4: WREG32(DC_HPD4_CONTROL, 0); rdev->irq.hpd[3] = false; break; /* DCE 3.2 */ case RADEON_HPD_5: WREG32(DC_HPD5_CONTROL, 0); rdev->irq.hpd[4] = false; break; case RADEON_HPD_6: WREG32(DC_HPD6_CONTROL, 0); rdev->irq.hpd[5] = false; break; default: break; } } } else { list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HOT_PLUG_DETECT1_CONTROL, 0); rdev->irq.hpd[0] = false; break; case RADEON_HPD_2: WREG32(DC_HOT_PLUG_DETECT2_CONTROL, 0); rdev->irq.hpd[1] = false; break; case RADEON_HPD_3: WREG32(DC_HOT_PLUG_DETECT3_CONTROL, 0); rdev->irq.hpd[2] = false; break; default: break; } } } } /* * R600 PCIE GART */ void r600_pcie_gart_tlb_flush(struct radeon_device *rdev) { unsigned i; u32 tmp; /* flush hdp cache so updates hit vram */ WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); WREG32(VM_CONTEXT0_INVALIDATION_LOW_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_INVALIDATION_HIGH_ADDR, (rdev->mc.gtt_end - 1) >> 12); WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1)); for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE); tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT; if (tmp == 2) { printk(KERN_WARNING "[drm] r600 flush TLB failed\n"); return; } if (tmp) { return; } udelay(1); } } int r600_pcie_gart_init(struct radeon_device *rdev) { int r; if (rdev->gart.table.vram.robj) { WARN(1, "R600 PCIE GART already initialized.\n"); return 0; } /* Initialize common gart structure */ r = radeon_gart_init(rdev); if (r) return r; rdev->gart.table_size = rdev->gart.num_gpu_pages * 8; return radeon_gart_table_vram_alloc(rdev); } int r600_pcie_gart_enable(struct radeon_device *rdev) { u32 tmp; int r, i; if (rdev->gart.table.vram.robj == NULL) { dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = radeon_gart_table_vram_pin(rdev); if (r) return r; radeon_gart_restore(rdev); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1)); /* Setup TLB control */ tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) | ENABLE_WAIT_L2_QUERY; WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING); WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT); WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); for (i = 1; i < 7; i++) WREG32(VM_CONTEXT0_CNTL + (i * 4), 0); r600_pcie_gart_tlb_flush(rdev); rdev->gart.ready = true; return 0; } void r600_pcie_gart_disable(struct radeon_device *rdev) { u32 tmp; int i, r; /* Disable all tables */ for (i = 0; i < 7; i++) WREG32(VM_CONTEXT0_CNTL + (i * 4), 0); /* Disable L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1)); /* Setup L1 TLB control */ tmp = EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) | ENABLE_WAIT_L2_QUERY; WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp); if (rdev->gart.table.vram.robj) { r = radeon_bo_reserve(rdev->gart.table.vram.robj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->gart.table.vram.robj); radeon_bo_unpin(rdev->gart.table.vram.robj); radeon_bo_unreserve(rdev->gart.table.vram.robj); } } } void r600_pcie_gart_fini(struct radeon_device *rdev) { r600_pcie_gart_disable(rdev); radeon_gart_table_vram_free(rdev); radeon_gart_fini(rdev); } void r600_agp_enable(struct radeon_device *rdev) { u32 tmp; int i; /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1)); /* Setup TLB control */ tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) | ENABLE_WAIT_L2_QUERY; WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING); WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); for (i = 0; i < 7; i++) WREG32(VM_CONTEXT0_CNTL + (i * 4), 0); } int r600_mc_wait_for_idle(struct radeon_device *rdev) { unsigned i; u32 tmp; for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(R_000E50_SRBM_STATUS) & 0x3F00; if (!tmp) return 0; udelay(1); } return -1; } static void r600_mc_program(struct radeon_device *rdev) { struct rv515_mc_save save; u32 tmp; int i, j; /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); rv515_mc_stop(rdev, &save); if (r600_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Lockout access through VGA aperture (doesn't exist before R600) */ WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); /* Update configuration */ if (rdev->flags & RADEON_IS_AGP) { if (rdev->mc.vram_start < rdev->mc.gtt_start) { /* VRAM before AGP */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.gtt_end >> 12); } else { /* VRAM after AGP */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.gtt_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); } } else { WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); } WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, 0); tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); WREG32(MC_VM_FB_LOCATION, tmp); WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); WREG32(HDP_NONSURFACE_INFO, (2 << 7)); WREG32(HDP_NONSURFACE_SIZE, rdev->mc.mc_vram_size | 0x3FF); if (rdev->flags & RADEON_IS_AGP) { WREG32(MC_VM_AGP_TOP, rdev->mc.gtt_end >> 22); WREG32(MC_VM_AGP_BOT, rdev->mc.gtt_start >> 22); WREG32(MC_VM_AGP_BASE, rdev->mc.agp_base >> 22); } else { WREG32(MC_VM_AGP_BASE, 0); WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); } if (r600_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } rv515_mc_resume(rdev, &save); /* we need to own VRAM, so turn off the VGA renderer here * to stop it overwriting our objects */ rv515_vga_render_disable(rdev); } /** * r600_vram_gtt_location - try to find VRAM & GTT location * @rdev: radeon device structure holding all necessary informations * @mc: memory controller structure holding memory informations * * Function will place try to place VRAM at same place as in CPU (PCI) * address space as some GPU seems to have issue when we reprogram at * different address space. * * If there is not enough space to fit the unvisible VRAM after the * aperture then we limit the VRAM size to the aperture. * * If we are using AGP then place VRAM adjacent to AGP aperture are we need * them to be in one from GPU point of view so that we can program GPU to * catch access outside them (weird GPU policy see ??). * * This function will never fails, worst case are limiting VRAM or GTT. * * Note: GTT start, end, size should be initialized before calling this * function on AGP platform. */ void r600_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) { u64 size_bf, size_af; if (mc->mc_vram_size > 0xE0000000) { /* leave room for at least 512M GTT */ dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = 0xE0000000; mc->mc_vram_size = 0xE0000000; } if (rdev->flags & RADEON_IS_AGP) { size_bf = mc->gtt_start; size_af = 0xFFFFFFFF - mc->gtt_end + 1; if (size_bf > size_af) { if (mc->mc_vram_size > size_bf) { dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = size_bf; mc->mc_vram_size = size_bf; } mc->vram_start = mc->gtt_start - mc->mc_vram_size; } else { if (mc->mc_vram_size > size_af) { dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = size_af; mc->mc_vram_size = size_af; } mc->vram_start = mc->gtt_end; } mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; dev_info(rdev->dev, "VRAM: %lluM 0x%08llX - 0x%08llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); } else { u64 base = 0; if (rdev->flags & RADEON_IS_IGP) base = (RREG32(MC_VM_FB_LOCATION) & 0xFFFF) << 24; radeon_vram_location(rdev, &rdev->mc, base); radeon_gtt_location(rdev, mc); } } int r600_mc_init(struct radeon_device *rdev) { fixed20_12 a; u32 tmp; int chansize, numchan; /* Get VRAM informations */ rdev->mc.vram_is_ddr = true; tmp = RREG32(RAMCFG); if (tmp & CHANSIZE_OVERRIDE) { chansize = 16; } else if (tmp & CHANSIZE_MASK) { chansize = 64; } else { chansize = 32; } tmp = RREG32(CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: numchan = 1; break; case 1: numchan = 2; break; case 2: numchan = 4; break; case 3: numchan = 8; break; } rdev->mc.vram_width = numchan * chansize; /* Could aper size report 0 ? */ rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0); /* Setup GPU memory space */ rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE); rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE); rdev->mc.visible_vram_size = rdev->mc.aper_size; /* FIXME remove this once we support unmappable VRAM */ if (rdev->mc.mc_vram_size > rdev->mc.aper_size) { rdev->mc.mc_vram_size = rdev->mc.aper_size; rdev->mc.real_vram_size = rdev->mc.aper_size; } r600_vram_gtt_location(rdev, &rdev->mc); /* FIXME: we should enforce default clock in case GPU is not in * default setup */ a.full = rfixed_const(100); rdev->pm.sclk.full = rfixed_const(rdev->clock.default_sclk); rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a); if (rdev->flags & RADEON_IS_IGP) rdev->mc.igp_sideport_enabled = radeon_atombios_sideport_present(rdev); return 0; } /* We doesn't check that the GPU really needs a reset we simply do the * reset, it's up to the caller to determine if the GPU needs one. We * might add an helper function to check that. */ int r600_gpu_soft_reset(struct radeon_device *rdev) { struct rv515_mc_save save; u32 grbm_busy_mask = S_008010_VC_BUSY(1) | S_008010_VGT_BUSY_NO_DMA(1) | S_008010_VGT_BUSY(1) | S_008010_TA03_BUSY(1) | S_008010_TC_BUSY(1) | S_008010_SX_BUSY(1) | S_008010_SH_BUSY(1) | S_008010_SPI03_BUSY(1) | S_008010_SMX_BUSY(1) | S_008010_SC_BUSY(1) | S_008010_PA_BUSY(1) | S_008010_DB03_BUSY(1) | S_008010_CR_BUSY(1) | S_008010_CB03_BUSY(1) | S_008010_GUI_ACTIVE(1); u32 grbm2_busy_mask = S_008014_SPI0_BUSY(1) | S_008014_SPI1_BUSY(1) | S_008014_SPI2_BUSY(1) | S_008014_SPI3_BUSY(1) | S_008014_TA0_BUSY(1) | S_008014_TA1_BUSY(1) | S_008014_TA2_BUSY(1) | S_008014_TA3_BUSY(1) | S_008014_DB0_BUSY(1) | S_008014_DB1_BUSY(1) | S_008014_DB2_BUSY(1) | S_008014_DB3_BUSY(1) | S_008014_CB0_BUSY(1) | S_008014_CB1_BUSY(1) | S_008014_CB2_BUSY(1) | S_008014_CB3_BUSY(1); u32 srbm_reset = 0; u32 tmp; dev_info(rdev->dev, "GPU softreset \n"); dev_info(rdev->dev, " R_008010_GRBM_STATUS=0x%08X\n", RREG32(R_008010_GRBM_STATUS)); dev_info(rdev->dev, " R_008014_GRBM_STATUS2=0x%08X\n", RREG32(R_008014_GRBM_STATUS2)); dev_info(rdev->dev, " R_000E50_SRBM_STATUS=0x%08X\n", RREG32(R_000E50_SRBM_STATUS)); rv515_mc_stop(rdev, &save); if (r600_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Disable CP parsing/prefetching */ WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(0xff)); /* Check if any of the rendering block is busy and reset it */ if ((RREG32(R_008010_GRBM_STATUS) & grbm_busy_mask) || (RREG32(R_008014_GRBM_STATUS2) & grbm2_busy_mask)) { tmp = S_008020_SOFT_RESET_CR(1) | S_008020_SOFT_RESET_DB(1) | S_008020_SOFT_RESET_CB(1) | S_008020_SOFT_RESET_PA(1) | S_008020_SOFT_RESET_SC(1) | S_008020_SOFT_RESET_SMX(1) | S_008020_SOFT_RESET_SPI(1) | S_008020_SOFT_RESET_SX(1) | S_008020_SOFT_RESET_SH(1) | S_008020_SOFT_RESET_TC(1) | S_008020_SOFT_RESET_TA(1) | S_008020_SOFT_RESET_VC(1) | S_008020_SOFT_RESET_VGT(1); dev_info(rdev->dev, " R_008020_GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(R_008020_GRBM_SOFT_RESET, tmp); (void)RREG32(R_008020_GRBM_SOFT_RESET); udelay(50); WREG32(R_008020_GRBM_SOFT_RESET, 0); (void)RREG32(R_008020_GRBM_SOFT_RESET); } /* Reset CP (we always reset CP) */ tmp = S_008020_SOFT_RESET_CP(1); dev_info(rdev->dev, "R_008020_GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(R_008020_GRBM_SOFT_RESET, tmp); (void)RREG32(R_008020_GRBM_SOFT_RESET); udelay(50); WREG32(R_008020_GRBM_SOFT_RESET, 0); (void)RREG32(R_008020_GRBM_SOFT_RESET); /* Reset others GPU block if necessary */ if (G_000E50_RLC_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_RLC(1); if (G_000E50_GRBM_RQ_PENDING(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_GRBM(1); if (G_000E50_HI_RQ_PENDING(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_IH(1); if (G_000E50_VMC_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_VMC(1); if (G_000E50_MCB_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_MC(1); if (G_000E50_MCDZ_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_MC(1); if (G_000E50_MCDY_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_MC(1); if (G_000E50_MCDX_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_MC(1); if (G_000E50_MCDW_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_MC(1); if (G_000E50_RLC_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_RLC(1); if (G_000E50_SEM_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_SEM(1); if (G_000E50_BIF_BUSY(RREG32(R_000E50_SRBM_STATUS))) srbm_reset |= S_000E60_SOFT_RESET_BIF(1); dev_info(rdev->dev, " R_000E60_SRBM_SOFT_RESET=0x%08X\n", srbm_reset); WREG32(R_000E60_SRBM_SOFT_RESET, srbm_reset); (void)RREG32(R_000E60_SRBM_SOFT_RESET); udelay(50); WREG32(R_000E60_SRBM_SOFT_RESET, 0); (void)RREG32(R_000E60_SRBM_SOFT_RESET); WREG32(R_000E60_SRBM_SOFT_RESET, srbm_reset); (void)RREG32(R_000E60_SRBM_SOFT_RESET); udelay(50); WREG32(R_000E60_SRBM_SOFT_RESET, 0); (void)RREG32(R_000E60_SRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); dev_info(rdev->dev, " R_008010_GRBM_STATUS=0x%08X\n", RREG32(R_008010_GRBM_STATUS)); dev_info(rdev->dev, " R_008014_GRBM_STATUS2=0x%08X\n", RREG32(R_008014_GRBM_STATUS2)); dev_info(rdev->dev, " R_000E50_SRBM_STATUS=0x%08X\n", RREG32(R_000E50_SRBM_STATUS)); /* After reset we need to reinit the asic as GPU often endup in an * incoherent state. */ atom_asic_init(rdev->mode_info.atom_context); rv515_mc_resume(rdev, &save); return 0; } int r600_gpu_reset(struct radeon_device *rdev) { return r600_gpu_soft_reset(rdev); } static u32 r600_get_tile_pipe_to_backend_map(u32 num_tile_pipes, u32 num_backends, u32 backend_disable_mask) { u32 backend_map = 0; u32 enabled_backends_mask; u32 enabled_backends_count; u32 cur_pipe; u32 swizzle_pipe[R6XX_MAX_PIPES]; u32 cur_backend; u32 i; if (num_tile_pipes > R6XX_MAX_PIPES) num_tile_pipes = R6XX_MAX_PIPES; if (num_tile_pipes < 1) num_tile_pipes = 1; if (num_backends > R6XX_MAX_BACKENDS) num_backends = R6XX_MAX_BACKENDS; if (num_backends < 1) num_backends = 1; enabled_backends_mask = 0; enabled_backends_count = 0; for (i = 0; i < R6XX_MAX_BACKENDS; ++i) { if (((backend_disable_mask >> i) & 1) == 0) { enabled_backends_mask |= (1 << i); ++enabled_backends_count; } if (enabled_backends_count == num_backends) break; } if (enabled_backends_count == 0) { enabled_backends_mask = 1; enabled_backends_count = 1; } if (enabled_backends_count != num_backends) num_backends = enabled_backends_count; memset((uint8_t *)&swizzle_pipe[0], 0, sizeof(u32) * R6XX_MAX_PIPES); switch (num_tile_pipes) { case 1: swizzle_pipe[0] = 0; break; case 2: swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; break; case 3: swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; swizzle_pipe[2] = 2; break; case 4: swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; swizzle_pipe[2] = 2; swizzle_pipe[3] = 3; break; case 5: swizzle_pipe[0] = 0; swizzle_pipe[1] = 1; swizzle_pipe[2] = 2; swizzle_pipe[3] = 3; swizzle_pipe[4] = 4; break; case 6: swizzle_pipe[0] = 0; swizzle_pipe[1] = 2; swizzle_pipe[2] = 4; swizzle_pipe[3] = 5; swizzle_pipe[4] = 1; swizzle_pipe[5] = 3; break; case 7: swizzle_pipe[0] = 0; swizzle_pipe[1] = 2; swizzle_pipe[2] = 4; swizzle_pipe[3] = 6; swizzle_pipe[4] = 1; swizzle_pipe[5] = 3; swizzle_pipe[6] = 5; break; case 8: swizzle_pipe[0] = 0; swizzle_pipe[1] = 2; swizzle_pipe[2] = 4; swizzle_pipe[3] = 6; swizzle_pipe[4] = 1; swizzle_pipe[5] = 3; swizzle_pipe[6] = 5; swizzle_pipe[7] = 7; break; } cur_backend = 0; for (cur_pipe = 0; cur_pipe < num_tile_pipes; ++cur_pipe) { while (((1 << cur_backend) & enabled_backends_mask) == 0) cur_backend = (cur_backend + 1) % R6XX_MAX_BACKENDS; backend_map |= (u32)(((cur_backend & 3) << (swizzle_pipe[cur_pipe] * 2))); cur_backend = (cur_backend + 1) % R6XX_MAX_BACKENDS; } return backend_map; } int r600_count_pipe_bits(uint32_t val) { int i, ret = 0; for (i = 0; i < 32; i++) { ret += val & 1; val >>= 1; } return ret; } void r600_gpu_init(struct radeon_device *rdev) { u32 tiling_config; u32 ramcfg; u32 backend_map; u32 cc_rb_backend_disable; u32 cc_gc_shader_pipe_config; u32 tmp; int i, j; u32 sq_config; u32 sq_gpr_resource_mgmt_1 = 0; u32 sq_gpr_resource_mgmt_2 = 0; u32 sq_thread_resource_mgmt = 0; u32 sq_stack_resource_mgmt_1 = 0; u32 sq_stack_resource_mgmt_2 = 0; /* FIXME: implement */ switch (rdev->family) { case CHIP_R600: rdev->config.r600.max_pipes = 4; rdev->config.r600.max_tile_pipes = 8; rdev->config.r600.max_simds = 4; rdev->config.r600.max_backends = 4; rdev->config.r600.max_gprs = 256; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 256; rdev->config.r600.max_hw_contexts = 8; rdev->config.r600.max_gs_threads = 16; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 2; break; case CHIP_RV630: case CHIP_RV635: rdev->config.r600.max_pipes = 2; rdev->config.r600.max_tile_pipes = 2; rdev->config.r600.max_simds = 3; rdev->config.r600.max_backends = 1; rdev->config.r600.max_gprs = 128; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 128; rdev->config.r600.max_hw_contexts = 8; rdev->config.r600.max_gs_threads = 4; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 2; break; case CHIP_RV610: case CHIP_RV620: case CHIP_RS780: case CHIP_RS880: rdev->config.r600.max_pipes = 1; rdev->config.r600.max_tile_pipes = 1; rdev->config.r600.max_simds = 2; rdev->config.r600.max_backends = 1; rdev->config.r600.max_gprs = 128; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 128; rdev->config.r600.max_hw_contexts = 4; rdev->config.r600.max_gs_threads = 4; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 1; break; case CHIP_RV670: rdev->config.r600.max_pipes = 4; rdev->config.r600.max_tile_pipes = 4; rdev->config.r600.max_simds = 4; rdev->config.r600.max_backends = 4; rdev->config.r600.max_gprs = 192; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 256; rdev->config.r600.max_hw_contexts = 8; rdev->config.r600.max_gs_threads = 16; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 2; break; default: break; } /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); /* Setup tiling */ tiling_config = 0; ramcfg = RREG32(RAMCFG); switch (rdev->config.r600.max_tile_pipes) { case 1: tiling_config |= PIPE_TILING(0); break; case 2: tiling_config |= PIPE_TILING(1); break; case 4: tiling_config |= PIPE_TILING(2); break; case 8: tiling_config |= PIPE_TILING(3); break; default: break; } rdev->config.r600.tiling_npipes = rdev->config.r600.max_tile_pipes; rdev->config.r600.tiling_nbanks = 4 << ((ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT); tiling_config |= BANK_TILING((ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT); tiling_config |= GROUP_SIZE(0); rdev->config.r600.tiling_group_size = 256; tmp = (ramcfg & NOOFROWS_MASK) >> NOOFROWS_SHIFT; if (tmp > 3) { tiling_config |= ROW_TILING(3); tiling_config |= SAMPLE_SPLIT(3); } else { tiling_config |= ROW_TILING(tmp); tiling_config |= SAMPLE_SPLIT(tmp); } tiling_config |= BANK_SWAPS(1); cc_rb_backend_disable = RREG32(CC_RB_BACKEND_DISABLE) & 0x00ff0000; cc_rb_backend_disable |= BACKEND_DISABLE((R6XX_MAX_BACKENDS_MASK << rdev->config.r600.max_backends) & R6XX_MAX_BACKENDS_MASK); cc_gc_shader_pipe_config = RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0xffffff00; cc_gc_shader_pipe_config |= INACTIVE_QD_PIPES((R6XX_MAX_PIPES_MASK << rdev->config.r600.max_pipes) & R6XX_MAX_PIPES_MASK); cc_gc_shader_pipe_config |= INACTIVE_SIMDS((R6XX_MAX_SIMDS_MASK << rdev->config.r600.max_simds) & R6XX_MAX_SIMDS_MASK); backend_map = r600_get_tile_pipe_to_backend_map(rdev->config.r600.max_tile_pipes, (R6XX_MAX_BACKENDS - r600_count_pipe_bits((cc_rb_backend_disable & R6XX_MAX_BACKENDS_MASK) >> 16)), (cc_rb_backend_disable >> 16)); tiling_config |= BACKEND_MAP(backend_map); WREG32(GB_TILING_CONFIG, tiling_config); WREG32(DCP_TILING_CONFIG, tiling_config & 0xffff); WREG32(HDP_TILING_CONFIG, tiling_config & 0xffff); /* Setup pipes */ WREG32(CC_RB_BACKEND_DISABLE, cc_rb_backend_disable); WREG32(CC_GC_SHADER_PIPE_CONFIG, cc_gc_shader_pipe_config); WREG32(GC_USER_SHADER_PIPE_CONFIG, cc_gc_shader_pipe_config); tmp = R6XX_MAX_PIPES - r600_count_pipe_bits((cc_gc_shader_pipe_config & INACTIVE_QD_PIPES_MASK) >> 8); WREG32(VGT_OUT_DEALLOC_CNTL, (tmp * 4) & DEALLOC_DIST_MASK); WREG32(VGT_VERTEX_REUSE_BLOCK_CNTL, ((tmp * 4) - 2) & VTX_REUSE_DEPTH_MASK); /* Setup some CP states */ WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) | ROQ_IB2_START(0x2b))); WREG32(CP_MEQ_THRESHOLDS, (MEQ_END(0x40) | ROQ_END(0x40))); WREG32(TA_CNTL_AUX, (DISABLE_CUBE_ANISO | SYNC_GRADIENT | SYNC_WALKER | SYNC_ALIGNER)); /* Setup various GPU states */ if (rdev->family == CHIP_RV670) WREG32(ARB_GDEC_RD_CNTL, 0x00000021); tmp = RREG32(SX_DEBUG_1); tmp |= SMX_EVENT_RELEASE; if ((rdev->family > CHIP_R600)) tmp |= ENABLE_NEW_SMX_ADDRESS; WREG32(SX_DEBUG_1, tmp); if (((rdev->family) == CHIP_R600) || ((rdev->family) == CHIP_RV630) || ((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { WREG32(DB_DEBUG, PREZ_MUST_WAIT_FOR_POSTZ_DONE); } else { WREG32(DB_DEBUG, 0); } WREG32(DB_WATERMARKS, (DEPTH_FREE(4) | DEPTH_CACHELINE_FREE(16) | DEPTH_FLUSH(16) | DEPTH_PENDING_FREE(4))); WREG32(PA_SC_MULTI_CHIP_CNTL, 0); WREG32(VGT_NUM_INSTANCES, 0); WREG32(SPI_CONFIG_CNTL, GPR_WRITE_PRIORITY(0)); WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(0)); tmp = RREG32(SQ_MS_FIFO_SIZES); if (((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { tmp = (CACHE_FIFO_SIZE(0xa) | FETCH_FIFO_HIWATER(0xa) | DONE_FIFO_HIWATER(0xe0) | ALU_UPDATE_FIFO_HIWATER(0x8)); } else if (((rdev->family) == CHIP_R600) || ((rdev->family) == CHIP_RV630)) { tmp &= ~DONE_FIFO_HIWATER(0xff); tmp |= DONE_FIFO_HIWATER(0x4); } WREG32(SQ_MS_FIFO_SIZES, tmp); /* SQ_CONFIG, SQ_GPR_RESOURCE_MGMT, SQ_THREAD_RESOURCE_MGMT, SQ_STACK_RESOURCE_MGMT * should be adjusted as needed by the 2D/3D drivers. This just sets default values */ sq_config = RREG32(SQ_CONFIG); sq_config &= ~(PS_PRIO(3) | VS_PRIO(3) | GS_PRIO(3) | ES_PRIO(3)); sq_config |= (DX9_CONSTS | VC_ENABLE | PS_PRIO(0) | VS_PRIO(1) | GS_PRIO(2) | ES_PRIO(3)); if ((rdev->family) == CHIP_R600) { sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(124) | NUM_VS_GPRS(124) | NUM_CLAUSE_TEMP_GPRS(4)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(0) | NUM_ES_GPRS(0)); sq_thread_resource_mgmt = (NUM_PS_THREADS(136) | NUM_VS_THREADS(48) | NUM_GS_THREADS(4) | NUM_ES_THREADS(4)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(128) | NUM_VS_STACK_ENTRIES(128)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(0) | NUM_ES_STACK_ENTRIES(0)); } else if (((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { /* no vertex cache */ sq_config &= ~VC_ENABLE; sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) | NUM_VS_GPRS(44) | NUM_CLAUSE_TEMP_GPRS(2)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) | NUM_ES_GPRS(17)); sq_thread_resource_mgmt = (NUM_PS_THREADS(79) | NUM_VS_THREADS(78) | NUM_GS_THREADS(4) | NUM_ES_THREADS(31)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) | NUM_VS_STACK_ENTRIES(40)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) | NUM_ES_STACK_ENTRIES(16)); } else if (((rdev->family) == CHIP_RV630) || ((rdev->family) == CHIP_RV635)) { sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) | NUM_VS_GPRS(44) | NUM_CLAUSE_TEMP_GPRS(2)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(18) | NUM_ES_GPRS(18)); sq_thread_resource_mgmt = (NUM_PS_THREADS(79) | NUM_VS_THREADS(78) | NUM_GS_THREADS(4) | NUM_ES_THREADS(31)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) | NUM_VS_STACK_ENTRIES(40)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) | NUM_ES_STACK_ENTRIES(16)); } else if ((rdev->family) == CHIP_RV670) { sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) | NUM_VS_GPRS(44) | NUM_CLAUSE_TEMP_GPRS(2)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) | NUM_ES_GPRS(17)); sq_thread_resource_mgmt = (NUM_PS_THREADS(79) | NUM_VS_THREADS(78) | NUM_GS_THREADS(4) | NUM_ES_THREADS(31)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(64) | NUM_VS_STACK_ENTRIES(64)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(64) | NUM_ES_STACK_ENTRIES(64)); } WREG32(SQ_CONFIG, sq_config); WREG32(SQ_GPR_RESOURCE_MGMT_1, sq_gpr_resource_mgmt_1); WREG32(SQ_GPR_RESOURCE_MGMT_2, sq_gpr_resource_mgmt_2); WREG32(SQ_THREAD_RESOURCE_MGMT, sq_thread_resource_mgmt); WREG32(SQ_STACK_RESOURCE_MGMT_1, sq_stack_resource_mgmt_1); WREG32(SQ_STACK_RESOURCE_MGMT_2, sq_stack_resource_mgmt_2); if (((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(TC_ONLY)); } else { WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC)); } /* More default values. 2D/3D driver should adjust as needed */ WREG32(PA_SC_AA_SAMPLE_LOCS_2S, (S0_X(0xc) | S0_Y(0x4) | S1_X(0x4) | S1_Y(0xc))); WREG32(PA_SC_AA_SAMPLE_LOCS_4S, (S0_X(0xe) | S0_Y(0xe) | S1_X(0x2) | S1_Y(0x2) | S2_X(0xa) | S2_Y(0x6) | S3_X(0x6) | S3_Y(0xa))); WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD0, (S0_X(0xe) | S0_Y(0xb) | S1_X(0x4) | S1_Y(0xc) | S2_X(0x1) | S2_Y(0x6) | S3_X(0xa) | S3_Y(0xe))); WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD1, (S4_X(0x6) | S4_Y(0x1) | S5_X(0x0) | S5_Y(0x0) | S6_X(0xb) | S6_Y(0x4) | S7_X(0x7) | S7_Y(0x8))); WREG32(VGT_STRMOUT_EN, 0); tmp = rdev->config.r600.max_pipes * 16; switch (rdev->family) { case CHIP_RV610: case CHIP_RV620: case CHIP_RS780: case CHIP_RS880: tmp += 32; break; case CHIP_RV670: tmp += 128; break; default: break; } if (tmp > 256) { tmp = 256; } WREG32(VGT_ES_PER_GS, 128); WREG32(VGT_GS_PER_ES, tmp); WREG32(VGT_GS_PER_VS, 2); WREG32(VGT_GS_VERTEX_REUSE, 16); /* more default values. 2D/3D driver should adjust as needed */ WREG32(PA_SC_LINE_STIPPLE_STATE, 0); WREG32(VGT_STRMOUT_EN, 0); WREG32(SX_MISC, 0); WREG32(PA_SC_MODE_CNTL, 0); WREG32(PA_SC_AA_CONFIG, 0); WREG32(PA_SC_LINE_STIPPLE, 0); WREG32(SPI_INPUT_Z, 0); WREG32(SPI_PS_IN_CONTROL_0, NUM_INTERP(2)); WREG32(CB_COLOR7_FRAG, 0); /* Clear render buffer base addresses */ WREG32(CB_COLOR0_BASE, 0); WREG32(CB_COLOR1_BASE, 0); WREG32(CB_COLOR2_BASE, 0); WREG32(CB_COLOR3_BASE, 0); WREG32(CB_COLOR4_BASE, 0); WREG32(CB_COLOR5_BASE, 0); WREG32(CB_COLOR6_BASE, 0); WREG32(CB_COLOR7_BASE, 0); WREG32(CB_COLOR7_FRAG, 0); switch (rdev->family) { case CHIP_RV610: case CHIP_RV620: case CHIP_RS780: case CHIP_RS880: tmp = TC_L2_SIZE(8); break; case CHIP_RV630: case CHIP_RV635: tmp = TC_L2_SIZE(4); break; case CHIP_R600: tmp = TC_L2_SIZE(0) | L2_DISABLE_LATE_HIT; break; default: tmp = TC_L2_SIZE(0); break; } WREG32(TC_CNTL, tmp); tmp = RREG32(HDP_HOST_PATH_CNTL); WREG32(HDP_HOST_PATH_CNTL, tmp); tmp = RREG32(ARB_POP); tmp |= ENABLE_TC128; WREG32(ARB_POP, tmp); WREG32(PA_SC_MULTI_CHIP_CNTL, 0); WREG32(PA_CL_ENHANCE, (CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3))); WREG32(PA_SC_ENHANCE, FORCE_EOV_MAX_CLK_CNT(4095)); } /* * Indirect registers accessor */ u32 r600_pciep_rreg(struct radeon_device *rdev, u32 reg) { u32 r; WREG32(PCIE_PORT_INDEX, ((reg) & 0xff)); (void)RREG32(PCIE_PORT_INDEX); r = RREG32(PCIE_PORT_DATA); return r; } void r600_pciep_wreg(struct radeon_device *rdev, u32 reg, u32 v) { WREG32(PCIE_PORT_INDEX, ((reg) & 0xff)); (void)RREG32(PCIE_PORT_INDEX); WREG32(PCIE_PORT_DATA, (v)); (void)RREG32(PCIE_PORT_DATA); } /* * CP & Ring */ void r600_cp_stop(struct radeon_device *rdev) { WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(1)); } int r600_init_microcode(struct radeon_device *rdev) { struct platform_device *pdev; const char *chip_name; const char *rlc_chip_name; size_t pfp_req_size, me_req_size, rlc_req_size; char fw_name[30]; int err; DRM_DEBUG("\n"); pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0); err = IS_ERR(pdev); if (err) { printk(KERN_ERR "radeon_cp: Failed to register firmware\n"); return -EINVAL; } switch (rdev->family) { case CHIP_R600: chip_name = "R600"; rlc_chip_name = "R600"; break; case CHIP_RV610: chip_name = "RV610"; rlc_chip_name = "R600"; break; case CHIP_RV630: chip_name = "RV630"; rlc_chip_name = "R600"; break; case CHIP_RV620: chip_name = "RV620"; rlc_chip_name = "R600"; break; case CHIP_RV635: chip_name = "RV635"; rlc_chip_name = "R600"; break; case CHIP_RV670: chip_name = "RV670"; rlc_chip_name = "R600"; break; case CHIP_RS780: case CHIP_RS880: chip_name = "RS780"; rlc_chip_name = "R600"; break; case CHIP_RV770: chip_name = "RV770"; rlc_chip_name = "R700"; break; case CHIP_RV730: case CHIP_RV740: chip_name = "RV730"; rlc_chip_name = "R700"; break; case CHIP_RV710: chip_name = "RV710"; rlc_chip_name = "R700"; break; default: BUG(); } if (rdev->family >= CHIP_RV770) { pfp_req_size = R700_PFP_UCODE_SIZE * 4; me_req_size = R700_PM4_UCODE_SIZE * 4; rlc_req_size = R700_RLC_UCODE_SIZE * 4; } else { pfp_req_size = PFP_UCODE_SIZE * 4; me_req_size = PM4_UCODE_SIZE * 12; rlc_req_size = RLC_UCODE_SIZE * 4; } DRM_INFO("Loading %s Microcode\n", chip_name); snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->pfp_fw->size != pfp_req_size) { printk(KERN_ERR "r600_cp: Bogus length %zu in firmware \"%s\"\n", rdev->pfp_fw->size, fw_name); err = -EINVAL; goto out; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->me_fw->size != me_req_size) { printk(KERN_ERR "r600_cp: Bogus length %zu in firmware \"%s\"\n", rdev->me_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", rlc_chip_name); err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->rlc_fw->size != rlc_req_size) { printk(KERN_ERR "r600_rlc: Bogus length %zu in firmware \"%s\"\n", rdev->rlc_fw->size, fw_name); err = -EINVAL; } out: platform_device_unregister(pdev); if (err) { if (err != -EINVAL) printk(KERN_ERR "r600_cp: Failed to load firmware \"%s\"\n", fw_name); release_firmware(rdev->pfp_fw); rdev->pfp_fw = NULL; release_firmware(rdev->me_fw); rdev->me_fw = NULL; release_firmware(rdev->rlc_fw); rdev->rlc_fw = NULL; } return err; } static int r600_cp_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->me_fw || !rdev->pfp_fw) return -EINVAL; r600_cp_stop(rdev); WREG32(CP_RB_CNTL, RB_NO_UPDATE | RB_BLKSZ(15) | RB_BUFSZ(3)); /* Reset cp */ WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); WREG32(CP_ME_RAM_WADDR, 0); fw_data = (const __be32 *)rdev->me_fw->data; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < PM4_UCODE_SIZE * 3; i++) WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); fw_data = (const __be32 *)rdev->pfp_fw->data; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < PFP_UCODE_SIZE; i++) WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_ME_RAM_RADDR, 0); return 0; } int r600_cp_start(struct radeon_device *rdev) { int r; uint32_t cp_me; r = radeon_ring_lock(rdev, 7); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } radeon_ring_write(rdev, PACKET3(PACKET3_ME_INITIALIZE, 5)); radeon_ring_write(rdev, 0x1); if (rdev->family < CHIP_RV770) { radeon_ring_write(rdev, 0x3); radeon_ring_write(rdev, rdev->config.r600.max_hw_contexts - 1); } else { radeon_ring_write(rdev, 0x0); radeon_ring_write(rdev, rdev->config.rv770.max_hw_contexts - 1); } radeon_ring_write(rdev, PACKET3_ME_INITIALIZE_DEVICE_ID(1)); radeon_ring_write(rdev, 0); radeon_ring_write(rdev, 0); radeon_ring_unlock_commit(rdev); cp_me = 0xff; WREG32(R_0086D8_CP_ME_CNTL, cp_me); return 0; } int r600_cp_resume(struct radeon_device *rdev) { u32 tmp; u32 rb_bufsz; int r; /* Reset cp */ WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); /* Set ring buffer size */ rb_bufsz = drm_order(rdev->cp.ring_size / 8); tmp = RB_NO_UPDATE | (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB_CNTL, tmp); WREG32(CP_SEM_WAIT_TIMER, 0x4); /* Set the write pointer delay */ WREG32(CP_RB_WPTR_DELAY, 0); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB_CNTL, tmp | RB_RPTR_WR_ENA); WREG32(CP_RB_RPTR_WR, 0); WREG32(CP_RB_WPTR, 0); WREG32(CP_RB_RPTR_ADDR, rdev->cp.gpu_addr & 0xFFFFFFFF); WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->cp.gpu_addr)); mdelay(1); WREG32(CP_RB_CNTL, tmp); WREG32(CP_RB_BASE, rdev->cp.gpu_addr >> 8); WREG32(CP_DEBUG, (1 << 27) | (1 << 28)); rdev->cp.rptr = RREG32(CP_RB_RPTR); rdev->cp.wptr = RREG32(CP_RB_WPTR); r600_cp_start(rdev); rdev->cp.ready = true; r = radeon_ring_test(rdev); if (r) { rdev->cp.ready = false; return r; } return 0; } void r600_cp_commit(struct radeon_device *rdev) { WREG32(CP_RB_WPTR, rdev->cp.wptr); (void)RREG32(CP_RB_WPTR); } void r600_ring_init(struct radeon_device *rdev, unsigned ring_size) { u32 rb_bufsz; /* Align ring size */ rb_bufsz = drm_order(ring_size / 8); ring_size = (1 << (rb_bufsz + 1)) * 4; rdev->cp.ring_size = ring_size; rdev->cp.align_mask = 16 - 1; } void r600_cp_fini(struct radeon_device *rdev) { r600_cp_stop(rdev); radeon_ring_fini(rdev); } /* * GPU scratch registers helpers function. */ void r600_scratch_init(struct radeon_device *rdev) { int i; rdev->scratch.num_reg = 7; for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = SCRATCH_REG0 + (i * 4); } } int r600_ring_test(struct radeon_device *rdev) { uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ring_lock(rdev, 3); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); radeon_scratch_free(rdev, scratch); return r; } radeon_ring_write(rdev, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(rdev, ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2)); radeon_ring_write(rdev, 0xDEADBEEF); radeon_ring_unlock_commit(rdev); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test succeeded in %d usecs\n", i); } else { DRM_ERROR("radeon: ring test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } radeon_scratch_free(rdev, scratch); return r; } void r600_wb_disable(struct radeon_device *rdev) { int r; WREG32(SCRATCH_UMSK, 0); if (rdev->wb.wb_obj) { r = radeon_bo_reserve(rdev->wb.wb_obj, false); if (unlikely(r != 0)) return; radeon_bo_kunmap(rdev->wb.wb_obj); radeon_bo_unpin(rdev->wb.wb_obj); radeon_bo_unreserve(rdev->wb.wb_obj); } } void r600_wb_fini(struct radeon_device *rdev) { r600_wb_disable(rdev); if (rdev->wb.wb_obj) { radeon_bo_unref(&rdev->wb.wb_obj); rdev->wb.wb = NULL; rdev->wb.wb_obj = NULL; } } int r600_wb_enable(struct radeon_device *rdev) { int r; if (rdev->wb.wb_obj == NULL) { r = radeon_bo_create(rdev, NULL, RADEON_GPU_PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, &rdev->wb.wb_obj); if (r) { dev_warn(rdev->dev, "(%d) create WB bo failed\n", r); return r; } r = radeon_bo_reserve(rdev->wb.wb_obj, false); if (unlikely(r != 0)) { r600_wb_fini(rdev); return r; } r = radeon_bo_pin(rdev->wb.wb_obj, RADEON_GEM_DOMAIN_GTT, &rdev->wb.gpu_addr); if (r) { radeon_bo_unreserve(rdev->wb.wb_obj); dev_warn(rdev->dev, "(%d) pin WB bo failed\n", r); r600_wb_fini(rdev); return r; } r = radeon_bo_kmap(rdev->wb.wb_obj, (void **)&rdev->wb.wb); radeon_bo_unreserve(rdev->wb.wb_obj); if (r) { dev_warn(rdev->dev, "(%d) map WB bo failed\n", r); r600_wb_fini(rdev); return r; } } WREG32(SCRATCH_ADDR, (rdev->wb.gpu_addr >> 8) & 0xFFFFFFFF); WREG32(CP_RB_RPTR_ADDR, (rdev->wb.gpu_addr + 1024) & 0xFFFFFFFC); WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + 1024) & 0xFF); WREG32(SCRATCH_UMSK, 0xff); return 0; } void r600_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { /* Also consider EVENT_WRITE_EOP. it handles the interrupts + timestamps + events */ radeon_ring_write(rdev, PACKET3(PACKET3_EVENT_WRITE, 0)); radeon_ring_write(rdev, CACHE_FLUSH_AND_INV_EVENT); /* wait for 3D idle clean */ radeon_ring_write(rdev, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(rdev, (WAIT_UNTIL - PACKET3_SET_CONFIG_REG_OFFSET) >> 2); radeon_ring_write(rdev, WAIT_3D_IDLE_bit | WAIT_3D_IDLECLEAN_bit); /* Emit fence sequence & fire IRQ */ radeon_ring_write(rdev, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(rdev, ((rdev->fence_drv.scratch_reg - PACKET3_SET_CONFIG_REG_OFFSET) >> 2)); radeon_ring_write(rdev, fence->seq); /* CP_INTERRUPT packet 3 no longer exists, use packet 0 */ radeon_ring_write(rdev, PACKET0(CP_INT_STATUS, 0)); radeon_ring_write(rdev, RB_INT_STAT); } int r600_copy_blit(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_pages, struct radeon_fence *fence) { int r; mutex_lock(&rdev->r600_blit.mutex); rdev->r600_blit.vb_ib = NULL; r = r600_blit_prepare_copy(rdev, num_pages * RADEON_GPU_PAGE_SIZE); if (r) { if (rdev->r600_blit.vb_ib) radeon_ib_free(rdev, &rdev->r600_blit.vb_ib); mutex_unlock(&rdev->r600_blit.mutex); return r; } r600_kms_blit_copy(rdev, src_offset, dst_offset, num_pages * RADEON_GPU_PAGE_SIZE); r600_blit_done_copy(rdev, fence); mutex_unlock(&rdev->r600_blit.mutex); return 0; } int r600_set_surface_reg(struct radeon_device *rdev, int reg, uint32_t tiling_flags, uint32_t pitch, uint32_t offset, uint32_t obj_size) { /* FIXME: implement */ return 0; } void r600_clear_surface_reg(struct radeon_device *rdev, int reg) { /* FIXME: implement */ } bool r600_card_posted(struct radeon_device *rdev) { uint32_t reg; /* first check CRTCs */ reg = RREG32(D1CRTC_CONTROL) | RREG32(D2CRTC_CONTROL); if (reg & CRTC_EN) return true; /* then check MEM_SIZE, in case the crtcs are off */ if (RREG32(CONFIG_MEMSIZE)) return true; return false; } int r600_startup(struct radeon_device *rdev) { int r; if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw) { r = r600_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } r600_mc_program(rdev); if (rdev->flags & RADEON_IS_AGP) { r600_agp_enable(rdev); } else { r = r600_pcie_gart_enable(rdev); if (r) return r; } r600_gpu_init(rdev); r = r600_blit_init(rdev); if (r) { r600_blit_fini(rdev); rdev->asic->copy = NULL; dev_warn(rdev->dev, "failed blitter (%d) falling back to memcpy\n", r); } /* pin copy shader into vram */ if (rdev->r600_blit.shader_obj) { r = radeon_bo_reserve(rdev->r600_blit.shader_obj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(rdev->r600_blit.shader_obj, RADEON_GEM_DOMAIN_VRAM, &rdev->r600_blit.shader_gpu_addr); radeon_bo_unreserve(rdev->r600_blit.shader_obj); if (r) { dev_err(rdev->dev, "(%d) pin blit object failed\n", r); return r; } } /* Enable IRQ */ r = r600_irq_init(rdev); if (r) { DRM_ERROR("radeon: IH init failed (%d).\n", r); radeon_irq_kms_fini(rdev); return r; } r600_irq_set(rdev); r = radeon_ring_init(rdev, rdev->cp.ring_size); if (r) return r; r = r600_cp_load_microcode(rdev); if (r) return r; r = r600_cp_resume(rdev); if (r) return r; /* write back buffer are not vital so don't worry about failure */ r600_wb_enable(rdev); return 0; } void r600_vga_set_state(struct radeon_device *rdev, bool state) { uint32_t temp; temp = RREG32(CONFIG_CNTL); if (state == false) { temp &= ~(1<<0); temp |= (1<<1); } else { temp &= ~(1<<1); } WREG32(CONFIG_CNTL, temp); } int r600_resume(struct radeon_device *rdev) { int r; /* Do not reset GPU before posting, on r600 hw unlike on r500 hw, * posting will perform necessary task to bring back GPU into good * shape. */ /* post card */ atom_asic_init(rdev->mode_info.atom_context); /* Initialize clocks */ r = radeon_clocks_init(rdev); if (r) { return r; } r = r600_startup(rdev); if (r) { DRM_ERROR("r600 startup failed on resume\n"); return r; } r = r600_ib_test(rdev); if (r) { DRM_ERROR("radeon: failled testing IB (%d).\n", r); return r; } r = r600_audio_init(rdev); if (r) { DRM_ERROR("radeon: audio resume failed\n"); return r; } return r; } int r600_suspend(struct radeon_device *rdev) { int r; r600_audio_fini(rdev); /* FIXME: we should wait for ring to be empty */ r600_cp_stop(rdev); rdev->cp.ready = false; r600_irq_suspend(rdev); r600_wb_disable(rdev); r600_pcie_gart_disable(rdev); /* unpin shaders bo */ if (rdev->r600_blit.shader_obj) { r = radeon_bo_reserve(rdev->r600_blit.shader_obj, false); if (!r) { radeon_bo_unpin(rdev->r600_blit.shader_obj); radeon_bo_unreserve(rdev->r600_blit.shader_obj); } } return 0; } /* Plan is to move initialization in that function and use * helper function so that radeon_device_init pretty much * do nothing more than calling asic specific function. This * should also allow to remove a bunch of callback function * like vram_info. */ int r600_init(struct radeon_device *rdev) { int r; r = radeon_dummy_page_init(rdev); if (r) return r; if (r600_debugfs_mc_info_init(rdev)) { DRM_ERROR("Failed to register debugfs file for mc !\n"); } /* This don't do much */ r = radeon_gem_init(rdev); if (r) return r; /* Read BIOS */ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } /* Must be an ATOMBIOS */ if (!rdev->is_atom_bios) { dev_err(rdev->dev, "Expecting atombios for R600 GPU\n"); return -EINVAL; } r = radeon_atombios_init(rdev); if (r) return r; /* Post card if necessary */ if (!r600_card_posted(rdev)) { if (!rdev->bios) { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return -EINVAL; } DRM_INFO("GPU not posted. posting now...\n"); atom_asic_init(rdev->mode_info.atom_context); } /* Initialize scratch registers */ r600_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* Initialize clocks */ radeon_get_clock_info(rdev->ddev); r = radeon_clocks_init(rdev); if (r) return r; /* Initialize power management */ radeon_pm_init(rdev); /* Fence driver */ r = radeon_fence_driver_init(rdev); if (r) return r; if (rdev->flags & RADEON_IS_AGP) { r = radeon_agp_init(rdev); if (r) radeon_agp_disable(rdev); } r = r600_mc_init(rdev); if (r) return r; /* Memory manager */ r = radeon_bo_init(rdev); if (r) return r; r = radeon_irq_kms_init(rdev); if (r) return r; rdev->cp.ring_obj = NULL; r600_ring_init(rdev, 1024 * 1024); rdev->ih.ring_obj = NULL; r600_ih_ring_init(rdev, 64 * 1024); r = r600_pcie_gart_init(rdev); if (r) return r; rdev->accel_working = true; r = r600_startup(rdev); if (r) { dev_err(rdev->dev, "disabling GPU acceleration\n"); r600_cp_fini(rdev); r600_wb_fini(rdev); r600_irq_fini(rdev); radeon_irq_kms_fini(rdev); r600_pcie_gart_fini(rdev); rdev->accel_working = false; } if (rdev->accel_working) { r = radeon_ib_pool_init(rdev); if (r) { dev_err(rdev->dev, "IB initialization failed (%d).\n", r); rdev->accel_working = false; } else { r = r600_ib_test(rdev); if (r) { dev_err(rdev->dev, "IB test failed (%d).\n", r); rdev->accel_working = false; } } } r = r600_audio_init(rdev); if (r) return r; /* TODO error handling */ return 0; } void r600_fini(struct radeon_device *rdev) { radeon_pm_fini(rdev); r600_audio_fini(rdev); r600_blit_fini(rdev); r600_cp_fini(rdev); r600_wb_fini(rdev); r600_irq_fini(rdev); radeon_irq_kms_fini(rdev); r600_pcie_gart_fini(rdev); radeon_agp_fini(rdev); radeon_gem_fini(rdev); radeon_fence_driver_fini(rdev); radeon_clocks_fini(rdev); radeon_bo_fini(rdev); radeon_atombios_fini(rdev); kfree(rdev->bios); rdev->bios = NULL; radeon_dummy_page_fini(rdev); } /* * CS stuff */ void r600_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { /* FIXME: implement */ radeon_ring_write(rdev, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); radeon_ring_write(rdev, ib->gpu_addr & 0xFFFFFFFC); radeon_ring_write(rdev, upper_32_bits(ib->gpu_addr) & 0xFF); radeon_ring_write(rdev, ib->length_dw); } int r600_ib_test(struct radeon_device *rdev) { struct radeon_ib *ib; uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ib_get(rdev, &ib); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); return r; } ib->ptr[0] = PACKET3(PACKET3_SET_CONFIG_REG, 1); ib->ptr[1] = ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2); ib->ptr[2] = 0xDEADBEEF; ib->ptr[3] = PACKET2(0); ib->ptr[4] = PACKET2(0); ib->ptr[5] = PACKET2(0); ib->ptr[6] = PACKET2(0); ib->ptr[7] = PACKET2(0); ib->ptr[8] = PACKET2(0); ib->ptr[9] = PACKET2(0); ib->ptr[10] = PACKET2(0); ib->ptr[11] = PACKET2(0); ib->ptr[12] = PACKET2(0); ib->ptr[13] = PACKET2(0); ib->ptr[14] = PACKET2(0); ib->ptr[15] = PACKET2(0); ib->length_dw = 16; r = radeon_ib_schedule(rdev, ib); if (r) { radeon_scratch_free(rdev, scratch); radeon_ib_free(rdev, &ib); DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); return r; } r = radeon_fence_wait(ib->fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); return r; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test succeeded in %u usecs\n", i); } else { DRM_ERROR("radeon: ib test failed (sracth(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } radeon_scratch_free(rdev, scratch); radeon_ib_free(rdev, &ib); return r; } /* * Interrupts * * Interrupts use a ring buffer on r6xx/r7xx hardware. It works pretty * the same as the CP ring buffer, but in reverse. Rather than the CPU * writing to the ring and the GPU consuming, the GPU writes to the ring * and host consumes. As the host irq handler processes interrupts, it * increments the rptr. When the rptr catches up with the wptr, all the * current interrupts have been processed. */ void r600_ih_ring_init(struct radeon_device *rdev, unsigned ring_size) { u32 rb_bufsz; /* Align ring size */ rb_bufsz = drm_order(ring_size / 4); ring_size = (1 << rb_bufsz) * 4; rdev->ih.ring_size = ring_size; rdev->ih.ptr_mask = rdev->ih.ring_size - 1; rdev->ih.rptr = 0; } static int r600_ih_ring_alloc(struct radeon_device *rdev) { int r; /* Allocate ring buffer */ if (rdev->ih.ring_obj == NULL) { r = radeon_bo_create(rdev, NULL, rdev->ih.ring_size, true, RADEON_GEM_DOMAIN_GTT, &rdev->ih.ring_obj); if (r) { DRM_ERROR("radeon: failed to create ih ring buffer (%d).\n", r); return r; } r = radeon_bo_reserve(rdev->ih.ring_obj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(rdev->ih.ring_obj, RADEON_GEM_DOMAIN_GTT, &rdev->ih.gpu_addr); if (r) { radeon_bo_unreserve(rdev->ih.ring_obj); DRM_ERROR("radeon: failed to pin ih ring buffer (%d).\n", r); return r; } r = radeon_bo_kmap(rdev->ih.ring_obj, (void **)&rdev->ih.ring); radeon_bo_unreserve(rdev->ih.ring_obj); if (r) { DRM_ERROR("radeon: failed to map ih ring buffer (%d).\n", r); return r; } } return 0; } static void r600_ih_ring_fini(struct radeon_device *rdev) { int r; if (rdev->ih.ring_obj) { r = radeon_bo_reserve(rdev->ih.ring_obj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->ih.ring_obj); radeon_bo_unpin(rdev->ih.ring_obj); radeon_bo_unreserve(rdev->ih.ring_obj); } radeon_bo_unref(&rdev->ih.ring_obj); rdev->ih.ring = NULL; rdev->ih.ring_obj = NULL; } } static void r600_rlc_stop(struct radeon_device *rdev) { if (rdev->family >= CHIP_RV770) { /* r7xx asics need to soft reset RLC before halting */ WREG32(SRBM_SOFT_RESET, SOFT_RESET_RLC); RREG32(SRBM_SOFT_RESET); udelay(15000); WREG32(SRBM_SOFT_RESET, 0); RREG32(SRBM_SOFT_RESET); } WREG32(RLC_CNTL, 0); } static void r600_rlc_start(struct radeon_device *rdev) { WREG32(RLC_CNTL, RLC_ENABLE); } static int r600_rlc_init(struct radeon_device *rdev) { u32 i; const __be32 *fw_data; if (!rdev->rlc_fw) return -EINVAL; r600_rlc_stop(rdev); WREG32(RLC_HB_BASE, 0); WREG32(RLC_HB_CNTL, 0); WREG32(RLC_HB_RPTR, 0); WREG32(RLC_HB_WPTR, 0); WREG32(RLC_HB_WPTR_LSB_ADDR, 0); WREG32(RLC_HB_WPTR_MSB_ADDR, 0); WREG32(RLC_MC_CNTL, 0); WREG32(RLC_UCODE_CNTL, 0); fw_data = (const __be32 *)rdev->rlc_fw->data; if (rdev->family >= CHIP_RV770) { for (i = 0; i < R700_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } else { for (i = 0; i < RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } WREG32(RLC_UCODE_ADDR, 0); r600_rlc_start(rdev); return 0; } static void r600_enable_interrupts(struct radeon_device *rdev) { u32 ih_cntl = RREG32(IH_CNTL); u32 ih_rb_cntl = RREG32(IH_RB_CNTL); ih_cntl |= ENABLE_INTR; ih_rb_cntl |= IH_RB_ENABLE; WREG32(IH_CNTL, ih_cntl); WREG32(IH_RB_CNTL, ih_rb_cntl); rdev->ih.enabled = true; } static void r600_disable_interrupts(struct radeon_device *rdev) { u32 ih_rb_cntl = RREG32(IH_RB_CNTL); u32 ih_cntl = RREG32(IH_CNTL); ih_rb_cntl &= ~IH_RB_ENABLE; ih_cntl &= ~ENABLE_INTR; WREG32(IH_RB_CNTL, ih_rb_cntl); WREG32(IH_CNTL, ih_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); rdev->ih.enabled = false; rdev->ih.wptr = 0; rdev->ih.rptr = 0; } static void r600_disable_interrupt_state(struct radeon_device *rdev) { u32 tmp; WREG32(CP_INT_CNTL, 0); WREG32(GRBM_INT_CNTL, 0); WREG32(DxMODE_INT_MASK, 0); if (ASIC_IS_DCE3(rdev)) { WREG32(DCE3_DACA_AUTODETECT_INT_CONTROL, 0); WREG32(DCE3_DACB_AUTODETECT_INT_CONTROL, 0); tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD1_INT_CONTROL, tmp); tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD2_INT_CONTROL, tmp); tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD3_INT_CONTROL, tmp); tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD4_INT_CONTROL, tmp); if (ASIC_IS_DCE32(rdev)) { tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD5_INT_CONTROL, 0); tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD6_INT_CONTROL, 0); } } else { WREG32(DACA_AUTODETECT_INT_CONTROL, 0); WREG32(DACB_AUTODETECT_INT_CONTROL, 0); tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, 0); tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, 0); tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, 0); } } int r600_irq_init(struct radeon_device *rdev) { int ret = 0; int rb_bufsz; u32 interrupt_cntl, ih_cntl, ih_rb_cntl; /* allocate ring */ ret = r600_ih_ring_alloc(rdev); if (ret) return ret; /* disable irqs */ r600_disable_interrupts(rdev); /* init rlc */ ret = r600_rlc_init(rdev); if (ret) { r600_ih_ring_fini(rdev); return ret; } /* setup interrupt control */ /* set dummy read address to ring address */ WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8); interrupt_cntl = RREG32(INTERRUPT_CNTL); /* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN */ interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE; /* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */ interrupt_cntl &= ~IH_REQ_NONSNOOP_EN; WREG32(INTERRUPT_CNTL, interrupt_cntl); WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8); rb_bufsz = drm_order(rdev->ih.ring_size / 4); ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE | IH_WPTR_OVERFLOW_CLEAR | (rb_bufsz << 1)); /* WPTR writeback, not yet */ /*ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE;*/ WREG32(IH_RB_WPTR_ADDR_LO, 0); WREG32(IH_RB_WPTR_ADDR_HI, 0); WREG32(IH_RB_CNTL, ih_rb_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); /* Default settings for IH_CNTL (disabled at first) */ ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10); /* RPTR_REARM only works if msi's are enabled */ if (rdev->msi_enabled) ih_cntl |= RPTR_REARM; #ifdef __BIG_ENDIAN ih_cntl |= IH_MC_SWAP(IH_MC_SWAP_32BIT); #endif WREG32(IH_CNTL, ih_cntl); /* force the active interrupt state to all disabled */ r600_disable_interrupt_state(rdev); /* enable irqs */ r600_enable_interrupts(rdev); return ret; } void r600_irq_suspend(struct radeon_device *rdev) { r600_disable_interrupts(rdev); r600_rlc_stop(rdev); } void r600_irq_fini(struct radeon_device *rdev) { r600_irq_suspend(rdev); r600_ih_ring_fini(rdev); } int r600_irq_set(struct radeon_device *rdev) { u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE; u32 mode_int = 0; u32 hpd1, hpd2, hpd3, hpd4 = 0, hpd5 = 0, hpd6 = 0; if (!rdev->irq.installed) { WARN(1, "Can't enable IRQ/MSI because no handler is installed.\n"); return -EINVAL; } /* don't enable anything if the ih is disabled */ if (!rdev->ih.enabled) { r600_disable_interrupts(rdev); /* force the active interrupt state to all disabled */ r600_disable_interrupt_state(rdev); return 0; } if (ASIC_IS_DCE3(rdev)) { hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN; if (ASIC_IS_DCE32(rdev)) { hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN; } } else { hpd1 = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd2 = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd3 = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & ~DC_HPDx_INT_EN; } if (rdev->irq.sw_int) { DRM_DEBUG("r600_irq_set: sw int\n"); cp_int_cntl |= RB_INT_ENABLE; } if (rdev->irq.crtc_vblank_int[0]) { DRM_DEBUG("r600_irq_set: vblank 0\n"); mode_int |= D1MODE_VBLANK_INT_MASK; } if (rdev->irq.crtc_vblank_int[1]) { DRM_DEBUG("r600_irq_set: vblank 1\n"); mode_int |= D2MODE_VBLANK_INT_MASK; } if (rdev->irq.hpd[0]) { DRM_DEBUG("r600_irq_set: hpd 1\n"); hpd1 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[1]) { DRM_DEBUG("r600_irq_set: hpd 2\n"); hpd2 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[2]) { DRM_DEBUG("r600_irq_set: hpd 3\n"); hpd3 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[3]) { DRM_DEBUG("r600_irq_set: hpd 4\n"); hpd4 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[4]) { DRM_DEBUG("r600_irq_set: hpd 5\n"); hpd5 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[5]) { DRM_DEBUG("r600_irq_set: hpd 6\n"); hpd6 |= DC_HPDx_INT_EN; } WREG32(CP_INT_CNTL, cp_int_cntl); WREG32(DxMODE_INT_MASK, mode_int); if (ASIC_IS_DCE3(rdev)) { WREG32(DC_HPD1_INT_CONTROL, hpd1); WREG32(DC_HPD2_INT_CONTROL, hpd2); WREG32(DC_HPD3_INT_CONTROL, hpd3); WREG32(DC_HPD4_INT_CONTROL, hpd4); if (ASIC_IS_DCE32(rdev)) { WREG32(DC_HPD5_INT_CONTROL, hpd5); WREG32(DC_HPD6_INT_CONTROL, hpd6); } } else { WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, hpd1); WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, hpd2); WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, hpd3); } return 0; } static inline void r600_irq_ack(struct radeon_device *rdev, u32 *disp_int, u32 *disp_int_cont, u32 *disp_int_cont2) { u32 tmp; if (ASIC_IS_DCE3(rdev)) { *disp_int = RREG32(DCE3_DISP_INTERRUPT_STATUS); *disp_int_cont = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE); *disp_int_cont2 = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE2); } else { *disp_int = RREG32(DISP_INTERRUPT_STATUS); *disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE); *disp_int_cont2 = 0; } if (*disp_int & LB_D1_VBLANK_INTERRUPT) WREG32(D1MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK); if (*disp_int & LB_D1_VLINE_INTERRUPT) WREG32(D1MODE_VLINE_STATUS, DxMODE_VLINE_ACK); if (*disp_int & LB_D2_VBLANK_INTERRUPT) WREG32(D2MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK); if (*disp_int & LB_D2_VLINE_INTERRUPT) WREG32(D2MODE_VLINE_STATUS, DxMODE_VLINE_ACK); if (*disp_int & DC_HPD1_INTERRUPT) { if (ASIC_IS_DCE3(rdev)) { tmp = RREG32(DC_HPD1_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD1_INT_CONTROL, tmp); } else { tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp); } } if (*disp_int & DC_HPD2_INTERRUPT) { if (ASIC_IS_DCE3(rdev)) { tmp = RREG32(DC_HPD2_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD2_INT_CONTROL, tmp); } else { tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp); } } if (*disp_int_cont & DC_HPD3_INTERRUPT) { if (ASIC_IS_DCE3(rdev)) { tmp = RREG32(DC_HPD3_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD3_INT_CONTROL, tmp); } else { tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp); } } if (*disp_int_cont & DC_HPD4_INTERRUPT) { tmp = RREG32(DC_HPD4_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD4_INT_CONTROL, tmp); } if (ASIC_IS_DCE32(rdev)) { if (*disp_int_cont2 & DC_HPD5_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD5_INT_CONTROL, tmp); } if (*disp_int_cont2 & DC_HPD6_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD6_INT_CONTROL, tmp); } } } void r600_irq_disable(struct radeon_device *rdev) { u32 disp_int, disp_int_cont, disp_int_cont2; r600_disable_interrupts(rdev); /* Wait and acknowledge irq */ mdelay(1); r600_irq_ack(rdev, &disp_int, &disp_int_cont, &disp_int_cont2); r600_disable_interrupt_state(rdev); } static inline u32 r600_get_ih_wptr(struct radeon_device *rdev) { u32 wptr, tmp; /* XXX use writeback */ wptr = RREG32(IH_RB_WPTR); if (wptr & RB_OVERFLOW) { /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n", wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask); rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; tmp = RREG32(IH_RB_CNTL); tmp |= IH_WPTR_OVERFLOW_CLEAR; WREG32(IH_RB_CNTL, tmp); } return (wptr & rdev->ih.ptr_mask); } /* r600 IV Ring * Each IV ring entry is 128 bits: * [7:0] - interrupt source id * [31:8] - reserved * [59:32] - interrupt source data * [127:60] - reserved * * The basic interrupt vector entries * are decoded as follows: * src_id src_data description * 1 0 D1 Vblank * 1 1 D1 Vline * 5 0 D2 Vblank * 5 1 D2 Vline * 19 0 FP Hot plug detection A * 19 1 FP Hot plug detection B * 19 2 DAC A auto-detection * 19 3 DAC B auto-detection * 176 - CP_INT RB * 177 - CP_INT IB1 * 178 - CP_INT IB2 * 181 - EOP Interrupt * 233 - GUI Idle * * Note, these are based on r600 and may need to be * adjusted or added to on newer asics */ int r600_irq_process(struct radeon_device *rdev) { u32 wptr = r600_get_ih_wptr(rdev); u32 rptr = rdev->ih.rptr; u32 src_id, src_data; u32 ring_index, disp_int, disp_int_cont, disp_int_cont2; unsigned long flags; bool queue_hotplug = false; DRM_DEBUG("r600_irq_process start: rptr %d, wptr %d\n", rptr, wptr); if (!rdev->ih.enabled) return IRQ_NONE; spin_lock_irqsave(&rdev->ih.lock, flags); if (rptr == wptr) { spin_unlock_irqrestore(&rdev->ih.lock, flags); return IRQ_NONE; } if (rdev->shutdown) { spin_unlock_irqrestore(&rdev->ih.lock, flags); return IRQ_NONE; } restart_ih: /* display interrupts */ r600_irq_ack(rdev, &disp_int, &disp_int_cont, &disp_int_cont2); rdev->ih.wptr = wptr; while (rptr != wptr) { /* wptr/rptr are in bytes! */ ring_index = rptr / 4; src_id = rdev->ih.ring[ring_index] & 0xff; src_data = rdev->ih.ring[ring_index + 1] & 0xfffffff; switch (src_id) { case 1: /* D1 vblank/vline */ switch (src_data) { case 0: /* D1 vblank */ if (disp_int & LB_D1_VBLANK_INTERRUPT) { drm_handle_vblank(rdev->ddev, 0); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); disp_int &= ~LB_D1_VBLANK_INTERRUPT; DRM_DEBUG("IH: D1 vblank\n"); } break; case 1: /* D1 vline */ if (disp_int & LB_D1_VLINE_INTERRUPT) { disp_int &= ~LB_D1_VLINE_INTERRUPT; DRM_DEBUG("IH: D1 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 5: /* D2 vblank/vline */ switch (src_data) { case 0: /* D2 vblank */ if (disp_int & LB_D2_VBLANK_INTERRUPT) { drm_handle_vblank(rdev->ddev, 1); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); disp_int &= ~LB_D2_VBLANK_INTERRUPT; DRM_DEBUG("IH: D2 vblank\n"); } break; case 1: /* D1 vline */ if (disp_int & LB_D2_VLINE_INTERRUPT) { disp_int &= ~LB_D2_VLINE_INTERRUPT; DRM_DEBUG("IH: D2 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 19: /* HPD/DAC hotplug */ switch (src_data) { case 0: if (disp_int & DC_HPD1_INTERRUPT) { disp_int &= ~DC_HPD1_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD1\n"); } break; case 1: if (disp_int & DC_HPD2_INTERRUPT) { disp_int &= ~DC_HPD2_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD2\n"); } break; case 4: if (disp_int_cont & DC_HPD3_INTERRUPT) { disp_int_cont &= ~DC_HPD3_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD3\n"); } break; case 5: if (disp_int_cont & DC_HPD4_INTERRUPT) { disp_int_cont &= ~DC_HPD4_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD4\n"); } break; case 10: if (disp_int_cont2 & DC_HPD5_INTERRUPT) { disp_int_cont &= ~DC_HPD5_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD5\n"); } break; case 12: if (disp_int_cont2 & DC_HPD6_INTERRUPT) { disp_int_cont &= ~DC_HPD6_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD6\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 176: /* CP_INT in ring buffer */ case 177: /* CP_INT in IB1 */ case 178: /* CP_INT in IB2 */ DRM_DEBUG("IH: CP int: 0x%08x\n", src_data); radeon_fence_process(rdev); break; case 181: /* CP EOP event */ DRM_DEBUG("IH: CP EOP\n"); break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } /* wptr/rptr are in bytes! */ rptr += 16; rptr &= rdev->ih.ptr_mask; } /* make sure wptr hasn't changed while processing */ wptr = r600_get_ih_wptr(rdev); if (wptr != rdev->ih.wptr) goto restart_ih; if (queue_hotplug) queue_work(rdev->wq, &rdev->hotplug_work); rdev->ih.rptr = rptr; WREG32(IH_RB_RPTR, rdev->ih.rptr); spin_unlock_irqrestore(&rdev->ih.lock, flags); return IRQ_HANDLED; } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int r600_debugfs_cp_ring_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; unsigned count, i, j; radeon_ring_free_size(rdev); count = (rdev->cp.ring_size / 4) - rdev->cp.ring_free_dw; seq_printf(m, "CP_STAT 0x%08x\n", RREG32(CP_STAT)); seq_printf(m, "CP_RB_WPTR 0x%08x\n", RREG32(CP_RB_WPTR)); seq_printf(m, "CP_RB_RPTR 0x%08x\n", RREG32(CP_RB_RPTR)); seq_printf(m, "driver's copy of the CP_RB_WPTR 0x%08x\n", rdev->cp.wptr); seq_printf(m, "driver's copy of the CP_RB_RPTR 0x%08x\n", rdev->cp.rptr); seq_printf(m, "%u free dwords in ring\n", rdev->cp.ring_free_dw); seq_printf(m, "%u dwords in ring\n", count); i = rdev->cp.rptr; for (j = 0; j <= count; j++) { seq_printf(m, "r[%04d]=0x%08x\n", i, rdev->cp.ring[i]); i = (i + 1) & rdev->cp.ptr_mask; } return 0; } static int r600_debugfs_mc_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; DREG32_SYS(m, rdev, R_000E50_SRBM_STATUS); DREG32_SYS(m, rdev, VM_L2_STATUS); return 0; } static struct drm_info_list r600_mc_info_list[] = { {"r600_mc_info", r600_debugfs_mc_info, 0, NULL}, {"r600_ring_info", r600_debugfs_cp_ring_info, 0, NULL}, }; #endif int r600_debugfs_mc_info_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r600_mc_info_list, ARRAY_SIZE(r600_mc_info_list)); #else return 0; #endif } /** * r600_ioctl_wait_idle - flush host path cache on wait idle ioctl * rdev: radeon device structure * bo: buffer object struct which userspace is waiting for idle * * Some R6XX/R7XX doesn't seems to take into account HDP flush performed * through ring buffer, this leads to corruption in rendering, see * http://bugzilla.kernel.org/show_bug.cgi?id=15186 to avoid this we * directly perform HDP flush by writing register through MMIO. */ void r600_ioctl_wait_idle(struct radeon_device *rdev, struct radeon_bo *bo) { WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); }