/* * Performance counter support - powerpc architecture code * * Copyright 2008-2009 Paul Mackerras, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include struct cpu_hw_counters { int n_counters; int n_percpu; int disabled; int n_added; struct perf_counter *counter[MAX_HWCOUNTERS]; unsigned int events[MAX_HWCOUNTERS]; u64 mmcr[3]; u8 pmcs_enabled; }; DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); struct power_pmu *ppmu; /* * Normally, to ignore kernel events we set the FCS (freeze counters * in supervisor mode) bit in MMCR0, but if the kernel runs with the * hypervisor bit set in the MSR, or if we are running on a processor * where the hypervisor bit is forced to 1 (as on Apple G5 processors), * then we need to use the FCHV bit to ignore kernel events. */ static unsigned int freeze_counters_kernel = MMCR0_FCS; static void perf_counter_interrupt(struct pt_regs *regs); void perf_counter_print_debug(void) { } /* * Read one performance monitor counter (PMC). */ static unsigned long read_pmc(int idx) { unsigned long val; switch (idx) { case 1: val = mfspr(SPRN_PMC1); break; case 2: val = mfspr(SPRN_PMC2); break; case 3: val = mfspr(SPRN_PMC3); break; case 4: val = mfspr(SPRN_PMC4); break; case 5: val = mfspr(SPRN_PMC5); break; case 6: val = mfspr(SPRN_PMC6); break; case 7: val = mfspr(SPRN_PMC7); break; case 8: val = mfspr(SPRN_PMC8); break; default: printk(KERN_ERR "oops trying to read PMC%d\n", idx); val = 0; } return val; } /* * Write one PMC. */ static void write_pmc(int idx, unsigned long val) { switch (idx) { case 1: mtspr(SPRN_PMC1, val); break; case 2: mtspr(SPRN_PMC2, val); break; case 3: mtspr(SPRN_PMC3, val); break; case 4: mtspr(SPRN_PMC4, val); break; case 5: mtspr(SPRN_PMC5, val); break; case 6: mtspr(SPRN_PMC6, val); break; case 7: mtspr(SPRN_PMC7, val); break; case 8: mtspr(SPRN_PMC8, val); break; default: printk(KERN_ERR "oops trying to write PMC%d\n", idx); } } /* * Check if a set of events can all go on the PMU at once. * If they can't, this will look at alternative codes for the events * and see if any combination of alternative codes is feasible. * The feasible set is returned in event[]. */ static int power_check_constraints(unsigned int event[], int n_ev) { u64 mask, value, nv; unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES]; u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS]; int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS]; int i, j; u64 addf = ppmu->add_fields; u64 tadd = ppmu->test_adder; if (n_ev > ppmu->n_counter) return -1; /* First see if the events will go on as-is */ for (i = 0; i < n_ev; ++i) { alternatives[i][0] = event[i]; if (ppmu->get_constraint(event[i], &amasks[i][0], &avalues[i][0])) return -1; choice[i] = 0; } value = mask = 0; for (i = 0; i < n_ev; ++i) { nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf); if ((((nv + tadd) ^ value) & mask) != 0 || (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0) break; value = nv; mask |= amasks[i][0]; } if (i == n_ev) return 0; /* all OK */ /* doesn't work, gather alternatives... */ if (!ppmu->get_alternatives) return -1; for (i = 0; i < n_ev; ++i) { n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]); for (j = 1; j < n_alt[i]; ++j) ppmu->get_constraint(alternatives[i][j], &amasks[i][j], &avalues[i][j]); } /* enumerate all possibilities and see if any will work */ i = 0; j = -1; value = mask = nv = 0; while (i < n_ev) { if (j >= 0) { /* we're backtracking, restore context */ value = svalues[i]; mask = smasks[i]; j = choice[i]; } /* * See if any alternative k for event i, * where k > j, will satisfy the constraints. */ while (++j < n_alt[i]) { nv = (value | avalues[i][j]) + (value & avalues[i][j] & addf); if ((((nv + tadd) ^ value) & mask) == 0 && (((nv + tadd) ^ avalues[i][j]) & amasks[i][j]) == 0) break; } if (j >= n_alt[i]) { /* * No feasible alternative, backtrack * to event i-1 and continue enumerating its * alternatives from where we got up to. */ if (--i < 0) return -1; } else { /* * Found a feasible alternative for event i, * remember where we got up to with this event, * go on to the next event, and start with * the first alternative for it. */ choice[i] = j; svalues[i] = value; smasks[i] = mask; value = nv; mask |= amasks[i][j]; ++i; j = -1; } } /* OK, we have a feasible combination, tell the caller the solution */ for (i = 0; i < n_ev; ++i) event[i] = alternatives[i][choice[i]]; return 0; } /* * Check if newly-added counters have consistent settings for * exclude_{user,kernel,hv} with each other and any previously * added counters. */ static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new) { int eu, ek, eh; int i, n; struct perf_counter *counter; n = n_prev + n_new; if (n <= 1) return 0; eu = ctrs[0]->hw_event.exclude_user; ek = ctrs[0]->hw_event.exclude_kernel; eh = ctrs[0]->hw_event.exclude_hv; if (n_prev == 0) n_prev = 1; for (i = n_prev; i < n; ++i) { counter = ctrs[i]; if (counter->hw_event.exclude_user != eu || counter->hw_event.exclude_kernel != ek || counter->hw_event.exclude_hv != eh) return -EAGAIN; } return 0; } static void power_pmu_read(struct perf_counter *counter) { long val, delta, prev; if (!counter->hw.idx) return; /* * Performance monitor interrupts come even when interrupts * are soft-disabled, as long as interrupts are hard-enabled. * Therefore we treat them like NMIs. */ do { prev = atomic64_read(&counter->hw.prev_count); barrier(); val = read_pmc(counter->hw.idx); } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev); /* The counters are only 32 bits wide */ delta = (val - prev) & 0xfffffffful; atomic64_add(delta, &counter->count); atomic64_sub(delta, &counter->hw.period_left); } /* * Disable all counters to prevent PMU interrupts and to allow * counters to be added or removed. */ u64 hw_perf_save_disable(void) { struct cpu_hw_counters *cpuhw; unsigned long ret; unsigned long flags; local_irq_save(flags); cpuhw = &__get_cpu_var(cpu_hw_counters); ret = cpuhw->disabled; if (!ret) { cpuhw->disabled = 1; cpuhw->n_added = 0; /* * Check if we ever enabled the PMU on this cpu. */ if (!cpuhw->pmcs_enabled) { if (ppc_md.enable_pmcs) ppc_md.enable_pmcs(); cpuhw->pmcs_enabled = 1; } /* * Disable instruction sampling if it was enabled */ if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mb(); } /* * Set the 'freeze counters' bit. * The barrier is to make sure the mtspr has been * executed and the PMU has frozen the counters * before we return. */ mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC); mb(); } local_irq_restore(flags); return ret; } /* * Re-enable all counters if disable == 0. * If we were previously disabled and counters were added, then * put the new config on the PMU. */ void hw_perf_restore(u64 disable) { struct perf_counter *counter; struct cpu_hw_counters *cpuhw; unsigned long flags; long i; unsigned long val; s64 left; unsigned int hwc_index[MAX_HWCOUNTERS]; if (disable) return; local_irq_save(flags); cpuhw = &__get_cpu_var(cpu_hw_counters); cpuhw->disabled = 0; /* * If we didn't change anything, or only removed counters, * no need to recalculate MMCR* settings and reset the PMCs. * Just reenable the PMU with the current MMCR* settings * (possibly updated for removal of counters). */ if (!cpuhw->n_added) { mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); if (cpuhw->n_counters == 0) get_lppaca()->pmcregs_in_use = 0; goto out_enable; } /* * Compute MMCR* values for the new set of counters */ if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index, cpuhw->mmcr)) { /* shouldn't ever get here */ printk(KERN_ERR "oops compute_mmcr failed\n"); goto out; } /* * Add in MMCR0 freeze bits corresponding to the * hw_event.exclude_* bits for the first counter. * We have already checked that all counters have the * same values for these bits as the first counter. */ counter = cpuhw->counter[0]; if (counter->hw_event.exclude_user) cpuhw->mmcr[0] |= MMCR0_FCP; if (counter->hw_event.exclude_kernel) cpuhw->mmcr[0] |= freeze_counters_kernel; if (counter->hw_event.exclude_hv) cpuhw->mmcr[0] |= MMCR0_FCHV; /* * Write the new configuration to MMCR* with the freeze * bit set and set the hardware counters to their initial values. * Then unfreeze the counters. */ get_lppaca()->pmcregs_in_use = 1; mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | MMCR0_FC); /* * Read off any pre-existing counters that need to move * to another PMC. */ for (i = 0; i < cpuhw->n_counters; ++i) { counter = cpuhw->counter[i]; if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) { power_pmu_read(counter); write_pmc(counter->hw.idx, 0); counter->hw.idx = 0; } } /* * Initialize the PMCs for all the new and moved counters. */ for (i = 0; i < cpuhw->n_counters; ++i) { counter = cpuhw->counter[i]; if (counter->hw.idx) continue; val = 0; if (counter->hw_event.irq_period) { left = atomic64_read(&counter->hw.period_left); if (left < 0x80000000L) val = 0x80000000L - left; } atomic64_set(&counter->hw.prev_count, val); counter->hw.idx = hwc_index[i] + 1; write_pmc(counter->hw.idx, val); perf_counter_update_userpage(counter); } cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; out_enable: mb(); mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); /* * Enable instruction sampling if necessary */ if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { mb(); mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); } out: local_irq_restore(flags); } static int collect_events(struct perf_counter *group, int max_count, struct perf_counter *ctrs[], unsigned int *events) { int n = 0; struct perf_counter *counter; if (!is_software_counter(group)) { if (n >= max_count) return -1; ctrs[n] = group; events[n++] = group->hw.config; } list_for_each_entry(counter, &group->sibling_list, list_entry) { if (!is_software_counter(counter) && counter->state != PERF_COUNTER_STATE_OFF) { if (n >= max_count) return -1; ctrs[n] = counter; events[n++] = counter->hw.config; } } return n; } static void counter_sched_in(struct perf_counter *counter, int cpu) { counter->state = PERF_COUNTER_STATE_ACTIVE; counter->oncpu = cpu; counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped; if (is_software_counter(counter)) counter->pmu->enable(counter); } /* * Called to enable a whole group of counters. * Returns 1 if the group was enabled, or -EAGAIN if it could not be. * Assumes the caller has disabled interrupts and has * frozen the PMU with hw_perf_save_disable. */ int hw_perf_group_sched_in(struct perf_counter *group_leader, struct perf_cpu_context *cpuctx, struct perf_counter_context *ctx, int cpu) { struct cpu_hw_counters *cpuhw; long i, n, n0; struct perf_counter *sub; cpuhw = &__get_cpu_var(cpu_hw_counters); n0 = cpuhw->n_counters; n = collect_events(group_leader, ppmu->n_counter - n0, &cpuhw->counter[n0], &cpuhw->events[n0]); if (n < 0) return -EAGAIN; if (check_excludes(cpuhw->counter, n0, n)) return -EAGAIN; if (power_check_constraints(cpuhw->events, n + n0)) return -EAGAIN; cpuhw->n_counters = n0 + n; cpuhw->n_added += n; /* * OK, this group can go on; update counter states etc., * and enable any software counters */ for (i = n0; i < n0 + n; ++i) cpuhw->counter[i]->hw.config = cpuhw->events[i]; cpuctx->active_oncpu += n; n = 1; counter_sched_in(group_leader, cpu); list_for_each_entry(sub, &group_leader->sibling_list, list_entry) { if (sub->state != PERF_COUNTER_STATE_OFF) { counter_sched_in(sub, cpu); ++n; } } ctx->nr_active += n; return 1; } /* * Add a counter to the PMU. * If all counters are not already frozen, then we disable and * re-enable the PMU in order to get hw_perf_restore to do the * actual work of reconfiguring the PMU. */ static int power_pmu_enable(struct perf_counter *counter) { struct cpu_hw_counters *cpuhw; unsigned long flags; u64 pmudis; int n0; int ret = -EAGAIN; local_irq_save(flags); pmudis = hw_perf_save_disable(); /* * Add the counter to the list (if there is room) * and check whether the total set is still feasible. */ cpuhw = &__get_cpu_var(cpu_hw_counters); n0 = cpuhw->n_counters; if (n0 >= ppmu->n_counter) goto out; cpuhw->counter[n0] = counter; cpuhw->events[n0] = counter->hw.config; if (check_excludes(cpuhw->counter, n0, 1)) goto out; if (power_check_constraints(cpuhw->events, n0 + 1)) goto out; counter->hw.config = cpuhw->events[n0]; ++cpuhw->n_counters; ++cpuhw->n_added; ret = 0; out: hw_perf_restore(pmudis); local_irq_restore(flags); return ret; } /* * Remove a counter from the PMU. */ static void power_pmu_disable(struct perf_counter *counter) { struct cpu_hw_counters *cpuhw; long i; u64 pmudis; unsigned long flags; local_irq_save(flags); pmudis = hw_perf_save_disable(); power_pmu_read(counter); cpuhw = &__get_cpu_var(cpu_hw_counters); for (i = 0; i < cpuhw->n_counters; ++i) { if (counter == cpuhw->counter[i]) { while (++i < cpuhw->n_counters) cpuhw->counter[i-1] = cpuhw->counter[i]; --cpuhw->n_counters; ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr); write_pmc(counter->hw.idx, 0); counter->hw.idx = 0; perf_counter_update_userpage(counter); break; } } if (cpuhw->n_counters == 0) { /* disable exceptions if no counters are running */ cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); } hw_perf_restore(pmudis); local_irq_restore(flags); } struct pmu power_pmu = { .enable = power_pmu_enable, .disable = power_pmu_disable, .read = power_pmu_read, }; /* Number of perf_counters counting hardware events */ static atomic_t num_counters; /* Used to avoid races in calling reserve/release_pmc_hardware */ static DEFINE_MUTEX(pmc_reserve_mutex); /* * Release the PMU if this is the last perf_counter. */ static void hw_perf_counter_destroy(struct perf_counter *counter) { if (!atomic_add_unless(&num_counters, -1, 1)) { mutex_lock(&pmc_reserve_mutex); if (atomic_dec_return(&num_counters) == 0) release_pmc_hardware(); mutex_unlock(&pmc_reserve_mutex); } } const struct pmu *hw_perf_counter_init(struct perf_counter *counter) { unsigned long ev; struct perf_counter *ctrs[MAX_HWCOUNTERS]; unsigned int events[MAX_HWCOUNTERS]; int n; int err; if (!ppmu) return ERR_PTR(-ENXIO); if ((s64)counter->hw_event.irq_period < 0) return ERR_PTR(-EINVAL); if (!perf_event_raw(&counter->hw_event)) { ev = perf_event_id(&counter->hw_event); if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) return ERR_PTR(-EOPNOTSUPP); ev = ppmu->generic_events[ev]; } else { ev = perf_event_config(&counter->hw_event); } counter->hw.config_base = ev; counter->hw.idx = 0; /* * If we are not running on a hypervisor, force the * exclude_hv bit to 0 so that we don't care what * the user set it to. */ if (!firmware_has_feature(FW_FEATURE_LPAR)) counter->hw_event.exclude_hv = 0; /* * If this is in a group, check if it can go on with all the * other hardware counters in the group. We assume the counter * hasn't been linked into its leader's sibling list at this point. */ n = 0; if (counter->group_leader != counter) { n = collect_events(counter->group_leader, ppmu->n_counter - 1, ctrs, events); if (n < 0) return ERR_PTR(-EINVAL); } events[n] = ev; ctrs[n] = counter; if (check_excludes(ctrs, n, 1)) return ERR_PTR(-EINVAL); if (power_check_constraints(events, n + 1)) return ERR_PTR(-EINVAL); counter->hw.config = events[n]; atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period); /* * See if we need to reserve the PMU. * If no counters are currently in use, then we have to take a * mutex to ensure that we don't race with another task doing * reserve_pmc_hardware or release_pmc_hardware. */ err = 0; if (!atomic_inc_not_zero(&num_counters)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&num_counters) == 0 && reserve_pmc_hardware(perf_counter_interrupt)) err = -EBUSY; else atomic_inc(&num_counters); mutex_unlock(&pmc_reserve_mutex); } counter->destroy = hw_perf_counter_destroy; if (err) return ERR_PTR(err); return &power_pmu; } /* * A counter has overflowed; update its count and record * things if requested. Note that interrupts are hard-disabled * here so there is no possibility of being interrupted. */ static void record_and_restart(struct perf_counter *counter, long val, struct pt_regs *regs, int nmi) { s64 prev, delta, left; int record = 0; /* we don't have to worry about interrupts here */ prev = atomic64_read(&counter->hw.prev_count); delta = (val - prev) & 0xfffffffful; atomic64_add(delta, &counter->count); /* * See if the total period for this counter has expired, * and update for the next period. */ val = 0; left = atomic64_read(&counter->hw.period_left) - delta; if (counter->hw_event.irq_period) { if (left <= 0) { left += counter->hw_event.irq_period; if (left <= 0) left = counter->hw_event.irq_period; record = 1; } if (left < 0x80000000L) val = 0x80000000L - left; } write_pmc(counter->hw.idx, val); atomic64_set(&counter->hw.prev_count, val); atomic64_set(&counter->hw.period_left, left); perf_counter_update_userpage(counter); /* * Finally record data if requested. */ if (record) perf_counter_overflow(counter, nmi, regs, 0); } /* * Performance monitor interrupt stuff */ static void perf_counter_interrupt(struct pt_regs *regs) { int i; struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters); struct perf_counter *counter; long val; int found = 0; int nmi; /* * If interrupts were soft-disabled when this PMU interrupt * occurred, treat it as an NMI. */ nmi = !regs->softe; if (nmi) nmi_enter(); else irq_enter(); for (i = 0; i < cpuhw->n_counters; ++i) { counter = cpuhw->counter[i]; val = read_pmc(counter->hw.idx); if ((int)val < 0) { /* counter has overflowed */ found = 1; record_and_restart(counter, val, regs, nmi); } } /* * In case we didn't find and reset the counter that caused * the interrupt, scan all counters and reset any that are * negative, to avoid getting continual interrupts. * Any that we processed in the previous loop will not be negative. */ if (!found) { for (i = 0; i < ppmu->n_counter; ++i) { val = read_pmc(i + 1); if ((int)val < 0) write_pmc(i + 1, 0); } } /* * Reset MMCR0 to its normal value. This will set PMXE and * clear FC (freeze counters) and PMAO (perf mon alert occurred) * and thus allow interrupts to occur again. * XXX might want to use MSR.PM to keep the counters frozen until * we get back out of this interrupt. */ mtspr(SPRN_MMCR0, cpuhw->mmcr[0]); if (nmi) nmi_exit(); else irq_exit(); } void hw_perf_counter_setup(int cpu) { struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu); memset(cpuhw, 0, sizeof(*cpuhw)); cpuhw->mmcr[0] = MMCR0_FC; } extern struct power_pmu power4_pmu; extern struct power_pmu ppc970_pmu; extern struct power_pmu power5_pmu; extern struct power_pmu power5p_pmu; extern struct power_pmu power6_pmu; static int init_perf_counters(void) { unsigned long pvr; /* XXX should get this from cputable */ pvr = mfspr(SPRN_PVR); switch (PVR_VER(pvr)) { case PV_POWER4: case PV_POWER4p: ppmu = &power4_pmu; break; case PV_970: case PV_970FX: case PV_970MP: ppmu = &ppc970_pmu; break; case PV_POWER5: ppmu = &power5_pmu; break; case PV_POWER5p: ppmu = &power5p_pmu; break; case 0x3e: ppmu = &power6_pmu; break; } /* * Use FCHV to ignore kernel events if MSR.HV is set. */ if (mfmsr() & MSR_HV) freeze_counters_kernel = MMCR0_FCHV; return 0; } arch_initcall(init_perf_counters);