/* bnx2x_sriov.h: Broadcom Everest network driver. * * Copyright 2009-2012 Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2, available * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a * license other than the GPL, without Broadcom's express prior written * consent. * * Maintained by: Eilon Greenstein * Written by: Shmulik Ravid * Ariel Elior */ #ifndef BNX2X_SRIOV_H #define BNX2X_SRIOV_H #include "bnx2x_vfpf.h" #include "bnx2x_cmn.h" /* The bnx2x device structure holds vfdb structure described below. * The VF array is indexed by the relative vfid. */ #define BNX2X_VF_MAX_QUEUES 16 #define BNX2X_VF_MAX_TPA_AGG_QUEUES 8 struct bnx2x_sriov { u32 first_vf_in_pf; /* standard SRIOV capability fields, mostly for debugging */ int pos; /* capability position */ int nres; /* number of resources */ u32 cap; /* SR-IOV Capabilities */ u16 ctrl; /* SR-IOV Control */ u16 total; /* total VFs associated with the PF */ u16 initial; /* initial VFs associated with the PF */ u16 nr_virtfn; /* number of VFs available */ u16 offset; /* first VF Routing ID offset */ u16 stride; /* following VF stride */ u32 pgsz; /* page size for BAR alignment */ u8 link; /* Function Dependency Link */ }; /* bars */ struct bnx2x_vf_bar { u64 bar; u32 size; }; /* vf queue (used both for rx or tx) */ struct bnx2x_vf_queue { struct eth_context *cxt; /* MACs object */ struct bnx2x_vlan_mac_obj mac_obj; /* VLANs object */ struct bnx2x_vlan_mac_obj vlan_obj; atomic_t vlan_count; /* 0 means vlan-0 is set ~ untagged */ /* Queue Slow-path State object */ struct bnx2x_queue_sp_obj sp_obj; u32 cid; u16 index; u16 sb_idx; }; /* struct bnx2x_vfop_qctor_params - prepare queue construction parameters: * q-init, q-setup and SB index */ struct bnx2x_vfop_qctor_params { struct bnx2x_queue_state_params qstate; struct bnx2x_queue_setup_params prep_qsetup; }; /* VFOP parameters (one copy per VF) */ union bnx2x_vfop_params { struct bnx2x_vlan_mac_ramrod_params vlan_mac; struct bnx2x_rx_mode_ramrod_params rx_mode; struct bnx2x_mcast_ramrod_params mcast; struct bnx2x_config_rss_params rss; struct bnx2x_vfop_qctor_params qctor; }; /* forward */ struct bnx2x_virtf; /* VFOP definitions */ typedef void (*vfop_handler_t)(struct bnx2x *bp, struct bnx2x_virtf *vf); struct bnx2x_vfop_cmd { vfop_handler_t done; bool block; }; /* VFOP queue filters command additional arguments */ struct bnx2x_vfop_filter { struct list_head link; int type; #define BNX2X_VFOP_FILTER_MAC 1 #define BNX2X_VFOP_FILTER_VLAN 2 bool add; u8 *mac; u16 vid; }; struct bnx2x_vfop_filters { int add_cnt; struct list_head head; struct bnx2x_vfop_filter filters[]; }; /* transient list allocated, built and saved until its * passed to the SP-VERBs layer. */ struct bnx2x_vfop_args_mcast { int mc_num; struct bnx2x_mcast_list_elem *mc; }; struct bnx2x_vfop_args_qctor { int qid; u16 sb_idx; }; struct bnx2x_vfop_args_qdtor { int qid; struct eth_context *cxt; }; struct bnx2x_vfop_args_defvlan { int qid; bool enable; u16 vid; u8 prio; }; struct bnx2x_vfop_args_qx { int qid; bool en_add; }; struct bnx2x_vfop_args_filters { struct bnx2x_vfop_filters *multi_filter; atomic_t *credit; /* non NULL means 'don't consume credit' */ }; union bnx2x_vfop_args { struct bnx2x_vfop_args_mcast mc_list; struct bnx2x_vfop_args_qctor qctor; struct bnx2x_vfop_args_qdtor qdtor; struct bnx2x_vfop_args_defvlan defvlan; struct bnx2x_vfop_args_qx qx; struct bnx2x_vfop_args_filters filters; }; struct bnx2x_vfop { struct list_head link; int rc; /* return code */ int state; /* next state */ union bnx2x_vfop_args args; /* extra arguments */ union bnx2x_vfop_params *op_p; /* ramrod params */ /* state machine callbacks */ vfop_handler_t transition; vfop_handler_t done; }; /* vf context */ struct bnx2x_virtf { u16 cfg_flags; #define VF_CFG_STATS 0x0001 #define VF_CFG_FW_FC 0x0002 #define VF_CFG_TPA 0x0004 #define VF_CFG_INT_SIMD 0x0008 #define VF_CACHE_LINE 0x0010 u8 state; #define VF_FREE 0 /* VF ready to be acquired holds no resc */ #define VF_ACQUIRED 1 /* VF aquired, but not initalized */ #define VF_ENABLED 2 /* VF Enabled */ #define VF_RESET 3 /* VF FLR'd, pending cleanup */ /* non 0 during flr cleanup */ u8 flr_clnup_stage; #define VF_FLR_CLN 1 /* reclaim resources and do 'final cleanup' * sans the end-wait */ #define VF_FLR_ACK 2 /* ACK flr notification */ #define VF_FLR_EPILOG 3 /* wait for VF remnants to dissipate in the HW * ~ final cleanup' end wait */ /* dma */ dma_addr_t fw_stat_map; /* valid iff VF_CFG_STATS */ dma_addr_t spq_map; dma_addr_t bulletin_map; /* Allocated resources counters. Before the VF is acquired, the * counters hold the following values: * * - xxq_count = 0 as the queues memory is not allocated yet. * * - sb_count = The number of status blocks configured for this VF in * the IGU CAM. Initially read during probe. * * - xx_rules_count = The number of rules statically and equally * allocated for each VF, during PF load. */ struct vf_pf_resc_request alloc_resc; #define vf_rxq_count(vf) ((vf)->alloc_resc.num_rxqs) #define vf_txq_count(vf) ((vf)->alloc_resc.num_txqs) #define vf_sb_count(vf) ((vf)->alloc_resc.num_sbs) #define vf_mac_rules_cnt(vf) ((vf)->alloc_resc.num_mac_filters) #define vf_vlan_rules_cnt(vf) ((vf)->alloc_resc.num_vlan_filters) #define vf_mc_rules_cnt(vf) ((vf)->alloc_resc.num_mc_filters) u8 sb_count; /* actual number of SBs */ u8 igu_base_id; /* base igu status block id */ struct bnx2x_vf_queue *vfqs; #define bnx2x_vfq(vf, nr, var) ((vf)->vfqs[(nr)].var) u8 index; /* index in the vf array */ u8 abs_vfid; u8 sp_cl_id; u32 error; /* 0 means all's-well */ /* BDF */ unsigned int bus; unsigned int devfn; /* bars */ struct bnx2x_vf_bar bars[PCI_SRIOV_NUM_BARS]; /* set-mac ramrod state 1-pending, 0-done */ unsigned long filter_state; /* leading rss client id ~~ the client id of the first rxq, must be * set for each txq. */ int leading_rss; /* MCAST object */ struct bnx2x_mcast_obj mcast_obj; /* RSS configuration object */ struct bnx2x_rss_config_obj rss_conf_obj; /* slow-path operations */ atomic_t op_in_progress; int op_rc; bool op_wait_blocking; struct list_head op_list_head; union bnx2x_vfop_params op_params; struct mutex op_mutex; /* one vfop at a time mutex */ enum channel_tlvs op_current; }; #define BNX2X_NR_VIRTFN(bp) ((bp)->vfdb->sriov.nr_virtfn) #define for_each_vf(bp, var) \ for ((var) = 0; (var) < BNX2X_NR_VIRTFN(bp); (var)++) #define for_each_vfq(vf, var) \ for ((var) = 0; (var) < vf_rxq_count(vf); (var)++) #define for_each_vf_sb(vf, var) \ for ((var) = 0; (var) < vf_sb_count(vf); (var)++) #define is_vf_multi(vf) (vf_rxq_count(vf) > 1) #define HW_VF_HANDLE(bp, abs_vfid) \ (u16)(BP_ABS_FUNC((bp)) | (1<<3) | ((u16)(abs_vfid) << 4)) #define FW_PF_MAX_HANDLE 8 #define FW_VF_HANDLE(abs_vfid) \ (abs_vfid + FW_PF_MAX_HANDLE) /* locking and unlocking the channel mutex */ void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, enum channel_tlvs tlv); void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, enum channel_tlvs expected_tlv); /* VF mail box (aka vf-pf channel) */ /* a container for the bi-directional vf<-->pf messages. * The actual response will be placed according to the offset parameter * provided in the request */ #define MBX_MSG_ALIGN 8 #define MBX_MSG_ALIGNED_SIZE (roundup(sizeof(struct bnx2x_vf_mbx_msg), \ MBX_MSG_ALIGN)) struct bnx2x_vf_mbx_msg { union vfpf_tlvs req; union pfvf_tlvs resp; }; struct bnx2x_vf_mbx { struct bnx2x_vf_mbx_msg *msg; dma_addr_t msg_mapping; /* VF GPA address */ u32 vf_addr_lo; u32 vf_addr_hi; struct vfpf_first_tlv first_tlv; /* saved VF request header */ u8 flags; #define VF_MSG_INPROCESS 0x1 /* failsafe - the FW should prevent * more then one pending msg */ }; struct bnx2x_vf_sp { union { struct eth_classify_rules_ramrod_data e2; } mac_rdata; union { struct eth_classify_rules_ramrod_data e2; } vlan_rdata; union { struct eth_filter_rules_ramrod_data e2; } rx_mode_rdata; union { struct eth_multicast_rules_ramrod_data e2; } mcast_rdata; union { struct client_init_ramrod_data init_data; struct client_update_ramrod_data update_data; } q_data; }; struct hw_dma { void *addr; dma_addr_t mapping; size_t size; }; struct bnx2x_vfdb { #define BP_VFDB(bp) ((bp)->vfdb) /* vf array */ struct bnx2x_virtf *vfs; #define BP_VF(bp, idx) (&((bp)->vfdb->vfs[(idx)])) #define bnx2x_vf(bp, idx, var) ((bp)->vfdb->vfs[(idx)].var) /* queue array - for all vfs */ struct bnx2x_vf_queue *vfqs; /* vf HW contexts */ struct hw_dma context[BNX2X_VF_CIDS/ILT_PAGE_CIDS]; #define BP_VF_CXT_PAGE(bp, i) (&(bp)->vfdb->context[(i)]) /* SR-IOV information */ struct bnx2x_sriov sriov; struct hw_dma mbx_dma; #define BP_VF_MBX_DMA(bp) (&((bp)->vfdb->mbx_dma)) struct bnx2x_vf_mbx mbxs[BNX2X_MAX_NUM_OF_VFS]; #define BP_VF_MBX(bp, vfid) (&((bp)->vfdb->mbxs[(vfid)])) struct hw_dma sp_dma; #define bnx2x_vf_sp(bp, vf, field) ((bp)->vfdb->sp_dma.addr + \ (vf)->index * sizeof(struct bnx2x_vf_sp) + \ offsetof(struct bnx2x_vf_sp, field)) #define bnx2x_vf_sp_map(bp, vf, field) ((bp)->vfdb->sp_dma.mapping + \ (vf)->index * sizeof(struct bnx2x_vf_sp) + \ offsetof(struct bnx2x_vf_sp, field)) #define FLRD_VFS_DWORDS (BNX2X_MAX_NUM_OF_VFS / 32) u32 flrd_vfs[FLRD_VFS_DWORDS]; }; /* queue access */ static inline struct bnx2x_vf_queue *vfq_get(struct bnx2x_virtf *vf, u8 index) { return &(vf->vfqs[index]); } static inline bool vfq_is_leading(struct bnx2x_vf_queue *vfq) { return (vfq->index == 0); } /* FW ids */ static inline u8 vf_igu_sb(struct bnx2x_virtf *vf, u16 sb_idx) { return vf->igu_base_id + sb_idx; } static inline u8 vf_hc_qzone(struct bnx2x_virtf *vf, u16 sb_idx) { return vf_igu_sb(vf, sb_idx); } static u8 vfq_cl_id(struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q) { return vf->igu_base_id + q->index; } static inline u8 vfq_stat_id(struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q) { return vfq_cl_id(vf, q); } static inline u8 vfq_qzone_id(struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q) { return vfq_cl_id(vf, q); } /* global iov routines */ int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line); int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, int num_vfs_param); void bnx2x_iov_remove_one(struct bnx2x *bp); void bnx2x_iov_free_mem(struct bnx2x *bp); int bnx2x_iov_alloc_mem(struct bnx2x *bp); int bnx2x_iov_nic_init(struct bnx2x *bp); void bnx2x_iov_init_dq(struct bnx2x *bp); void bnx2x_iov_init_dmae(struct bnx2x *bp); void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, struct bnx2x_queue_sp_obj **q_obj); void bnx2x_iov_sp_event(struct bnx2x *bp, int vf_cid, bool queue_work); int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem); void bnx2x_iov_adjust_stats_req(struct bnx2x *bp); void bnx2x_iov_storm_stats_update(struct bnx2x *bp); void bnx2x_iov_sp_task(struct bnx2x *bp); /* global vf mailbox routines */ void bnx2x_vf_mbx(struct bnx2x *bp, struct vf_pf_event_data *vfpf_event); void bnx2x_vf_enable_mbx(struct bnx2x *bp, u8 abs_vfid); /* acquire */ int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, struct vf_pf_resc_request *resc); /* init */ int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map); /* VFOP generic helpers */ #define bnx2x_vfop_default(state) do { \ BNX2X_ERR("Bad state %d\n", (state)); \ vfop->rc = -EINVAL; \ goto op_err; \ } while (0) enum { VFOP_DONE, VFOP_CONT, VFOP_VERIFY_PEND, }; #define bnx2x_vfop_finalize(vf, rc, next) do { \ if ((rc) < 0) \ goto op_err; \ else if ((rc) > 0) \ goto op_pending; \ else if ((next) == VFOP_DONE) \ goto op_done; \ else if ((next) == VFOP_VERIFY_PEND) \ BNX2X_ERR("expected pending\n"); \ else { \ DP(BNX2X_MSG_IOV, "no ramrod. scheduling\n"); \ atomic_set(&vf->op_in_progress, 1); \ queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); \ return; \ } \ } while (0) #define bnx2x_vfop_opset(first_state, trans_hndlr, done_hndlr) \ do { \ vfop->state = first_state; \ vfop->op_p = &vf->op_params; \ vfop->transition = trans_hndlr; \ vfop->done = done_hndlr; \ } while (0) static inline struct bnx2x_vfop *bnx2x_vfop_cur(struct bnx2x *bp, struct bnx2x_virtf *vf) { WARN(!mutex_is_locked(&vf->op_mutex), "about to access vf op linked list but mutex was not locked!"); WARN_ON(list_empty(&vf->op_list_head)); return list_first_entry(&vf->op_list_head, struct bnx2x_vfop, link); } static inline struct bnx2x_vfop *bnx2x_vfop_add(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = kzalloc(sizeof(*vfop), GFP_KERNEL); WARN(!mutex_is_locked(&vf->op_mutex), "about to access vf op linked list but mutex was not locked!"); if (vfop) { INIT_LIST_HEAD(&vfop->link); list_add(&vfop->link, &vf->op_list_head); } return vfop; } static inline void bnx2x_vfop_end(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop *vfop) { /* rc < 0 - error, otherwise set to 0 */ DP(BNX2X_MSG_IOV, "rc was %d\n", vfop->rc); if (vfop->rc >= 0) vfop->rc = 0; DP(BNX2X_MSG_IOV, "rc is now %d\n", vfop->rc); /* unlink the current op context and propagate error code * must be done before invoking the 'done()' handler */ WARN(!mutex_is_locked(&vf->op_mutex), "about to access vf op linked list but mutex was not locked!"); list_del(&vfop->link); if (list_empty(&vf->op_list_head)) { DP(BNX2X_MSG_IOV, "list was empty %d\n", vfop->rc); vf->op_rc = vfop->rc; DP(BNX2X_MSG_IOV, "copying rc vf->op_rc %d, vfop->rc %d\n", vf->op_rc, vfop->rc); } else { struct bnx2x_vfop *cur_vfop; DP(BNX2X_MSG_IOV, "list not empty %d\n", vfop->rc); cur_vfop = bnx2x_vfop_cur(bp, vf); cur_vfop->rc = vfop->rc; DP(BNX2X_MSG_IOV, "copying rc vf->op_rc %d, vfop->rc %d\n", vf->op_rc, vfop->rc); } /* invoke done handler */ if (vfop->done) { DP(BNX2X_MSG_IOV, "calling done handler\n"); vfop->done(bp, vf); } DP(BNX2X_MSG_IOV, "done handler complete. vf->op_rc %d, vfop->rc %d\n", vf->op_rc, vfop->rc); /* if this is the last nested op reset the wait_blocking flag * to release any blocking wrappers, only after 'done()' is invoked */ if (list_empty(&vf->op_list_head)) { DP(BNX2X_MSG_IOV, "list was empty after done %d\n", vfop->rc); vf->op_wait_blocking = false; } kfree(vfop); } static inline int bnx2x_vfop_wait_blocking(struct bnx2x *bp, struct bnx2x_virtf *vf) { /* can take a while if any port is running */ int cnt = 5000; might_sleep(); while (cnt--) { if (vf->op_wait_blocking == false) { #ifdef BNX2X_STOP_ON_ERROR DP(BNX2X_MSG_IOV, "exit (cnt %d)\n", 5000 - cnt); #endif return 0; } usleep_range(1000, 2000); if (bp->panic) return -EIO; } /* timeout! */ #ifdef BNX2X_STOP_ON_ERROR bnx2x_panic(); #endif return -EBUSY; } static inline int bnx2x_vfop_transition(struct bnx2x *bp, struct bnx2x_virtf *vf, vfop_handler_t transition, bool block) { if (block) vf->op_wait_blocking = true; transition(bp, vf); if (block) return bnx2x_vfop_wait_blocking(bp, vf); return 0; } /* VFOP queue construction helpers */ void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_queue_init_params *init_params, struct bnx2x_queue_setup_params *setup_params, u16 q_idx, u16 sb_idx); void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_queue_init_params *init_params, struct bnx2x_queue_setup_params *setup_params, u16 q_idx, u16 sb_idx); void bnx2x_vfop_qctor_prep(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q, struct bnx2x_vfop_qctor_params *p, unsigned long q_type); int bnx2x_vfop_qsetup_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid); int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid); u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf); /* VF FLR helpers */ int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid); void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid); void bnx2x_add_tlv(struct bnx2x *bp, void *tlvs_list, u16 offset, u16 type, u16 length); void bnx2x_vfpf_prep(struct bnx2x *bp, struct vfpf_first_tlv *first_tlv, u16 type, u16 length); void bnx2x_dp_tlv_list(struct bnx2x *bp, void *tlvs_list); bool bnx2x_tlv_supported(u16 tlvtype); #endif /* bnx2x_sriov.h */