/* * Performance counter x86 architecture code * * Copyright(C) 2008 Thomas Gleixner * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar * * For licencing details see kernel-base/COPYING */ #include #include #include #include #include #include #include #include #include #include static bool perf_counters_initialized __read_mostly; /* * Number of (generic) HW counters: */ static int nr_hw_counters __read_mostly; static u32 perf_counter_mask __read_mostly; /* No support for fixed function counters yet */ #define MAX_HW_COUNTERS 8 struct cpu_hw_counters { struct perf_counter *counters[MAX_HW_COUNTERS]; unsigned long used[BITS_TO_LONGS(MAX_HW_COUNTERS)]; }; /* * Intel PerfMon v3. Used on Core2 and later. */ static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); static const int intel_perfmon_event_map[] = { [PERF_COUNT_CYCLES] = 0x003c, [PERF_COUNT_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_CACHE_MISSES] = 0x412e, [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_BRANCH_MISSES] = 0x00c5, }; static const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map); /* * Propagate counter elapsed time into the generic counter. * Can only be executed on the CPU where the counter is active. * Returns the delta events processed. */ static void x86_perf_counter_update(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { u64 prev_raw_count, new_raw_count, delta; WARN_ON_ONCE(counter->state != PERF_COUNTER_STATE_ACTIVE); /* * Careful: an NMI might modify the previous counter value. * * Our tactic to handle this is to first atomically read and * exchange a new raw count - then add that new-prev delta * count to the generic counter atomically: */ again: prev_raw_count = atomic64_read(&hwc->prev_count); rdmsrl(hwc->counter_base + idx, new_raw_count); if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (counter-)time and add that to the generic counter. * * Careful, not all hw sign-extends above the physical width * of the count, so we do that by clipping the delta to 32 bits: */ delta = (u64)(u32)((s32)new_raw_count - (s32)prev_raw_count); WARN_ON_ONCE((int)delta < 0); atomic64_add(delta, &counter->count); atomic64_sub(delta, &hwc->period_left); } /* * Setup the hardware configuration for a given hw_event_type */ static int __hw_perf_counter_init(struct perf_counter *counter) { struct perf_counter_hw_event *hw_event = &counter->hw_event; struct hw_perf_counter *hwc = &counter->hw; if (unlikely(!perf_counters_initialized)) return -EINVAL; /* * Count user events, and generate PMC IRQs: * (keep 'enabled' bit clear for now) */ hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT; /* * If privileged enough, count OS events too, and allow * NMI events as well: */ hwc->nmi = 0; if (capable(CAP_SYS_ADMIN)) { hwc->config |= ARCH_PERFMON_EVENTSEL_OS; if (hw_event->nmi) hwc->nmi = 1; } hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0; hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0; hwc->irq_period = hw_event->irq_period; /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic counter period: */ if ((s64)hwc->irq_period <= 0 || hwc->irq_period > 0x7FFFFFFF) hwc->irq_period = 0x7FFFFFFF; atomic64_set(&hwc->period_left, hwc->irq_period); /* * Raw event type provide the config in the event structure */ if (hw_event->raw) { hwc->config |= hw_event->type; } else { if (hw_event->type >= max_intel_perfmon_events) return -EINVAL; /* * The generic map: */ hwc->config |= intel_perfmon_event_map[hw_event->type]; } counter->wakeup_pending = 0; return 0; } void hw_perf_enable_all(void) { if (unlikely(!perf_counters_initialized)) return; wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0); } u64 hw_perf_save_disable(void) { u64 ctrl; if (unlikely(!perf_counters_initialized)) return 0; rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0); return ctrl; } EXPORT_SYMBOL_GPL(hw_perf_save_disable); void hw_perf_restore(u64 ctrl) { if (unlikely(!perf_counters_initialized)) return; wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0); } EXPORT_SYMBOL_GPL(hw_perf_restore); static inline void __x86_perf_counter_disable(struct perf_counter *counter, struct hw_perf_counter *hwc, unsigned int idx) { int err; err = wrmsr_safe(hwc->config_base + idx, hwc->config, 0); WARN_ON_ONCE(err); } static DEFINE_PER_CPU(u64, prev_left[MAX_HW_COUNTERS]); /* * Set the next IRQ period, based on the hwc->period_left value. * To be called with the counter disabled in hw: */ static void __hw_perf_counter_set_period(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { s32 left = atomic64_read(&hwc->period_left); s32 period = hwc->irq_period; WARN_ON_ONCE(period <= 0); /* * If we are way outside a reasoable range then just skip forward: */ if (unlikely(left <= -period)) { left = period; atomic64_set(&hwc->period_left, left); } if (unlikely(left <= 0)) { left += period; atomic64_set(&hwc->period_left, left); } WARN_ON_ONCE(left <= 0); per_cpu(prev_left[idx], smp_processor_id()) = left; /* * The hw counter starts counting from this counter offset, * mark it to be able to extra future deltas: */ atomic64_set(&hwc->prev_count, (u64)(s64)-left); wrmsr(hwc->counter_base + idx, -left, 0); } static void __x86_perf_counter_enable(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { wrmsr(hwc->config_base + idx, hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0); } /* * Find a PMC slot for the freshly enabled / scheduled in counter: */ static void x86_perf_counter_enable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; /* Try to get the previous counter again */ if (test_and_set_bit(idx, cpuc->used)) { idx = find_first_zero_bit(cpuc->used, nr_hw_counters); set_bit(idx, cpuc->used); hwc->idx = idx; } perf_counters_lapic_init(hwc->nmi); __x86_perf_counter_disable(counter, hwc, idx); cpuc->counters[idx] = counter; __hw_perf_counter_set_period(counter, hwc, idx); __x86_perf_counter_enable(counter, hwc, idx); } void perf_counter_print_debug(void) { u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left; int cpu, idx; if (!nr_hw_counters) return; local_irq_disable(); cpu = smp_processor_id(); rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); printk(KERN_INFO "\n"); printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl); printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status); printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow); for (idx = 0; idx < nr_hw_counters; idx++) { rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl); rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count); prev_left = per_cpu(prev_left[idx], cpu); printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n", cpu, idx, pmc_ctrl); printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n", cpu, idx, pmc_count); printk(KERN_INFO "CPU#%d: PMC%d left: %016llx\n", cpu, idx, prev_left); } local_irq_enable(); } static void x86_perf_counter_disable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; unsigned int idx = hwc->idx; __x86_perf_counter_disable(counter, hwc, idx); clear_bit(idx, cpuc->used); cpuc->counters[idx] = NULL; /* * Drain the remaining delta count out of a counter * that we are disabling: */ x86_perf_counter_update(counter, hwc, idx); } static void perf_store_irq_data(struct perf_counter *counter, u64 data) { struct perf_data *irqdata = counter->irqdata; if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { irqdata->overrun++; } else { u64 *p = (u64 *) &irqdata->data[irqdata->len]; *p = data; irqdata->len += sizeof(u64); } } /* * Save and restart an expired counter. Called by NMI contexts, * so it has to be careful about preempting normal counter ops: */ static void perf_save_and_restart(struct perf_counter *counter) { struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; u64 pmc_ctrl; rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl); x86_perf_counter_update(counter, hwc, idx); __hw_perf_counter_set_period(counter, hwc, idx); if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE) __x86_perf_counter_enable(counter, hwc, idx); } static void perf_handle_group(struct perf_counter *sibling, u64 *status, u64 *overflown) { struct perf_counter *counter, *group_leader = sibling->group_leader; /* * Store sibling timestamps (if any): */ list_for_each_entry(counter, &group_leader->sibling_list, list_entry) { x86_perf_counter_update(counter, &counter->hw, counter->hw.idx); perf_store_irq_data(sibling, counter->hw_event.type); perf_store_irq_data(sibling, atomic64_read(&counter->count)); } } /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi) { int bit, cpu = smp_processor_id(); u64 ack, status, saved_global; struct cpu_hw_counters *cpuc; rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global); /* Disable counters globally */ wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0); ack_APIC_irq(); cpuc = &per_cpu(cpu_hw_counters, cpu); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); if (!status) goto out; again: ack = status; for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) { struct perf_counter *counter = cpuc->counters[bit]; clear_bit(bit, (unsigned long *) &status); if (!counter) continue; perf_save_and_restart(counter); switch (counter->hw_event.record_type) { case PERF_RECORD_SIMPLE: continue; case PERF_RECORD_IRQ: perf_store_irq_data(counter, instruction_pointer(regs)); break; case PERF_RECORD_GROUP: perf_handle_group(counter, &status, &ack); break; } /* * From NMI context we cannot call into the scheduler to * do a task wakeup - but we mark these counters as * wakeup_pending and initate a wakeup callback: */ if (nmi) { counter->wakeup_pending = 1; set_tsk_thread_flag(current, TIF_PERF_COUNTERS); } else { wake_up(&counter->waitq); } } wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0); /* * Repeat if there is more work to be done: */ rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); if (status) goto again; out: /* * Restore - do not reenable when global enable is off: */ wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0); } void smp_perf_counter_interrupt(struct pt_regs *regs) { irq_enter(); inc_irq_stat(apic_perf_irqs); apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); __smp_perf_counter_interrupt(regs, 0); irq_exit(); } /* * This handler is triggered by NMI contexts: */ void perf_counter_notify(struct pt_regs *regs) { struct cpu_hw_counters *cpuc; unsigned long flags; int bit, cpu; local_irq_save(flags); cpu = smp_processor_id(); cpuc = &per_cpu(cpu_hw_counters, cpu); for_each_bit(bit, cpuc->used, nr_hw_counters) { struct perf_counter *counter = cpuc->counters[bit]; if (!counter) continue; if (counter->wakeup_pending) { counter->wakeup_pending = 0; wake_up(&counter->waitq); } } local_irq_restore(flags); } void __cpuinit perf_counters_lapic_init(int nmi) { u32 apic_val; if (!perf_counters_initialized) return; /* * Enable the performance counter vector in the APIC LVT: */ apic_val = apic_read(APIC_LVTERR); apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED); if (nmi) apic_write(APIC_LVTPC, APIC_DM_NMI); else apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); apic_write(APIC_LVTERR, apic_val); } static int __kprobes perf_counter_nmi_handler(struct notifier_block *self, unsigned long cmd, void *__args) { struct die_args *args = __args; struct pt_regs *regs; if (likely(cmd != DIE_NMI_IPI)) return NOTIFY_DONE; regs = args->regs; apic_write(APIC_LVTPC, APIC_DM_NMI); __smp_perf_counter_interrupt(regs, 1); return NOTIFY_STOP; } static __read_mostly struct notifier_block perf_counter_nmi_notifier = { .notifier_call = perf_counter_nmi_handler }; void __init init_hw_perf_counters(void) { union cpuid10_eax eax; unsigned int unused; unsigned int ebx; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) return; /* * Check whether the Architectural PerfMon supports * Branch Misses Retired Event or not. */ cpuid(10, &(eax.full), &ebx, &unused, &unused); if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) return; printk(KERN_INFO "Intel Performance Monitoring support detected.\n"); printk(KERN_INFO "... version: %d\n", eax.split.version_id); printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters); nr_hw_counters = eax.split.num_counters; if (nr_hw_counters > MAX_HW_COUNTERS) { nr_hw_counters = MAX_HW_COUNTERS; WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!", nr_hw_counters, MAX_HW_COUNTERS); } perf_counter_mask = (1 << nr_hw_counters) - 1; perf_max_counters = nr_hw_counters; printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width); printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length); perf_counters_initialized = true; perf_counters_lapic_init(0); register_die_notifier(&perf_counter_nmi_notifier); } static void x86_perf_counter_read(struct perf_counter *counter) { x86_perf_counter_update(counter, &counter->hw, counter->hw.idx); } static const struct hw_perf_counter_ops x86_perf_counter_ops = { .hw_perf_counter_enable = x86_perf_counter_enable, .hw_perf_counter_disable = x86_perf_counter_disable, .hw_perf_counter_read = x86_perf_counter_read, }; const struct hw_perf_counter_ops * hw_perf_counter_init(struct perf_counter *counter) { int err; err = __hw_perf_counter_init(counter); if (err) return NULL; return &x86_perf_counter_ops; }