/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "kvm.h" #include "x86.h" #include "irq.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); DEFINE_SPINLOCK(kvm_lock); LIST_HEAD(vm_list); static cpumask_t cpus_hardware_enabled; struct kmem_cache *kvm_vcpu_cache; EXPORT_SYMBOL_GPL(kvm_vcpu_cache); static __read_mostly struct preempt_ops kvm_preempt_ops; static struct dentry *debugfs_dir; static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, unsigned long arg); static inline int valid_vcpu(int n) { return likely(n >= 0 && n < KVM_MAX_VCPUS); } /* * Switches to specified vcpu, until a matching vcpu_put() */ void vcpu_load(struct kvm_vcpu *vcpu) { int cpu; mutex_lock(&vcpu->mutex); cpu = get_cpu(); preempt_notifier_register(&vcpu->preempt_notifier); kvm_arch_vcpu_load(vcpu, cpu); put_cpu(); } void vcpu_put(struct kvm_vcpu *vcpu) { preempt_disable(); kvm_arch_vcpu_put(vcpu); preempt_notifier_unregister(&vcpu->preempt_notifier); preempt_enable(); mutex_unlock(&vcpu->mutex); } static void ack_flush(void *_completed) { } void kvm_flush_remote_tlbs(struct kvm *kvm) { int i, cpu; cpumask_t cpus; struct kvm_vcpu *vcpu; cpus_clear(cpus); for (i = 0; i < KVM_MAX_VCPUS; ++i) { vcpu = kvm->vcpus[i]; if (!vcpu) continue; if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) continue; cpu = vcpu->cpu; if (cpu != -1 && cpu != raw_smp_processor_id()) cpu_set(cpu, cpus); } smp_call_function_mask(cpus, ack_flush, NULL, 1); } int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) { struct page *page; int r; mutex_init(&vcpu->mutex); vcpu->cpu = -1; vcpu->kvm = kvm; vcpu->vcpu_id = id; init_waitqueue_head(&vcpu->wq); page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { r = -ENOMEM; goto fail; } vcpu->run = page_address(page); r = kvm_arch_vcpu_init(vcpu); if (r < 0) goto fail_free_run; return 0; fail_free_run: free_page((unsigned long)vcpu->run); fail: return r; } EXPORT_SYMBOL_GPL(kvm_vcpu_init); void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) { kvm_arch_vcpu_uninit(vcpu); free_page((unsigned long)vcpu->run); } EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); static struct kvm *kvm_create_vm(void) { struct kvm *kvm = kvm_arch_create_vm(); if (IS_ERR(kvm)) goto out; kvm_io_bus_init(&kvm->pio_bus); mutex_init(&kvm->lock); kvm_io_bus_init(&kvm->mmio_bus); spin_lock(&kvm_lock); list_add(&kvm->vm_list, &vm_list); spin_unlock(&kvm_lock); out: return kvm; } /* * Free any memory in @free but not in @dont. */ static void kvm_free_physmem_slot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { if (!dont || free->rmap != dont->rmap) vfree(free->rmap); if (!dont || free->dirty_bitmap != dont->dirty_bitmap) vfree(free->dirty_bitmap); free->npages = 0; free->dirty_bitmap = NULL; free->rmap = NULL; } void kvm_free_physmem(struct kvm *kvm) { int i; for (i = 0; i < kvm->nmemslots; ++i) kvm_free_physmem_slot(&kvm->memslots[i], NULL); } static void kvm_destroy_vm(struct kvm *kvm) { spin_lock(&kvm_lock); list_del(&kvm->vm_list); spin_unlock(&kvm_lock); kvm_io_bus_destroy(&kvm->pio_bus); kvm_io_bus_destroy(&kvm->mmio_bus); kvm_arch_destroy_vm(kvm); } static int kvm_vm_release(struct inode *inode, struct file *filp) { struct kvm *kvm = filp->private_data; kvm_destroy_vm(kvm); return 0; } /* * Allocate some memory and give it an address in the guest physical address * space. * * Discontiguous memory is allowed, mostly for framebuffers. * * Must be called holding kvm->lock. */ int __kvm_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, int user_alloc) { int r; gfn_t base_gfn; unsigned long npages; unsigned long i; struct kvm_memory_slot *memslot; struct kvm_memory_slot old, new; r = -EINVAL; /* General sanity checks */ if (mem->memory_size & (PAGE_SIZE - 1)) goto out; if (mem->guest_phys_addr & (PAGE_SIZE - 1)) goto out; if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS) goto out; if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) goto out; memslot = &kvm->memslots[mem->slot]; base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; npages = mem->memory_size >> PAGE_SHIFT; if (!npages) mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; new = old = *memslot; new.base_gfn = base_gfn; new.npages = npages; new.flags = mem->flags; /* Disallow changing a memory slot's size. */ r = -EINVAL; if (npages && old.npages && npages != old.npages) goto out_free; /* Check for overlaps */ r = -EEXIST; for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { struct kvm_memory_slot *s = &kvm->memslots[i]; if (s == memslot) continue; if (!((base_gfn + npages <= s->base_gfn) || (base_gfn >= s->base_gfn + s->npages))) goto out_free; } /* Free page dirty bitmap if unneeded */ if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) new.dirty_bitmap = NULL; r = -ENOMEM; /* Allocate if a slot is being created */ if (npages && !new.rmap) { new.rmap = vmalloc(npages * sizeof(struct page *)); if (!new.rmap) goto out_free; memset(new.rmap, 0, npages * sizeof(*new.rmap)); new.user_alloc = user_alloc; if (user_alloc) new.userspace_addr = mem->userspace_addr; else { down_write(¤t->mm->mmap_sem); new.userspace_addr = do_mmap(NULL, 0, npages * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, 0); up_write(¤t->mm->mmap_sem); if (IS_ERR((void *)new.userspace_addr)) goto out_free; } } else { if (!old.user_alloc && old.rmap) { int ret; down_write(¤t->mm->mmap_sem); ret = do_munmap(current->mm, old.userspace_addr, old.npages * PAGE_SIZE); up_write(¤t->mm->mmap_sem); if (ret < 0) printk(KERN_WARNING "kvm_vm_ioctl_set_memory_region: " "failed to munmap memory\n"); } } /* Allocate page dirty bitmap if needed */ if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8; new.dirty_bitmap = vmalloc(dirty_bytes); if (!new.dirty_bitmap) goto out_free; memset(new.dirty_bitmap, 0, dirty_bytes); } if (mem->slot >= kvm->nmemslots) kvm->nmemslots = mem->slot + 1; if (!kvm->n_requested_mmu_pages) { unsigned int n_pages; if (npages) { n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000; kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages + n_pages); } else { unsigned int nr_mmu_pages; n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000; nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages; nr_mmu_pages = max(nr_mmu_pages, (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); } } *memslot = new; kvm_mmu_slot_remove_write_access(kvm, mem->slot); kvm_flush_remote_tlbs(kvm); kvm_free_physmem_slot(&old, &new); return 0; out_free: kvm_free_physmem_slot(&new, &old); out: return r; } EXPORT_SYMBOL_GPL(__kvm_set_memory_region); int kvm_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, int user_alloc) { int r; mutex_lock(&kvm->lock); r = __kvm_set_memory_region(kvm, mem, user_alloc); mutex_unlock(&kvm->lock); return r; } EXPORT_SYMBOL_GPL(kvm_set_memory_region); int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, int user_alloc) { if (mem->slot >= KVM_MEMORY_SLOTS) return -EINVAL; return kvm_set_memory_region(kvm, mem, user_alloc); } int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, int *is_dirty) { struct kvm_memory_slot *memslot; int r, i; int n; unsigned long any = 0; r = -EINVAL; if (log->slot >= KVM_MEMORY_SLOTS) goto out; memslot = &kvm->memslots[log->slot]; r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; for (i = 0; !any && i < n/sizeof(long); ++i) any = memslot->dirty_bitmap[i]; r = -EFAULT; if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) goto out; if (any) *is_dirty = 1; r = 0; out: return r; } int is_error_page(struct page *page) { return page == bad_page; } EXPORT_SYMBOL_GPL(is_error_page); static inline unsigned long bad_hva(void) { return PAGE_OFFSET; } int kvm_is_error_hva(unsigned long addr) { return addr == bad_hva(); } EXPORT_SYMBOL_GPL(kvm_is_error_hva); gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) { int i; struct kvm_mem_alias *alias; for (i = 0; i < kvm->naliases; ++i) { alias = &kvm->aliases[i]; if (gfn >= alias->base_gfn && gfn < alias->base_gfn + alias->npages) return alias->target_gfn + gfn - alias->base_gfn; } return gfn; } static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn) { int i; for (i = 0; i < kvm->nmemslots; ++i) { struct kvm_memory_slot *memslot = &kvm->memslots[i]; if (gfn >= memslot->base_gfn && gfn < memslot->base_gfn + memslot->npages) return memslot; } return NULL; } struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) { gfn = unalias_gfn(kvm, gfn); return __gfn_to_memslot(kvm, gfn); } int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) { int i; gfn = unalias_gfn(kvm, gfn); for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { struct kvm_memory_slot *memslot = &kvm->memslots[i]; if (gfn >= memslot->base_gfn && gfn < memslot->base_gfn + memslot->npages) return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) { struct kvm_memory_slot *slot; gfn = unalias_gfn(kvm, gfn); slot = __gfn_to_memslot(kvm, gfn); if (!slot) return bad_hva(); return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE); } /* * Requires current->mm->mmap_sem to be held */ static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn) { struct page *page[1]; unsigned long addr; int npages; might_sleep(); addr = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(addr)) { get_page(bad_page); return bad_page; } npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page, NULL); if (npages != 1) { get_page(bad_page); return bad_page; } return page[0]; } struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) { struct page *page; down_read(¤t->mm->mmap_sem); page = __gfn_to_page(kvm, gfn); up_read(¤t->mm->mmap_sem); return page; } EXPORT_SYMBOL_GPL(gfn_to_page); void kvm_release_page_clean(struct page *page) { put_page(page); } EXPORT_SYMBOL_GPL(kvm_release_page_clean); void kvm_release_page_dirty(struct page *page) { if (!PageReserved(page)) SetPageDirty(page); put_page(page); } EXPORT_SYMBOL_GPL(kvm_release_page_dirty); static int next_segment(unsigned long len, int offset) { if (len > PAGE_SIZE - offset) return PAGE_SIZE - offset; else return len; } int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, int len) { int r; unsigned long addr; addr = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(addr)) return -EFAULT; r = copy_from_user(data, (void __user *)addr + offset, len); if (r) return -EFAULT; return 0; } EXPORT_SYMBOL_GPL(kvm_read_guest_page); int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) { gfn_t gfn = gpa >> PAGE_SHIFT; int seg; int offset = offset_in_page(gpa); int ret; while ((seg = next_segment(len, offset)) != 0) { ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); if (ret < 0) return ret; offset = 0; len -= seg; data += seg; ++gfn; } return 0; } EXPORT_SYMBOL_GPL(kvm_read_guest); int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, int offset, int len) { int r; unsigned long addr; addr = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(addr)) return -EFAULT; r = copy_to_user((void __user *)addr + offset, data, len); if (r) return -EFAULT; mark_page_dirty(kvm, gfn); return 0; } EXPORT_SYMBOL_GPL(kvm_write_guest_page); int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, unsigned long len) { gfn_t gfn = gpa >> PAGE_SHIFT; int seg; int offset = offset_in_page(gpa); int ret; while ((seg = next_segment(len, offset)) != 0) { ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); if (ret < 0) return ret; offset = 0; len -= seg; data += seg; ++gfn; } return 0; } int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) { return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len); } EXPORT_SYMBOL_GPL(kvm_clear_guest_page); int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) { gfn_t gfn = gpa >> PAGE_SHIFT; int seg; int offset = offset_in_page(gpa); int ret; while ((seg = next_segment(len, offset)) != 0) { ret = kvm_clear_guest_page(kvm, gfn, offset, seg); if (ret < 0) return ret; offset = 0; len -= seg; ++gfn; } return 0; } EXPORT_SYMBOL_GPL(kvm_clear_guest); void mark_page_dirty(struct kvm *kvm, gfn_t gfn) { struct kvm_memory_slot *memslot; gfn = unalias_gfn(kvm, gfn); memslot = __gfn_to_memslot(kvm, gfn); if (memslot && memslot->dirty_bitmap) { unsigned long rel_gfn = gfn - memslot->base_gfn; /* avoid RMW */ if (!test_bit(rel_gfn, memslot->dirty_bitmap)) set_bit(rel_gfn, memslot->dirty_bitmap); } } /* * The vCPU has executed a HLT instruction with in-kernel mode enabled. */ void kvm_vcpu_block(struct kvm_vcpu *vcpu) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&vcpu->wq, &wait); /* * We will block until either an interrupt or a signal wakes us up */ while (!kvm_cpu_has_interrupt(vcpu) && !signal_pending(current) && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) { set_current_state(TASK_INTERRUPTIBLE); vcpu_put(vcpu); schedule(); vcpu_load(vcpu); } __set_current_state(TASK_RUNNING); remove_wait_queue(&vcpu->wq, &wait); } void kvm_resched(struct kvm_vcpu *vcpu) { if (!need_resched()) return; cond_resched(); } EXPORT_SYMBOL_GPL(kvm_resched); static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq < 0 || irq->irq >= 256) return -EINVAL; if (irqchip_in_kernel(vcpu->kvm)) return -ENXIO; vcpu_load(vcpu); set_bit(irq->irq, vcpu->irq_pending); set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary); vcpu_put(vcpu); return 0; } static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { struct kvm_vcpu *vcpu = vma->vm_file->private_data; unsigned long pgoff; struct page *page; pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (pgoff == 0) page = virt_to_page(vcpu->run); else if (pgoff == KVM_PIO_PAGE_OFFSET) page = virt_to_page(vcpu->pio_data); else return NOPAGE_SIGBUS; get_page(page); if (type != NULL) *type = VM_FAULT_MINOR; return page; } static struct vm_operations_struct kvm_vcpu_vm_ops = { .nopage = kvm_vcpu_nopage, }; static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_ops = &kvm_vcpu_vm_ops; return 0; } static int kvm_vcpu_release(struct inode *inode, struct file *filp) { struct kvm_vcpu *vcpu = filp->private_data; fput(vcpu->kvm->filp); return 0; } static struct file_operations kvm_vcpu_fops = { .release = kvm_vcpu_release, .unlocked_ioctl = kvm_vcpu_ioctl, .compat_ioctl = kvm_vcpu_ioctl, .mmap = kvm_vcpu_mmap, }; /* * Allocates an inode for the vcpu. */ static int create_vcpu_fd(struct kvm_vcpu *vcpu) { int fd, r; struct inode *inode; struct file *file; r = anon_inode_getfd(&fd, &inode, &file, "kvm-vcpu", &kvm_vcpu_fops, vcpu); if (r) return r; atomic_inc(&vcpu->kvm->filp->f_count); return fd; } /* * Creates some virtual cpus. Good luck creating more than one. */ static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n) { int r; struct kvm_vcpu *vcpu; if (!valid_vcpu(n)) return -EINVAL; vcpu = kvm_arch_vcpu_create(kvm, n); if (IS_ERR(vcpu)) return PTR_ERR(vcpu); preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); mutex_lock(&kvm->lock); if (kvm->vcpus[n]) { r = -EEXIST; mutex_unlock(&kvm->lock); goto vcpu_destroy; } kvm->vcpus[n] = vcpu; mutex_unlock(&kvm->lock); /* Now it's all set up, let userspace reach it */ r = create_vcpu_fd(vcpu); if (r < 0) goto unlink; return r; unlink: mutex_lock(&kvm->lock); kvm->vcpus[n] = NULL; mutex_unlock(&kvm->lock); vcpu_destroy: kvm_arch_vcpu_destroy(vcpu); return r; } static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) { if (sigset) { sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); vcpu->sigset_active = 1; vcpu->sigset = *sigset; } else vcpu->sigset_active = 0; return 0; } static long kvm_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int r; switch (ioctl) { case KVM_RUN: r = -EINVAL; if (arg) goto out; r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); break; case KVM_GET_REGS: { struct kvm_regs kvm_regs; memset(&kvm_regs, 0, sizeof kvm_regs); r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs)) goto out; r = 0; break; } case KVM_SET_REGS: { struct kvm_regs kvm_regs; r = -EFAULT; if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs)) goto out; r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs); if (r) goto out; r = 0; break; } case KVM_GET_SREGS: { struct kvm_sregs kvm_sregs; memset(&kvm_sregs, 0, sizeof kvm_sregs); r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs)) goto out; r = 0; break; } case KVM_SET_SREGS: { struct kvm_sregs kvm_sregs; r = -EFAULT; if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs)) goto out; r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs); if (r) goto out; r = 0; break; } case KVM_TRANSLATE: { struct kvm_translation tr; r = -EFAULT; if (copy_from_user(&tr, argp, sizeof tr)) goto out; r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &tr, sizeof tr)) goto out; r = 0; break; } case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof irq)) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); if (r) goto out; r = 0; break; } case KVM_DEBUG_GUEST: { struct kvm_debug_guest dbg; r = -EFAULT; if (copy_from_user(&dbg, argp, sizeof dbg)) goto out; r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg); if (r) goto out; r = 0; break; } case KVM_SET_SIGNAL_MASK: { struct kvm_signal_mask __user *sigmask_arg = argp; struct kvm_signal_mask kvm_sigmask; sigset_t sigset, *p; p = NULL; if (argp) { r = -EFAULT; if (copy_from_user(&kvm_sigmask, argp, sizeof kvm_sigmask)) goto out; r = -EINVAL; if (kvm_sigmask.len != sizeof sigset) goto out; r = -EFAULT; if (copy_from_user(&sigset, sigmask_arg->sigset, sizeof sigset)) goto out; p = &sigset; } r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); break; } case KVM_GET_FPU: { struct kvm_fpu fpu; memset(&fpu, 0, sizeof fpu); r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &fpu, sizeof fpu)) goto out; r = 0; break; } case KVM_SET_FPU: { struct kvm_fpu fpu; r = -EFAULT; if (copy_from_user(&fpu, argp, sizeof fpu)) goto out; r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu); if (r) goto out; r = 0; break; } default: r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); } out: return r; } static long kvm_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; int r; switch (ioctl) { case KVM_CREATE_VCPU: r = kvm_vm_ioctl_create_vcpu(kvm, arg); if (r < 0) goto out; break; case KVM_SET_USER_MEMORY_REGION: { struct kvm_userspace_memory_region kvm_userspace_mem; r = -EFAULT; if (copy_from_user(&kvm_userspace_mem, argp, sizeof kvm_userspace_mem)) goto out; r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); if (r) goto out; break; } case KVM_GET_DIRTY_LOG: { struct kvm_dirty_log log; r = -EFAULT; if (copy_from_user(&log, argp, sizeof log)) goto out; r = kvm_vm_ioctl_get_dirty_log(kvm, &log); if (r) goto out; break; } default: r = kvm_arch_vm_ioctl(filp, ioctl, arg); } out: return r; } static struct page *kvm_vm_nopage(struct vm_area_struct *vma, unsigned long address, int *type) { struct kvm *kvm = vma->vm_file->private_data; unsigned long pgoff; struct page *page; pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (!kvm_is_visible_gfn(kvm, pgoff)) return NOPAGE_SIGBUS; /* current->mm->mmap_sem is already held so call lockless version */ page = __gfn_to_page(kvm, pgoff); if (is_error_page(page)) { kvm_release_page_clean(page); return NOPAGE_SIGBUS; } if (type != NULL) *type = VM_FAULT_MINOR; return page; } static struct vm_operations_struct kvm_vm_vm_ops = { .nopage = kvm_vm_nopage, }; static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) { vma->vm_ops = &kvm_vm_vm_ops; return 0; } static struct file_operations kvm_vm_fops = { .release = kvm_vm_release, .unlocked_ioctl = kvm_vm_ioctl, .compat_ioctl = kvm_vm_ioctl, .mmap = kvm_vm_mmap, }; static int kvm_dev_ioctl_create_vm(void) { int fd, r; struct inode *inode; struct file *file; struct kvm *kvm; kvm = kvm_create_vm(); if (IS_ERR(kvm)) return PTR_ERR(kvm); r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm); if (r) { kvm_destroy_vm(kvm); return r; } kvm->filp = file; return fd; } static long kvm_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { void __user *argp = (void __user *)arg; long r = -EINVAL; switch (ioctl) { case KVM_GET_API_VERSION: r = -EINVAL; if (arg) goto out; r = KVM_API_VERSION; break; case KVM_CREATE_VM: r = -EINVAL; if (arg) goto out; r = kvm_dev_ioctl_create_vm(); break; case KVM_CHECK_EXTENSION: r = kvm_dev_ioctl_check_extension((long)argp); break; case KVM_GET_VCPU_MMAP_SIZE: r = -EINVAL; if (arg) goto out; r = 2 * PAGE_SIZE; break; default: return kvm_arch_dev_ioctl(filp, ioctl, arg); } out: return r; } static struct file_operations kvm_chardev_ops = { .unlocked_ioctl = kvm_dev_ioctl, .compat_ioctl = kvm_dev_ioctl, }; static struct miscdevice kvm_dev = { KVM_MINOR, "kvm", &kvm_chardev_ops, }; static void hardware_enable(void *junk) { int cpu = raw_smp_processor_id(); if (cpu_isset(cpu, cpus_hardware_enabled)) return; cpu_set(cpu, cpus_hardware_enabled); kvm_arch_hardware_enable(NULL); } static void hardware_disable(void *junk) { int cpu = raw_smp_processor_id(); if (!cpu_isset(cpu, cpus_hardware_enabled)) return; cpu_clear(cpu, cpus_hardware_enabled); decache_vcpus_on_cpu(cpu); kvm_arch_hardware_disable(NULL); } static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, void *v) { int cpu = (long)v; val &= ~CPU_TASKS_FROZEN; switch (val) { case CPU_DYING: printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", cpu); hardware_disable(NULL); break; case CPU_UP_CANCELED: printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", cpu); smp_call_function_single(cpu, hardware_disable, NULL, 0, 1); break; case CPU_ONLINE: printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", cpu); smp_call_function_single(cpu, hardware_enable, NULL, 0, 1); break; } return NOTIFY_OK; } static int kvm_reboot(struct notifier_block *notifier, unsigned long val, void *v) { if (val == SYS_RESTART) { /* * Some (well, at least mine) BIOSes hang on reboot if * in vmx root mode. */ printk(KERN_INFO "kvm: exiting hardware virtualization\n"); on_each_cpu(hardware_disable, NULL, 0, 1); } return NOTIFY_OK; } static struct notifier_block kvm_reboot_notifier = { .notifier_call = kvm_reboot, .priority = 0, }; void kvm_io_bus_init(struct kvm_io_bus *bus) { memset(bus, 0, sizeof(*bus)); } void kvm_io_bus_destroy(struct kvm_io_bus *bus) { int i; for (i = 0; i < bus->dev_count; i++) { struct kvm_io_device *pos = bus->devs[i]; kvm_iodevice_destructor(pos); } } struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr) { int i; for (i = 0; i < bus->dev_count; i++) { struct kvm_io_device *pos = bus->devs[i]; if (pos->in_range(pos, addr)) return pos; } return NULL; } void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev) { BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1)); bus->devs[bus->dev_count++] = dev; } static struct notifier_block kvm_cpu_notifier = { .notifier_call = kvm_cpu_hotplug, .priority = 20, /* must be > scheduler priority */ }; static u64 vm_stat_get(void *_offset) { unsigned offset = (long)_offset; u64 total = 0; struct kvm *kvm; spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) total += *(u32 *)((void *)kvm + offset); spin_unlock(&kvm_lock); return total; } DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); static u64 vcpu_stat_get(void *_offset) { unsigned offset = (long)_offset; u64 total = 0; struct kvm *kvm; struct kvm_vcpu *vcpu; int i; spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) for (i = 0; i < KVM_MAX_VCPUS; ++i) { vcpu = kvm->vcpus[i]; if (vcpu) total += *(u32 *)((void *)vcpu + offset); } spin_unlock(&kvm_lock); return total; } DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); static struct file_operations *stat_fops[] = { [KVM_STAT_VCPU] = &vcpu_stat_fops, [KVM_STAT_VM] = &vm_stat_fops, }; static void kvm_init_debug(void) { struct kvm_stats_debugfs_item *p; debugfs_dir = debugfs_create_dir("kvm", NULL); for (p = debugfs_entries; p->name; ++p) p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir, (void *)(long)p->offset, stat_fops[p->kind]); } static void kvm_exit_debug(void) { struct kvm_stats_debugfs_item *p; for (p = debugfs_entries; p->name; ++p) debugfs_remove(p->dentry); debugfs_remove(debugfs_dir); } static int kvm_suspend(struct sys_device *dev, pm_message_t state) { hardware_disable(NULL); return 0; } static int kvm_resume(struct sys_device *dev) { hardware_enable(NULL); return 0; } static struct sysdev_class kvm_sysdev_class = { .name = "kvm", .suspend = kvm_suspend, .resume = kvm_resume, }; static struct sys_device kvm_sysdev = { .id = 0, .cls = &kvm_sysdev_class, }; struct page *bad_page; static inline struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) { return container_of(pn, struct kvm_vcpu, preempt_notifier); } static void kvm_sched_in(struct preempt_notifier *pn, int cpu) { struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); kvm_arch_vcpu_load(vcpu, cpu); } static void kvm_sched_out(struct preempt_notifier *pn, struct task_struct *next) { struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); kvm_arch_vcpu_put(vcpu); } int kvm_init(void *opaque, unsigned int vcpu_size, struct module *module) { int r; int cpu; kvm_init_debug(); r = kvm_arch_init(opaque); if (r) goto out4; bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (bad_page == NULL) { r = -ENOMEM; goto out; } r = kvm_arch_hardware_setup(); if (r < 0) goto out; for_each_online_cpu(cpu) { smp_call_function_single(cpu, kvm_arch_check_processor_compat, &r, 0, 1); if (r < 0) goto out_free_0; } on_each_cpu(hardware_enable, NULL, 0, 1); r = register_cpu_notifier(&kvm_cpu_notifier); if (r) goto out_free_1; register_reboot_notifier(&kvm_reboot_notifier); r = sysdev_class_register(&kvm_sysdev_class); if (r) goto out_free_2; r = sysdev_register(&kvm_sysdev); if (r) goto out_free_3; /* A kmem cache lets us meet the alignment requirements of fx_save. */ kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, __alignof__(struct kvm_vcpu), 0, NULL); if (!kvm_vcpu_cache) { r = -ENOMEM; goto out_free_4; } kvm_chardev_ops.owner = module; r = misc_register(&kvm_dev); if (r) { printk(KERN_ERR "kvm: misc device register failed\n"); goto out_free; } kvm_preempt_ops.sched_in = kvm_sched_in; kvm_preempt_ops.sched_out = kvm_sched_out; return 0; out_free: kmem_cache_destroy(kvm_vcpu_cache); out_free_4: sysdev_unregister(&kvm_sysdev); out_free_3: sysdev_class_unregister(&kvm_sysdev_class); out_free_2: unregister_reboot_notifier(&kvm_reboot_notifier); unregister_cpu_notifier(&kvm_cpu_notifier); out_free_1: on_each_cpu(hardware_disable, NULL, 0, 1); out_free_0: kvm_arch_hardware_unsetup(); out: kvm_arch_exit(); kvm_exit_debug(); out4: return r; } EXPORT_SYMBOL_GPL(kvm_init); void kvm_exit(void) { misc_deregister(&kvm_dev); kmem_cache_destroy(kvm_vcpu_cache); sysdev_unregister(&kvm_sysdev); sysdev_class_unregister(&kvm_sysdev_class); unregister_reboot_notifier(&kvm_reboot_notifier); unregister_cpu_notifier(&kvm_cpu_notifier); on_each_cpu(hardware_disable, NULL, 0, 1); kvm_arch_hardware_unsetup(); kvm_arch_exit(); kvm_exit_debug(); __free_page(bad_page); } EXPORT_SYMBOL_GPL(kvm_exit);