/* * Architecture-specific setup. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang * 04/11/17 Ashok Raj Added CPU Hotplug Support * * 2005-10-07 Keith Owens * Add notify_die() hooks. */ #define __KERNEL_SYSCALLS__ /* see */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" #ifdef CONFIG_PERFMON # include #endif #include "sigframe.h" void (*ia64_mark_idle)(int); static DEFINE_PER_CPU(unsigned int, cpu_idle_state); unsigned long boot_option_idle_override = 0; EXPORT_SYMBOL(boot_option_idle_override); void ia64_do_show_stack (struct unw_frame_info *info, void *arg) { unsigned long ip, sp, bsp; char buf[128]; /* don't make it so big that it overflows the stack! */ printk("\nCall Trace:\n"); do { unw_get_ip(info, &ip); if (ip == 0) break; unw_get_sp(info, &sp); unw_get_bsp(info, &bsp); snprintf(buf, sizeof(buf), " [<%016lx>] %%s\n" " sp=%016lx bsp=%016lx\n", ip, sp, bsp); print_symbol(buf, ip); } while (unw_unwind(info) >= 0); } void show_stack (struct task_struct *task, unsigned long *sp) { if (!task) unw_init_running(ia64_do_show_stack, NULL); else { struct unw_frame_info info; unw_init_from_blocked_task(&info, task); ia64_do_show_stack(&info, NULL); } } void dump_stack (void) { show_stack(NULL, NULL); } EXPORT_SYMBOL(dump_stack); void show_regs (struct pt_regs *regs) { unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; print_modules(); printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); print_symbol("ip is at %s\n", ip); printk("unat: %016lx pfs : %016lx rsc : %016lx\n", regs->ar_unat, regs->ar_pfs, regs->ar_rsc); printk("rnat: %016lx bsps: %016lx pr : %016lx\n", regs->ar_rnat, regs->ar_bspstore, regs->pr); printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", regs->loadrs, regs->ar_ccv, regs->ar_fpsr); printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", regs->f6.u.bits[1], regs->f6.u.bits[0], regs->f7.u.bits[1], regs->f7.u.bits[0]); printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", regs->f8.u.bits[1], regs->f8.u.bits[0], regs->f9.u.bits[1], regs->f9.u.bits[0]); printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", regs->f10.u.bits[1], regs->f10.u.bits[0], regs->f11.u.bits[1], regs->f11.u.bits[0]); printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); if (user_mode(regs)) { /* print the stacked registers */ unsigned long val, *bsp, ndirty; int i, sof, is_nat = 0; sof = regs->cr_ifs & 0x7f; /* size of frame */ ndirty = (regs->loadrs >> 19); bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); for (i = 0; i < sof; ++i) { get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); } } else show_stack(NULL, NULL); } void do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall) { if (fsys_mode(current, &scr->pt)) { /* defer signal-handling etc. until we return to privilege-level 0. */ if (!ia64_psr(&scr->pt)->lp) ia64_psr(&scr->pt)->lp = 1; return; } #ifdef CONFIG_PERFMON if (current->thread.pfm_needs_checking) pfm_handle_work(); #endif /* deal with pending signal delivery */ if (test_thread_flag(TIF_SIGPENDING)) ia64_do_signal(oldset, scr, in_syscall); } static int pal_halt = 1; static int can_do_pal_halt = 1; static int __init nohalt_setup(char * str) { pal_halt = can_do_pal_halt = 0; return 1; } __setup("nohalt", nohalt_setup); void update_pal_halt_status(int status) { can_do_pal_halt = pal_halt && status; } /* * We use this if we don't have any better idle routine.. */ void default_idle (void) { local_irq_enable(); while (!need_resched()) if (can_do_pal_halt) safe_halt(); else cpu_relax(); } #ifdef CONFIG_HOTPLUG_CPU /* We don't actually take CPU down, just spin without interrupts. */ static inline void play_dead(void) { extern void ia64_cpu_local_tick (void); unsigned int this_cpu = smp_processor_id(); /* Ack it */ __get_cpu_var(cpu_state) = CPU_DEAD; max_xtp(); local_irq_disable(); idle_task_exit(); ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); /* * The above is a point of no-return, the processor is * expected to be in SAL loop now. */ BUG(); } #else static inline void play_dead(void) { BUG(); } #endif /* CONFIG_HOTPLUG_CPU */ void cpu_idle_wait(void) { unsigned int cpu, this_cpu = get_cpu(); cpumask_t map; set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); put_cpu(); cpus_clear(map); for_each_online_cpu(cpu) { per_cpu(cpu_idle_state, cpu) = 1; cpu_set(cpu, map); } __get_cpu_var(cpu_idle_state) = 0; wmb(); do { ssleep(1); for_each_online_cpu(cpu) { if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) cpu_clear(cpu, map); } cpus_and(map, map, cpu_online_map); } while (!cpus_empty(map)); } EXPORT_SYMBOL_GPL(cpu_idle_wait); void __attribute__((noreturn)) cpu_idle (void) { void (*mark_idle)(int) = ia64_mark_idle; /* endless idle loop with no priority at all */ while (1) { #ifdef CONFIG_SMP if (!need_resched()) min_xtp(); #endif while (!need_resched()) { void (*idle)(void); if (__get_cpu_var(cpu_idle_state)) __get_cpu_var(cpu_idle_state) = 0; rmb(); if (mark_idle) (*mark_idle)(1); idle = pm_idle; if (!idle) idle = default_idle; (*idle)(); } if (mark_idle) (*mark_idle)(0); #ifdef CONFIG_SMP normal_xtp(); #endif schedule(); check_pgt_cache(); if (cpu_is_offline(smp_processor_id())) play_dead(); } } void ia64_save_extra (struct task_struct *task) { #ifdef CONFIG_PERFMON unsigned long info; #endif if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_save_debug_regs(&task->thread.dbr[0]); #ifdef CONFIG_PERFMON if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) pfm_save_regs(task); info = __get_cpu_var(pfm_syst_info); if (info & PFM_CPUINFO_SYST_WIDE) pfm_syst_wide_update_task(task, info, 0); #endif #ifdef CONFIG_IA32_SUPPORT if (IS_IA32_PROCESS(ia64_task_regs(task))) ia32_save_state(task); #endif } void ia64_load_extra (struct task_struct *task) { #ifdef CONFIG_PERFMON unsigned long info; #endif if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_load_debug_regs(&task->thread.dbr[0]); #ifdef CONFIG_PERFMON if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) pfm_load_regs(task); info = __get_cpu_var(pfm_syst_info); if (info & PFM_CPUINFO_SYST_WIDE) pfm_syst_wide_update_task(task, info, 1); #endif #ifdef CONFIG_IA32_SUPPORT if (IS_IA32_PROCESS(ia64_task_regs(task))) ia32_load_state(task); #endif } /* * Copy the state of an ia-64 thread. * * We get here through the following call chain: * * from user-level: from kernel: * * * sys_clone : * do_fork do_fork * copy_thread copy_thread * * This means that the stack layout is as follows: * * +---------------------+ (highest addr) * | struct pt_regs | * +---------------------+ * | struct switch_stack | * +---------------------+ * | | * | memory stack | * | | <-- sp (lowest addr) * +---------------------+ * * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since * the stack is page aligned and the page size is at least 4KB, this is always the case, * so there is nothing to worry about. */ int copy_thread (int nr, unsigned long clone_flags, unsigned long user_stack_base, unsigned long user_stack_size, struct task_struct *p, struct pt_regs *regs) { extern char ia64_ret_from_clone, ia32_ret_from_clone; struct switch_stack *child_stack, *stack; unsigned long rbs, child_rbs, rbs_size; struct pt_regs *child_ptregs; int retval = 0; #ifdef CONFIG_SMP /* * For SMP idle threads, fork_by_hand() calls do_fork with * NULL regs. */ if (!regs) return 0; #endif stack = ((struct switch_stack *) regs) - 1; child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; child_stack = (struct switch_stack *) child_ptregs - 1; /* copy parent's switch_stack & pt_regs to child: */ memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); rbs = (unsigned long) current + IA64_RBS_OFFSET; child_rbs = (unsigned long) p + IA64_RBS_OFFSET; rbs_size = stack->ar_bspstore - rbs; /* copy the parent's register backing store to the child: */ memcpy((void *) child_rbs, (void *) rbs, rbs_size); if (likely(user_mode(child_ptregs))) { if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ if (user_stack_base) { child_ptregs->r12 = user_stack_base + user_stack_size - 16; child_ptregs->ar_bspstore = user_stack_base; child_ptregs->ar_rnat = 0; child_ptregs->loadrs = 0; } } else { /* * Note: we simply preserve the relative position of * the stack pointer here. There is no need to * allocate a scratch area here, since that will have * been taken care of by the caller of sys_clone() * already. */ child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ } child_stack->ar_bspstore = child_rbs + rbs_size; if (IS_IA32_PROCESS(regs)) child_stack->b0 = (unsigned long) &ia32_ret_from_clone; else child_stack->b0 = (unsigned long) &ia64_ret_from_clone; /* copy parts of thread_struct: */ p->thread.ksp = (unsigned long) child_stack - 16; /* stop some PSR bits from being inherited. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() * therefore we must specify them explicitly here and not include them in * IA64_PSR_BITS_TO_CLEAR. */ child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); /* * NOTE: The calling convention considers all floating point * registers in the high partition (fph) to be scratch. Since * the only way to get to this point is through a system call, * we know that the values in fph are all dead. Hence, there * is no need to inherit the fph state from the parent to the * child and all we have to do is to make sure that * IA64_THREAD_FPH_VALID is cleared in the child. * * XXX We could push this optimization a bit further by * clearing IA64_THREAD_FPH_VALID on ANY system call. * However, it's not clear this is worth doing. Also, it * would be a slight deviation from the normal Linux system * call behavior where scratch registers are preserved across * system calls (unless used by the system call itself). */ # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ | IA64_THREAD_PM_VALID) # define THREAD_FLAGS_TO_SET 0 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) | THREAD_FLAGS_TO_SET); ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ #ifdef CONFIG_IA32_SUPPORT /* * If we're cloning an IA32 task then save the IA32 extra * state from the current task to the new task */ if (IS_IA32_PROCESS(ia64_task_regs(current))) { ia32_save_state(p); if (clone_flags & CLONE_SETTLS) retval = ia32_clone_tls(p, child_ptregs); /* Copy partially mapped page list */ if (!retval) retval = ia32_copy_partial_page_list(p, clone_flags); } #endif #ifdef CONFIG_PERFMON if (current->thread.pfm_context) pfm_inherit(p, child_ptregs); #endif return retval; } static void do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) { unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm; elf_greg_t *dst = arg; struct pt_regs *pt; char nat; int i; memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ if (unw_unwind_to_user(info) < 0) return; unw_get_sp(info, &sp); pt = (struct pt_regs *) (sp + 16); urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) return; ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), &ar_rnat); /* * coredump format: * r0-r31 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) * predicate registers (p0-p63) * b0-b7 * ip cfm user-mask * ar.rsc ar.bsp ar.bspstore ar.rnat * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec */ /* r0 is zero */ for (i = 1, mask = (1UL << i); i < 32; ++i) { unw_get_gr(info, i, &dst[i], &nat); if (nat) nat_bits |= mask; mask <<= 1; } dst[32] = nat_bits; unw_get_pr(info, &dst[33]); for (i = 0; i < 8; ++i) unw_get_br(info, i, &dst[34 + i]); unw_get_rp(info, &ip); dst[42] = ip + ia64_psr(pt)->ri; dst[43] = cfm; dst[44] = pt->cr_ipsr & IA64_PSR_UM; unw_get_ar(info, UNW_AR_RSC, &dst[45]); /* * For bsp and bspstore, unw_get_ar() would return the kernel * addresses, but we need the user-level addresses instead: */ dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ dst[47] = pt->ar_bspstore; dst[48] = ar_rnat; unw_get_ar(info, UNW_AR_CCV, &dst[49]); unw_get_ar(info, UNW_AR_UNAT, &dst[50]); unw_get_ar(info, UNW_AR_FPSR, &dst[51]); dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ unw_get_ar(info, UNW_AR_LC, &dst[53]); unw_get_ar(info, UNW_AR_EC, &dst[54]); unw_get_ar(info, UNW_AR_CSD, &dst[55]); unw_get_ar(info, UNW_AR_SSD, &dst[56]); } void do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) { elf_fpreg_t *dst = arg; int i; memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ if (unw_unwind_to_user(info) < 0) return; /* f0 is 0.0, f1 is 1.0 */ for (i = 2; i < 32; ++i) unw_get_fr(info, i, dst + i); ia64_flush_fph(task); if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) memcpy(dst + 32, task->thread.fph, 96*16); } void do_copy_regs (struct unw_frame_info *info, void *arg) { do_copy_task_regs(current, info, arg); } void do_dump_fpu (struct unw_frame_info *info, void *arg) { do_dump_task_fpu(current, info, arg); } int dump_task_regs(struct task_struct *task, elf_gregset_t *regs) { struct unw_frame_info tcore_info; if (current == task) { unw_init_running(do_copy_regs, regs); } else { memset(&tcore_info, 0, sizeof(tcore_info)); unw_init_from_blocked_task(&tcore_info, task); do_copy_task_regs(task, &tcore_info, regs); } return 1; } void ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) { unw_init_running(do_copy_regs, dst); } int dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst) { struct unw_frame_info tcore_info; if (current == task) { unw_init_running(do_dump_fpu, dst); } else { memset(&tcore_info, 0, sizeof(tcore_info)); unw_init_from_blocked_task(&tcore_info, task); do_dump_task_fpu(task, &tcore_info, dst); } return 1; } int dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) { unw_init_running(do_dump_fpu, dst); return 1; /* f0-f31 are always valid so we always return 1 */ } long sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, struct pt_regs *regs) { char *fname; int error; fname = getname(filename); error = PTR_ERR(fname); if (IS_ERR(fname)) goto out; error = do_execve(fname, argv, envp, regs); putname(fname); out: return error; } pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) { extern void start_kernel_thread (void); unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; struct { struct switch_stack sw; struct pt_regs pt; } regs; memset(®s, 0, sizeof(regs)); regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ regs.pt.r1 = helper_fptr[1]; /* set GP */ regs.pt.r9 = (unsigned long) fn; /* 1st argument */ regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; regs.sw.pr = (1 << PRED_KERNEL_STACK); return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); } EXPORT_SYMBOL(kernel_thread); /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ int kernel_thread_helper (int (*fn)(void *), void *arg) { #ifdef CONFIG_IA32_SUPPORT if (IS_IA32_PROCESS(ia64_task_regs(current))) { /* A kernel thread is always a 64-bit process. */ current->thread.map_base = DEFAULT_MAP_BASE; current->thread.task_size = DEFAULT_TASK_SIZE; ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); } #endif return (*fn)(arg); } /* * Flush thread state. This is called when a thread does an execve(). */ void flush_thread (void) { /* * Remove function-return probe instances associated with this task * and put them back on the free list. Do not insert an exit probe for * this function, it will be disabled by kprobe_flush_task if you do. */ kprobe_flush_task(current); /* drop floating-point and debug-register state if it exists: */ current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); ia64_drop_fpu(current); if (IS_IA32_PROCESS(ia64_task_regs(current))) ia32_drop_partial_page_list(current); } /* * Clean up state associated with current thread. This is called when * the thread calls exit(). */ void exit_thread (void) { /* * Remove function-return probe instances associated with this task * and put them back on the free list. Do not insert an exit probe for * this function, it will be disabled by kprobe_flush_task if you do. */ kprobe_flush_task(current); ia64_drop_fpu(current); #ifdef CONFIG_PERFMON /* if needed, stop monitoring and flush state to perfmon context */ if (current->thread.pfm_context) pfm_exit_thread(current); /* free debug register resources */ if (current->thread.flags & IA64_THREAD_DBG_VALID) pfm_release_debug_registers(current); #endif if (IS_IA32_PROCESS(ia64_task_regs(current))) ia32_drop_partial_page_list(current); } unsigned long get_wchan (struct task_struct *p) { struct unw_frame_info info; unsigned long ip; int count = 0; /* * Note: p may not be a blocked task (it could be current or * another process running on some other CPU. Rather than * trying to determine if p is really blocked, we just assume * it's blocked and rely on the unwind routines to fail * gracefully if the process wasn't really blocked after all. * --davidm 99/12/15 */ unw_init_from_blocked_task(&info, p); do { if (unw_unwind(&info) < 0) return 0; unw_get_ip(&info, &ip); if (!in_sched_functions(ip)) return ip; } while (count++ < 16); return 0; } void cpu_halt (void) { pal_power_mgmt_info_u_t power_info[8]; unsigned long min_power; int i, min_power_state; if (ia64_pal_halt_info(power_info) != 0) return; min_power_state = 0; min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; for (i = 1; i < 8; ++i) if (power_info[i].pal_power_mgmt_info_s.im && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; min_power_state = i; } while (1) ia64_pal_halt(min_power_state); } void machine_restart (char *restart_cmd) { (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); } void machine_halt (void) { (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); cpu_halt(); } void machine_power_off (void) { if (pm_power_off) pm_power_off(); machine_halt(); }