/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2009 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #ifndef EFX_BITFIELD_H #define EFX_BITFIELD_H /* * Efx bitfield access * * Efx NICs make extensive use of bitfields up to 128 bits * wide. Since there is no native 128-bit datatype on most systems, * and since 64-bit datatypes are inefficient on 32-bit systems and * vice versa, we wrap accesses in a way that uses the most efficient * datatype. * * The NICs are PCI devices and therefore little-endian. Since most * of the quantities that we deal with are DMAed to/from host memory, * we define our datatypes (efx_oword_t, efx_qword_t and * efx_dword_t) to be little-endian. */ /* Lowest bit numbers and widths */ #define EFX_DUMMY_FIELD_LBN 0 #define EFX_DUMMY_FIELD_WIDTH 0 #define EFX_WORD_0_LBN 0 #define EFX_WORD_0_WIDTH 16 #define EFX_WORD_1_LBN 16 #define EFX_WORD_1_WIDTH 16 #define EFX_DWORD_0_LBN 0 #define EFX_DWORD_0_WIDTH 32 #define EFX_DWORD_1_LBN 32 #define EFX_DWORD_1_WIDTH 32 #define EFX_DWORD_2_LBN 64 #define EFX_DWORD_2_WIDTH 32 #define EFX_DWORD_3_LBN 96 #define EFX_DWORD_3_WIDTH 32 #define EFX_QWORD_0_LBN 0 #define EFX_QWORD_0_WIDTH 64 /* Specified attribute (e.g. LBN) of the specified field */ #define EFX_VAL(field, attribute) field ## _ ## attribute /* Low bit number of the specified field */ #define EFX_LOW_BIT(field) EFX_VAL(field, LBN) /* Bit width of the specified field */ #define EFX_WIDTH(field) EFX_VAL(field, WIDTH) /* High bit number of the specified field */ #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1) /* Mask equal in width to the specified field. * * For example, a field with width 5 would have a mask of 0x1f. * * The maximum width mask that can be generated is 64 bits. */ #define EFX_MASK64(width) \ ((width) == 64 ? ~((u64) 0) : \ (((((u64) 1) << (width))) - 1)) /* Mask equal in width to the specified field. * * For example, a field with width 5 would have a mask of 0x1f. * * The maximum width mask that can be generated is 32 bits. Use * EFX_MASK64 for higher width fields. */ #define EFX_MASK32(width) \ ((width) == 32 ? ~((u32) 0) : \ (((((u32) 1) << (width))) - 1)) /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */ typedef union efx_dword { __le32 u32[1]; } efx_dword_t; /* A quadword (i.e. 8 byte) datatype - little-endian in HW */ typedef union efx_qword { __le64 u64[1]; __le32 u32[2]; efx_dword_t dword[2]; } efx_qword_t; /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */ typedef union efx_oword { __le64 u64[2]; efx_qword_t qword[2]; __le32 u32[4]; efx_dword_t dword[4]; } efx_oword_t; /* Format string and value expanders for printk */ #define EFX_DWORD_FMT "%08x" #define EFX_QWORD_FMT "%08x:%08x" #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x" #define EFX_DWORD_VAL(dword) \ ((unsigned int) le32_to_cpu((dword).u32[0])) #define EFX_QWORD_VAL(qword) \ ((unsigned int) le32_to_cpu((qword).u32[1])), \ ((unsigned int) le32_to_cpu((qword).u32[0])) #define EFX_OWORD_VAL(oword) \ ((unsigned int) le32_to_cpu((oword).u32[3])), \ ((unsigned int) le32_to_cpu((oword).u32[2])), \ ((unsigned int) le32_to_cpu((oword).u32[1])), \ ((unsigned int) le32_to_cpu((oword).u32[0])) /* * Extract bit field portion [low,high) from the native-endian element * which contains bits [min,max). * * For example, suppose "element" represents the high 32 bits of a * 64-bit value, and we wish to extract the bits belonging to the bit * field occupying bits 28-45 of this 64-bit value. * * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give * * ( element ) << 4 * * The result will contain the relevant bits filled in in the range * [0,high-low), with garbage in bits [high-low+1,...). */ #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \ ((low) > (max) || (high) < (min) ? 0 : \ (low) > (min) ? \ (native_element) >> ((low) - (min)) : \ (native_element) << ((min) - (low))) /* * Extract bit field portion [low,high) from the 64-bit little-endian * element which contains bits [min,max) */ #define EFX_EXTRACT64(element, min, max, low, high) \ EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high) /* * Extract bit field portion [low,high) from the 32-bit little-endian * element which contains bits [min,max) */ #define EFX_EXTRACT32(element, min, max, low, high) \ EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high) #define EFX_EXTRACT_OWORD64(oword, low, high) \ ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \ EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \ EFX_MASK64((high) + 1 - (low))) #define EFX_EXTRACT_QWORD64(qword, low, high) \ (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \ EFX_MASK64((high) + 1 - (low))) #define EFX_EXTRACT_OWORD32(oword, low, high) \ ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \ EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \ EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \ EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \ EFX_MASK32((high) + 1 - (low))) #define EFX_EXTRACT_QWORD32(qword, low, high) \ ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \ EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \ EFX_MASK32((high) + 1 - (low))) #define EFX_EXTRACT_DWORD(dword, low, high) \ (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \ EFX_MASK32((high) + 1 - (low))) #define EFX_OWORD_FIELD64(oword, field) \ EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field)) #define EFX_QWORD_FIELD64(qword, field) \ EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field)) #define EFX_OWORD_FIELD32(oword, field) \ EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field)) #define EFX_QWORD_FIELD32(qword, field) \ EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field)) #define EFX_DWORD_FIELD(dword, field) \ EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field)) #define EFX_OWORD_IS_ZERO64(oword) \ (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0) #define EFX_QWORD_IS_ZERO64(qword) \ (((qword).u64[0]) == (__force __le64) 0) #define EFX_OWORD_IS_ZERO32(oword) \ (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \ == (__force __le32) 0) #define EFX_QWORD_IS_ZERO32(qword) \ (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0) #define EFX_DWORD_IS_ZERO(dword) \ (((dword).u32[0]) == (__force __le32) 0) #define EFX_OWORD_IS_ALL_ONES64(oword) \ (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0)) #define EFX_QWORD_IS_ALL_ONES64(qword) \ ((qword).u64[0] == ~((__force __le64) 0)) #define EFX_OWORD_IS_ALL_ONES32(oword) \ (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \ == ~((__force __le32) 0)) #define EFX_QWORD_IS_ALL_ONES32(qword) \ (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0)) #define EFX_DWORD_IS_ALL_ONES(dword) \ ((dword).u32[0] == ~((__force __le32) 0)) #if BITS_PER_LONG == 64 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64 #else #define EFX_OWORD_FIELD EFX_OWORD_FIELD32 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32 #endif /* * Construct bit field portion * * Creates the portion of the bit field [low,high) that lies within * the range [min,max). */ #define EFX_INSERT_NATIVE64(min, max, low, high, value) \ (((low > max) || (high < min)) ? 0 : \ ((low > min) ? \ (((u64) (value)) << (low - min)) : \ (((u64) (value)) >> (min - low)))) #define EFX_INSERT_NATIVE32(min, max, low, high, value) \ (((low > max) || (high < min)) ? 0 : \ ((low > min) ? \ (((u32) (value)) << (low - min)) : \ (((u32) (value)) >> (min - low)))) #define EFX_INSERT_NATIVE(min, max, low, high, value) \ ((((max - min) >= 32) || ((high - low) >= 32)) ? \ EFX_INSERT_NATIVE64(min, max, low, high, value) : \ EFX_INSERT_NATIVE32(min, max, low, high, value)) /* * Construct bit field portion * * Creates the portion of the named bit field that lies within the * range [min,max). */ #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \ EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field), value) /* * Construct bit field * * Creates the portion of the named bit fields that lie within the * range [min,max). */ #define EFX_INSERT_FIELDS_NATIVE(min, max, \ field1, value1, \ field2, value2, \ field3, value3, \ field4, value4, \ field5, value5, \ field6, value6, \ field7, value7, \ field8, value8, \ field9, value9, \ field10, value10) \ (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \ EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10))) #define EFX_INSERT_FIELDS64(...) \ cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) #define EFX_INSERT_FIELDS32(...) \ cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) #define EFX_POPULATE_OWORD64(oword, ...) do { \ (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \ } while (0) #define EFX_POPULATE_QWORD64(qword, ...) do { \ (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ } while (0) #define EFX_POPULATE_OWORD32(oword, ...) do { \ (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \ (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \ } while (0) #define EFX_POPULATE_QWORD32(qword, ...) do { \ (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ } while (0) #define EFX_POPULATE_DWORD(dword, ...) do { \ (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ } while (0) #if BITS_PER_LONG == 64 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64 #else #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32 #endif /* Populate an octword field with various numbers of arguments */ #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD #define EFX_POPULATE_OWORD_9(oword, ...) \ EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_8(oword, ...) \ EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_7(oword, ...) \ EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_6(oword, ...) \ EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_5(oword, ...) \ EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_4(oword, ...) \ EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_3(oword, ...) \ EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_2(oword, ...) \ EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_OWORD_1(oword, ...) \ EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_ZERO_OWORD(oword) \ EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0) #define EFX_SET_OWORD(oword) \ EFX_POPULATE_OWORD_4(oword, \ EFX_DWORD_0, 0xffffffff, \ EFX_DWORD_1, 0xffffffff, \ EFX_DWORD_2, 0xffffffff, \ EFX_DWORD_3, 0xffffffff) /* Populate a quadword field with various numbers of arguments */ #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD #define EFX_POPULATE_QWORD_9(qword, ...) \ EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_8(qword, ...) \ EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_7(qword, ...) \ EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_6(qword, ...) \ EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_5(qword, ...) \ EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_4(qword, ...) \ EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_3(qword, ...) \ EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_2(qword, ...) \ EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_QWORD_1(qword, ...) \ EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_ZERO_QWORD(qword) \ EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0) #define EFX_SET_QWORD(qword) \ EFX_POPULATE_QWORD_2(qword, \ EFX_DWORD_0, 0xffffffff, \ EFX_DWORD_1, 0xffffffff) /* Populate a dword field with various numbers of arguments */ #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD #define EFX_POPULATE_DWORD_9(dword, ...) \ EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_8(dword, ...) \ EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_7(dword, ...) \ EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_6(dword, ...) \ EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_5(dword, ...) \ EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_4(dword, ...) \ EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_3(dword, ...) \ EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_2(dword, ...) \ EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_POPULATE_DWORD_1(dword, ...) \ EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) #define EFX_ZERO_DWORD(dword) \ EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0) #define EFX_SET_DWORD(dword) \ EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff) /* * Modify a named field within an already-populated structure. Used * for read-modify-write operations. * */ #define EFX_INVERT_OWORD(oword) do { \ (oword).u64[0] = ~((oword).u64[0]); \ (oword).u64[1] = ~((oword).u64[1]); \ } while (0) #define EFX_AND_OWORD(oword, from, mask) \ do { \ (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \ (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \ } while (0) #define EFX_OR_OWORD(oword, from, mask) \ do { \ (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \ (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \ } while (0) #define EFX_INSERT64(min, max, low, high, value) \ cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value)) #define EFX_INSERT32(min, max, low, high, value) \ cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value)) #define EFX_INPLACE_MASK64(min, max, low, high) \ EFX_INSERT64(min, max, low, high, EFX_MASK64((high) + 1 - (low))) #define EFX_INPLACE_MASK32(min, max, low, high) \ EFX_INSERT32(min, max, low, high, EFX_MASK32((high) + 1 - (low))) #define EFX_SET_OWORD64(oword, low, high, value) do { \ (oword).u64[0] = (((oword).u64[0] \ & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ | EFX_INSERT64(0, 63, low, high, value)); \ (oword).u64[1] = (((oword).u64[1] \ & ~EFX_INPLACE_MASK64(64, 127, low, high)) \ | EFX_INSERT64(64, 127, low, high, value)); \ } while (0) #define EFX_SET_QWORD64(qword, low, high, value) do { \ (qword).u64[0] = (((qword).u64[0] \ & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ | EFX_INSERT64(0, 63, low, high, value)); \ } while (0) #define EFX_SET_OWORD32(oword, low, high, value) do { \ (oword).u32[0] = (((oword).u32[0] \ & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ | EFX_INSERT32(0, 31, low, high, value)); \ (oword).u32[1] = (((oword).u32[1] \ & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ | EFX_INSERT32(32, 63, low, high, value)); \ (oword).u32[2] = (((oword).u32[2] \ & ~EFX_INPLACE_MASK32(64, 95, low, high)) \ | EFX_INSERT32(64, 95, low, high, value)); \ (oword).u32[3] = (((oword).u32[3] \ & ~EFX_INPLACE_MASK32(96, 127, low, high)) \ | EFX_INSERT32(96, 127, low, high, value)); \ } while (0) #define EFX_SET_QWORD32(qword, low, high, value) do { \ (qword).u32[0] = (((qword).u32[0] \ & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ | EFX_INSERT32(0, 31, low, high, value)); \ (qword).u32[1] = (((qword).u32[1] \ & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ | EFX_INSERT32(32, 63, low, high, value)); \ } while (0) #define EFX_SET_DWORD32(dword, low, high, value) do { \ (dword).u32[0] = (((dword).u32[0] \ & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ | EFX_INSERT32(0, 31, low, high, value)); \ } while (0) #define EFX_SET_OWORD_FIELD64(oword, field, value) \ EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field), value) #define EFX_SET_QWORD_FIELD64(qword, field, value) \ EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field), value) #define EFX_SET_OWORD_FIELD32(oword, field, value) \ EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field), value) #define EFX_SET_QWORD_FIELD32(qword, field, value) \ EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field), value) #define EFX_SET_DWORD_FIELD(dword, field, value) \ EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \ EFX_HIGH_BIT(field), value) #if BITS_PER_LONG == 64 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64 #else #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32 #endif /* Used to avoid compiler warnings about shift range exceeding width * of the data types when dma_addr_t is only 32 bits wide. */ #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t)) #define EFX_DMA_TYPE_WIDTH(width) \ (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH) /* Static initialiser */ #define EFX_OWORD32(a, b, c, d) \ { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \ cpu_to_le32(c), cpu_to_le32(d) } } #endif /* EFX_BITFIELD_H */