/* * net-sysfs.c - network device class and attributes * * Copyright (c) 2003 Stephen Hemminger * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "net-sysfs.h" #ifdef CONFIG_SYSFS static const char fmt_hex[] = "%#x\n"; static const char fmt_long_hex[] = "%#lx\n"; static const char fmt_dec[] = "%d\n"; static const char fmt_udec[] = "%u\n"; static const char fmt_ulong[] = "%lu\n"; static const char fmt_u64[] = "%llu\n"; static inline int dev_isalive(const struct net_device *dev) { return dev->reg_state <= NETREG_REGISTERED; } /* use same locking rules as GIF* ioctl's */ static ssize_t netdev_show(const struct device *dev, struct device_attribute *attr, char *buf, ssize_t (*format)(const struct net_device *, char *)) { struct net_device *net = to_net_dev(dev); ssize_t ret = -EINVAL; read_lock(&dev_base_lock); if (dev_isalive(net)) ret = (*format)(net, buf); read_unlock(&dev_base_lock); return ret; } /* generate a show function for simple field */ #define NETDEVICE_SHOW(field, format_string) \ static ssize_t format_##field(const struct net_device *net, char *buf) \ { \ return sprintf(buf, format_string, net->field); \ } \ static ssize_t show_##field(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ return netdev_show(dev, attr, buf, format_##field); \ } /* use same locking and permission rules as SIF* ioctl's */ static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len, int (*set)(struct net_device *, unsigned long)) { struct net_device *netdev = to_net_dev(dev); struct net *net = dev_net(netdev); unsigned long new; int ret = -EINVAL; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; ret = kstrtoul(buf, 0, &new); if (ret) goto err; if (!rtnl_trylock()) return restart_syscall(); if (dev_isalive(netdev)) { if ((ret = (*set)(netdev, new)) == 0) ret = len; } rtnl_unlock(); err: return ret; } NETDEVICE_SHOW(dev_id, fmt_hex); NETDEVICE_SHOW(addr_assign_type, fmt_dec); NETDEVICE_SHOW(addr_len, fmt_dec); NETDEVICE_SHOW(iflink, fmt_dec); NETDEVICE_SHOW(ifindex, fmt_dec); NETDEVICE_SHOW(type, fmt_dec); NETDEVICE_SHOW(link_mode, fmt_dec); /* use same locking rules as GIFHWADDR ioctl's */ static ssize_t show_address(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *net = to_net_dev(dev); ssize_t ret = -EINVAL; read_lock(&dev_base_lock); if (dev_isalive(net)) ret = sysfs_format_mac(buf, net->dev_addr, net->addr_len); read_unlock(&dev_base_lock); return ret; } static ssize_t show_broadcast(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *net = to_net_dev(dev); if (dev_isalive(net)) return sysfs_format_mac(buf, net->broadcast, net->addr_len); return -EINVAL; } static ssize_t show_carrier(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); if (netif_running(netdev)) { return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); } return -EINVAL; } static ssize_t show_speed(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); int ret = -EINVAL; if (!rtnl_trylock()) return restart_syscall(); if (netif_running(netdev)) { struct ethtool_cmd cmd; if (!__ethtool_get_settings(netdev, &cmd)) ret = sprintf(buf, fmt_udec, ethtool_cmd_speed(&cmd)); } rtnl_unlock(); return ret; } static ssize_t show_duplex(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); int ret = -EINVAL; if (!rtnl_trylock()) return restart_syscall(); if (netif_running(netdev)) { struct ethtool_cmd cmd; if (!__ethtool_get_settings(netdev, &cmd)) { const char *duplex; switch (cmd.duplex) { case DUPLEX_HALF: duplex = "half"; break; case DUPLEX_FULL: duplex = "full"; break; default: duplex = "unknown"; break; } ret = sprintf(buf, "%s\n", duplex); } } rtnl_unlock(); return ret; } static ssize_t show_dormant(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *netdev = to_net_dev(dev); if (netif_running(netdev)) return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); return -EINVAL; } static const char *const operstates[] = { "unknown", "notpresent", /* currently unused */ "down", "lowerlayerdown", "testing", /* currently unused */ "dormant", "up" }; static ssize_t show_operstate(struct device *dev, struct device_attribute *attr, char *buf) { const struct net_device *netdev = to_net_dev(dev); unsigned char operstate; read_lock(&dev_base_lock); operstate = netdev->operstate; if (!netif_running(netdev)) operstate = IF_OPER_DOWN; read_unlock(&dev_base_lock); if (operstate >= ARRAY_SIZE(operstates)) return -EINVAL; /* should not happen */ return sprintf(buf, "%s\n", operstates[operstate]); } /* read-write attributes */ NETDEVICE_SHOW(mtu, fmt_dec); static int change_mtu(struct net_device *net, unsigned long new_mtu) { return dev_set_mtu(net, (int) new_mtu); } static ssize_t store_mtu(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, change_mtu); } NETDEVICE_SHOW(flags, fmt_hex); static int change_flags(struct net_device *net, unsigned long new_flags) { return dev_change_flags(net, (unsigned int) new_flags); } static ssize_t store_flags(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, change_flags); } NETDEVICE_SHOW(tx_queue_len, fmt_ulong); static int change_tx_queue_len(struct net_device *net, unsigned long new_len) { net->tx_queue_len = new_len; return 0; } static ssize_t store_tx_queue_len(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { if (!capable(CAP_NET_ADMIN)) return -EPERM; return netdev_store(dev, attr, buf, len, change_tx_queue_len); } static ssize_t store_ifalias(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct net_device *netdev = to_net_dev(dev); struct net *net = dev_net(netdev); size_t count = len; ssize_t ret; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; /* ignore trailing newline */ if (len > 0 && buf[len - 1] == '\n') --count; if (!rtnl_trylock()) return restart_syscall(); ret = dev_set_alias(netdev, buf, count); rtnl_unlock(); return ret < 0 ? ret : len; } static ssize_t show_ifalias(struct device *dev, struct device_attribute *attr, char *buf) { const struct net_device *netdev = to_net_dev(dev); ssize_t ret = 0; if (!rtnl_trylock()) return restart_syscall(); if (netdev->ifalias) ret = sprintf(buf, "%s\n", netdev->ifalias); rtnl_unlock(); return ret; } NETDEVICE_SHOW(group, fmt_dec); static int change_group(struct net_device *net, unsigned long new_group) { dev_set_group(net, (int) new_group); return 0; } static ssize_t store_group(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { return netdev_store(dev, attr, buf, len, change_group); } static struct device_attribute net_class_attributes[] = { __ATTR(addr_assign_type, S_IRUGO, show_addr_assign_type, NULL), __ATTR(addr_len, S_IRUGO, show_addr_len, NULL), __ATTR(dev_id, S_IRUGO, show_dev_id, NULL), __ATTR(ifalias, S_IRUGO | S_IWUSR, show_ifalias, store_ifalias), __ATTR(iflink, S_IRUGO, show_iflink, NULL), __ATTR(ifindex, S_IRUGO, show_ifindex, NULL), __ATTR(type, S_IRUGO, show_type, NULL), __ATTR(link_mode, S_IRUGO, show_link_mode, NULL), __ATTR(address, S_IRUGO, show_address, NULL), __ATTR(broadcast, S_IRUGO, show_broadcast, NULL), __ATTR(carrier, S_IRUGO, show_carrier, NULL), __ATTR(speed, S_IRUGO, show_speed, NULL), __ATTR(duplex, S_IRUGO, show_duplex, NULL), __ATTR(dormant, S_IRUGO, show_dormant, NULL), __ATTR(operstate, S_IRUGO, show_operstate, NULL), __ATTR(mtu, S_IRUGO | S_IWUSR, show_mtu, store_mtu), __ATTR(flags, S_IRUGO | S_IWUSR, show_flags, store_flags), __ATTR(tx_queue_len, S_IRUGO | S_IWUSR, show_tx_queue_len, store_tx_queue_len), __ATTR(netdev_group, S_IRUGO | S_IWUSR, show_group, store_group), {} }; /* Show a given an attribute in the statistics group */ static ssize_t netstat_show(const struct device *d, struct device_attribute *attr, char *buf, unsigned long offset) { struct net_device *dev = to_net_dev(d); ssize_t ret = -EINVAL; WARN_ON(offset > sizeof(struct rtnl_link_stats64) || offset % sizeof(u64) != 0); read_lock(&dev_base_lock); if (dev_isalive(dev)) { struct rtnl_link_stats64 temp; const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *) stats) + offset)); } read_unlock(&dev_base_lock); return ret; } /* generate a read-only statistics attribute */ #define NETSTAT_ENTRY(name) \ static ssize_t show_##name(struct device *d, \ struct device_attribute *attr, char *buf) \ { \ return netstat_show(d, attr, buf, \ offsetof(struct rtnl_link_stats64, name)); \ } \ static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL) NETSTAT_ENTRY(rx_packets); NETSTAT_ENTRY(tx_packets); NETSTAT_ENTRY(rx_bytes); NETSTAT_ENTRY(tx_bytes); NETSTAT_ENTRY(rx_errors); NETSTAT_ENTRY(tx_errors); NETSTAT_ENTRY(rx_dropped); NETSTAT_ENTRY(tx_dropped); NETSTAT_ENTRY(multicast); NETSTAT_ENTRY(collisions); NETSTAT_ENTRY(rx_length_errors); NETSTAT_ENTRY(rx_over_errors); NETSTAT_ENTRY(rx_crc_errors); NETSTAT_ENTRY(rx_frame_errors); NETSTAT_ENTRY(rx_fifo_errors); NETSTAT_ENTRY(rx_missed_errors); NETSTAT_ENTRY(tx_aborted_errors); NETSTAT_ENTRY(tx_carrier_errors); NETSTAT_ENTRY(tx_fifo_errors); NETSTAT_ENTRY(tx_heartbeat_errors); NETSTAT_ENTRY(tx_window_errors); NETSTAT_ENTRY(rx_compressed); NETSTAT_ENTRY(tx_compressed); static struct attribute *netstat_attrs[] = { &dev_attr_rx_packets.attr, &dev_attr_tx_packets.attr, &dev_attr_rx_bytes.attr, &dev_attr_tx_bytes.attr, &dev_attr_rx_errors.attr, &dev_attr_tx_errors.attr, &dev_attr_rx_dropped.attr, &dev_attr_tx_dropped.attr, &dev_attr_multicast.attr, &dev_attr_collisions.attr, &dev_attr_rx_length_errors.attr, &dev_attr_rx_over_errors.attr, &dev_attr_rx_crc_errors.attr, &dev_attr_rx_frame_errors.attr, &dev_attr_rx_fifo_errors.attr, &dev_attr_rx_missed_errors.attr, &dev_attr_tx_aborted_errors.attr, &dev_attr_tx_carrier_errors.attr, &dev_attr_tx_fifo_errors.attr, &dev_attr_tx_heartbeat_errors.attr, &dev_attr_tx_window_errors.attr, &dev_attr_rx_compressed.attr, &dev_attr_tx_compressed.attr, NULL }; static struct attribute_group netstat_group = { .name = "statistics", .attrs = netstat_attrs, }; #endif /* CONFIG_SYSFS */ #ifdef CONFIG_RPS /* * RX queue sysfs structures and functions. */ struct rx_queue_attribute { struct attribute attr; ssize_t (*show)(struct netdev_rx_queue *queue, struct rx_queue_attribute *attr, char *buf); ssize_t (*store)(struct netdev_rx_queue *queue, struct rx_queue_attribute *attr, const char *buf, size_t len); }; #define to_rx_queue_attr(_attr) container_of(_attr, \ struct rx_queue_attribute, attr) #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); struct netdev_rx_queue *queue = to_rx_queue(kobj); if (!attribute->show) return -EIO; return attribute->show(queue, attribute, buf); } static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); struct netdev_rx_queue *queue = to_rx_queue(kobj); if (!attribute->store) return -EIO; return attribute->store(queue, attribute, buf, count); } static const struct sysfs_ops rx_queue_sysfs_ops = { .show = rx_queue_attr_show, .store = rx_queue_attr_store, }; static ssize_t show_rps_map(struct netdev_rx_queue *queue, struct rx_queue_attribute *attribute, char *buf) { struct rps_map *map; cpumask_var_t mask; size_t len = 0; int i; if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; rcu_read_lock(); map = rcu_dereference(queue->rps_map); if (map) for (i = 0; i < map->len; i++) cpumask_set_cpu(map->cpus[i], mask); len += cpumask_scnprintf(buf + len, PAGE_SIZE, mask); if (PAGE_SIZE - len < 3) { rcu_read_unlock(); free_cpumask_var(mask); return -EINVAL; } rcu_read_unlock(); free_cpumask_var(mask); len += sprintf(buf + len, "\n"); return len; } static ssize_t store_rps_map(struct netdev_rx_queue *queue, struct rx_queue_attribute *attribute, const char *buf, size_t len) { struct rps_map *old_map, *map; cpumask_var_t mask; int err, cpu, i; static DEFINE_SPINLOCK(rps_map_lock); if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); if (err) { free_cpumask_var(mask); return err; } map = kzalloc(max_t(unsigned int, RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), GFP_KERNEL); if (!map) { free_cpumask_var(mask); return -ENOMEM; } i = 0; for_each_cpu_and(cpu, mask, cpu_online_mask) map->cpus[i++] = cpu; if (i) map->len = i; else { kfree(map); map = NULL; } spin_lock(&rps_map_lock); old_map = rcu_dereference_protected(queue->rps_map, lockdep_is_held(&rps_map_lock)); rcu_assign_pointer(queue->rps_map, map); spin_unlock(&rps_map_lock); if (map) static_key_slow_inc(&rps_needed); if (old_map) { kfree_rcu(old_map, rcu); static_key_slow_dec(&rps_needed); } free_cpumask_var(mask); return len; } static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, struct rx_queue_attribute *attr, char *buf) { struct rps_dev_flow_table *flow_table; unsigned long val = 0; rcu_read_lock(); flow_table = rcu_dereference(queue->rps_flow_table); if (flow_table) val = (unsigned long)flow_table->mask + 1; rcu_read_unlock(); return sprintf(buf, "%lu\n", val); } static void rps_dev_flow_table_release_work(struct work_struct *work) { struct rps_dev_flow_table *table = container_of(work, struct rps_dev_flow_table, free_work); vfree(table); } static void rps_dev_flow_table_release(struct rcu_head *rcu) { struct rps_dev_flow_table *table = container_of(rcu, struct rps_dev_flow_table, rcu); INIT_WORK(&table->free_work, rps_dev_flow_table_release_work); schedule_work(&table->free_work); } static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, struct rx_queue_attribute *attr, const char *buf, size_t len) { unsigned long mask, count; struct rps_dev_flow_table *table, *old_table; static DEFINE_SPINLOCK(rps_dev_flow_lock); int rc; if (!capable(CAP_NET_ADMIN)) return -EPERM; rc = kstrtoul(buf, 0, &count); if (rc < 0) return rc; if (count) { mask = count - 1; /* mask = roundup_pow_of_two(count) - 1; * without overflows... */ while ((mask | (mask >> 1)) != mask) mask |= (mask >> 1); /* On 64 bit arches, must check mask fits in table->mask (u32), * and on 32bit arches, must check RPS_DEV_FLOW_TABLE_SIZE(mask + 1) * doesnt overflow. */ #if BITS_PER_LONG > 32 if (mask > (unsigned long)(u32)mask) return -EINVAL; #else if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) / sizeof(struct rps_dev_flow)) { /* Enforce a limit to prevent overflow */ return -EINVAL; } #endif table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); if (!table) return -ENOMEM; table->mask = mask; for (count = 0; count <= mask; count++) table->flows[count].cpu = RPS_NO_CPU; } else table = NULL; spin_lock(&rps_dev_flow_lock); old_table = rcu_dereference_protected(queue->rps_flow_table, lockdep_is_held(&rps_dev_flow_lock)); rcu_assign_pointer(queue->rps_flow_table, table); spin_unlock(&rps_dev_flow_lock); if (old_table) call_rcu(&old_table->rcu, rps_dev_flow_table_release); return len; } static struct rx_queue_attribute rps_cpus_attribute = __ATTR(rps_cpus, S_IRUGO | S_IWUSR, show_rps_map, store_rps_map); static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute = __ATTR(rps_flow_cnt, S_IRUGO | S_IWUSR, show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); static struct attribute *rx_queue_default_attrs[] = { &rps_cpus_attribute.attr, &rps_dev_flow_table_cnt_attribute.attr, NULL }; static void rx_queue_release(struct kobject *kobj) { struct netdev_rx_queue *queue = to_rx_queue(kobj); struct rps_map *map; struct rps_dev_flow_table *flow_table; map = rcu_dereference_protected(queue->rps_map, 1); if (map) { RCU_INIT_POINTER(queue->rps_map, NULL); kfree_rcu(map, rcu); } flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); if (flow_table) { RCU_INIT_POINTER(queue->rps_flow_table, NULL); call_rcu(&flow_table->rcu, rps_dev_flow_table_release); } memset(kobj, 0, sizeof(*kobj)); dev_put(queue->dev); } static struct kobj_type rx_queue_ktype = { .sysfs_ops = &rx_queue_sysfs_ops, .release = rx_queue_release, .default_attrs = rx_queue_default_attrs, }; static int rx_queue_add_kobject(struct net_device *net, int index) { struct netdev_rx_queue *queue = net->_rx + index; struct kobject *kobj = &queue->kobj; int error = 0; kobj->kset = net->queues_kset; error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, "rx-%u", index); if (error) { kobject_put(kobj); return error; } kobject_uevent(kobj, KOBJ_ADD); dev_hold(queue->dev); return error; } #endif /* CONFIG_RPS */ int net_rx_queue_update_kobjects(struct net_device *net, int old_num, int new_num) { #ifdef CONFIG_RPS int i; int error = 0; for (i = old_num; i < new_num; i++) { error = rx_queue_add_kobject(net, i); if (error) { new_num = old_num; break; } } while (--i >= new_num) kobject_put(&net->_rx[i].kobj); return error; #else return 0; #endif } #ifdef CONFIG_SYSFS /* * netdev_queue sysfs structures and functions. */ struct netdev_queue_attribute { struct attribute attr; ssize_t (*show)(struct netdev_queue *queue, struct netdev_queue_attribute *attr, char *buf); ssize_t (*store)(struct netdev_queue *queue, struct netdev_queue_attribute *attr, const char *buf, size_t len); }; #define to_netdev_queue_attr(_attr) container_of(_attr, \ struct netdev_queue_attribute, attr) #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) static ssize_t netdev_queue_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct netdev_queue_attribute *attribute = to_netdev_queue_attr(attr); struct netdev_queue *queue = to_netdev_queue(kobj); if (!attribute->show) return -EIO; return attribute->show(queue, attribute, buf); } static ssize_t netdev_queue_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct netdev_queue_attribute *attribute = to_netdev_queue_attr(attr); struct netdev_queue *queue = to_netdev_queue(kobj); if (!attribute->store) return -EIO; return attribute->store(queue, attribute, buf, count); } static const struct sysfs_ops netdev_queue_sysfs_ops = { .show = netdev_queue_attr_show, .store = netdev_queue_attr_store, }; static ssize_t show_trans_timeout(struct netdev_queue *queue, struct netdev_queue_attribute *attribute, char *buf) { unsigned long trans_timeout; spin_lock_irq(&queue->_xmit_lock); trans_timeout = queue->trans_timeout; spin_unlock_irq(&queue->_xmit_lock); return sprintf(buf, "%lu", trans_timeout); } static struct netdev_queue_attribute queue_trans_timeout = __ATTR(tx_timeout, S_IRUGO, show_trans_timeout, NULL); #ifdef CONFIG_BQL /* * Byte queue limits sysfs structures and functions. */ static ssize_t bql_show(char *buf, unsigned int value) { return sprintf(buf, "%u\n", value); } static ssize_t bql_set(const char *buf, const size_t count, unsigned int *pvalue) { unsigned int value; int err; if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) value = DQL_MAX_LIMIT; else { err = kstrtouint(buf, 10, &value); if (err < 0) return err; if (value > DQL_MAX_LIMIT) return -EINVAL; } *pvalue = value; return count; } static ssize_t bql_show_hold_time(struct netdev_queue *queue, struct netdev_queue_attribute *attr, char *buf) { struct dql *dql = &queue->dql; return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); } static ssize_t bql_set_hold_time(struct netdev_queue *queue, struct netdev_queue_attribute *attribute, const char *buf, size_t len) { struct dql *dql = &queue->dql; unsigned int value; int err; err = kstrtouint(buf, 10, &value); if (err < 0) return err; dql->slack_hold_time = msecs_to_jiffies(value); return len; } static struct netdev_queue_attribute bql_hold_time_attribute = __ATTR(hold_time, S_IRUGO | S_IWUSR, bql_show_hold_time, bql_set_hold_time); static ssize_t bql_show_inflight(struct netdev_queue *queue, struct netdev_queue_attribute *attr, char *buf) { struct dql *dql = &queue->dql; return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); } static struct netdev_queue_attribute bql_inflight_attribute = __ATTR(inflight, S_IRUGO, bql_show_inflight, NULL); #define BQL_ATTR(NAME, FIELD) \ static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ struct netdev_queue_attribute *attr, \ char *buf) \ { \ return bql_show(buf, queue->dql.FIELD); \ } \ \ static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ struct netdev_queue_attribute *attr, \ const char *buf, size_t len) \ { \ return bql_set(buf, len, &queue->dql.FIELD); \ } \ \ static struct netdev_queue_attribute bql_ ## NAME ## _attribute = \ __ATTR(NAME, S_IRUGO | S_IWUSR, bql_show_ ## NAME, \ bql_set_ ## NAME); BQL_ATTR(limit, limit) BQL_ATTR(limit_max, max_limit) BQL_ATTR(limit_min, min_limit) static struct attribute *dql_attrs[] = { &bql_limit_attribute.attr, &bql_limit_max_attribute.attr, &bql_limit_min_attribute.attr, &bql_hold_time_attribute.attr, &bql_inflight_attribute.attr, NULL }; static struct attribute_group dql_group = { .name = "byte_queue_limits", .attrs = dql_attrs, }; #endif /* CONFIG_BQL */ #ifdef CONFIG_XPS static inline unsigned int get_netdev_queue_index(struct netdev_queue *queue) { struct net_device *dev = queue->dev; int i; for (i = 0; i < dev->num_tx_queues; i++) if (queue == &dev->_tx[i]) break; BUG_ON(i >= dev->num_tx_queues); return i; } static ssize_t show_xps_map(struct netdev_queue *queue, struct netdev_queue_attribute *attribute, char *buf) { struct net_device *dev = queue->dev; struct xps_dev_maps *dev_maps; cpumask_var_t mask; unsigned long index; size_t len = 0; int i; if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; index = get_netdev_queue_index(queue); rcu_read_lock(); dev_maps = rcu_dereference(dev->xps_maps); if (dev_maps) { for_each_possible_cpu(i) { struct xps_map *map = rcu_dereference(dev_maps->cpu_map[i]); if (map) { int j; for (j = 0; j < map->len; j++) { if (map->queues[j] == index) { cpumask_set_cpu(i, mask); break; } } } } } rcu_read_unlock(); len += cpumask_scnprintf(buf + len, PAGE_SIZE, mask); if (PAGE_SIZE - len < 3) { free_cpumask_var(mask); return -EINVAL; } free_cpumask_var(mask); len += sprintf(buf + len, "\n"); return len; } static DEFINE_MUTEX(xps_map_mutex); #define xmap_dereference(P) \ rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) static void xps_queue_release(struct netdev_queue *queue) { struct net_device *dev = queue->dev; struct xps_dev_maps *dev_maps; struct xps_map *map; unsigned long index; int i, pos, nonempty = 0; index = get_netdev_queue_index(queue); mutex_lock(&xps_map_mutex); dev_maps = xmap_dereference(dev->xps_maps); if (dev_maps) { for_each_possible_cpu(i) { map = xmap_dereference(dev_maps->cpu_map[i]); if (!map) continue; for (pos = 0; pos < map->len; pos++) if (map->queues[pos] == index) break; if (pos < map->len) { if (map->len > 1) map->queues[pos] = map->queues[--map->len]; else { RCU_INIT_POINTER(dev_maps->cpu_map[i], NULL); kfree_rcu(map, rcu); map = NULL; } } if (map) nonempty = 1; } if (!nonempty) { RCU_INIT_POINTER(dev->xps_maps, NULL); kfree_rcu(dev_maps, rcu); } } mutex_unlock(&xps_map_mutex); } static ssize_t store_xps_map(struct netdev_queue *queue, struct netdev_queue_attribute *attribute, const char *buf, size_t len) { struct net_device *dev = queue->dev; cpumask_var_t mask; int err, i, cpu, pos, map_len, alloc_len, need_set; unsigned long index; struct xps_map *map, *new_map; struct xps_dev_maps *dev_maps, *new_dev_maps; int nonempty = 0; int numa_node_id = -2; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; index = get_netdev_queue_index(queue); err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); if (err) { free_cpumask_var(mask); return err; } new_dev_maps = kzalloc(max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES), GFP_KERNEL); if (!new_dev_maps) { free_cpumask_var(mask); return -ENOMEM; } mutex_lock(&xps_map_mutex); dev_maps = xmap_dereference(dev->xps_maps); for_each_possible_cpu(cpu) { map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : NULL; new_map = map; if (map) { for (pos = 0; pos < map->len; pos++) if (map->queues[pos] == index) break; map_len = map->len; alloc_len = map->alloc_len; } else pos = map_len = alloc_len = 0; need_set = cpumask_test_cpu(cpu, mask) && cpu_online(cpu); #ifdef CONFIG_NUMA if (need_set) { if (numa_node_id == -2) numa_node_id = cpu_to_node(cpu); else if (numa_node_id != cpu_to_node(cpu)) numa_node_id = -1; } #endif if (need_set && pos >= map_len) { /* Need to add queue to this CPU's map */ if (map_len >= alloc_len) { alloc_len = alloc_len ? 2 * alloc_len : XPS_MIN_MAP_ALLOC; new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, cpu_to_node(cpu)); if (!new_map) goto error; new_map->alloc_len = alloc_len; for (i = 0; i < map_len; i++) new_map->queues[i] = map->queues[i]; new_map->len = map_len; } new_map->queues[new_map->len++] = index; } else if (!need_set && pos < map_len) { /* Need to remove queue from this CPU's map */ if (map_len > 1) new_map->queues[pos] = new_map->queues[--new_map->len]; else new_map = NULL; } RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], new_map); } /* Cleanup old maps */ for_each_possible_cpu(cpu) { map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : NULL; if (map && xmap_dereference(new_dev_maps->cpu_map[cpu]) != map) kfree_rcu(map, rcu); if (new_dev_maps->cpu_map[cpu]) nonempty = 1; } if (nonempty) { rcu_assign_pointer(dev->xps_maps, new_dev_maps); } else { kfree(new_dev_maps); RCU_INIT_POINTER(dev->xps_maps, NULL); } if (dev_maps) kfree_rcu(dev_maps, rcu); netdev_queue_numa_node_write(queue, (numa_node_id >= 0) ? numa_node_id : NUMA_NO_NODE); mutex_unlock(&xps_map_mutex); free_cpumask_var(mask); return len; error: mutex_unlock(&xps_map_mutex); if (new_dev_maps) for_each_possible_cpu(i) kfree(rcu_dereference_protected( new_dev_maps->cpu_map[i], 1)); kfree(new_dev_maps); free_cpumask_var(mask); return -ENOMEM; } static struct netdev_queue_attribute xps_cpus_attribute = __ATTR(xps_cpus, S_IRUGO | S_IWUSR, show_xps_map, store_xps_map); #endif /* CONFIG_XPS */ static struct attribute *netdev_queue_default_attrs[] = { &queue_trans_timeout.attr, #ifdef CONFIG_XPS &xps_cpus_attribute.attr, #endif NULL }; static void netdev_queue_release(struct kobject *kobj) { struct netdev_queue *queue = to_netdev_queue(kobj); #ifdef CONFIG_XPS xps_queue_release(queue); #endif memset(kobj, 0, sizeof(*kobj)); dev_put(queue->dev); } static struct kobj_type netdev_queue_ktype = { .sysfs_ops = &netdev_queue_sysfs_ops, .release = netdev_queue_release, .default_attrs = netdev_queue_default_attrs, }; static int netdev_queue_add_kobject(struct net_device *net, int index) { struct netdev_queue *queue = net->_tx + index; struct kobject *kobj = &queue->kobj; int error = 0; kobj->kset = net->queues_kset; error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, "tx-%u", index); if (error) goto exit; #ifdef CONFIG_BQL error = sysfs_create_group(kobj, &dql_group); if (error) goto exit; #endif kobject_uevent(kobj, KOBJ_ADD); dev_hold(queue->dev); return 0; exit: kobject_put(kobj); return error; } #endif /* CONFIG_SYSFS */ int netdev_queue_update_kobjects(struct net_device *net, int old_num, int new_num) { #ifdef CONFIG_SYSFS int i; int error = 0; for (i = old_num; i < new_num; i++) { error = netdev_queue_add_kobject(net, i); if (error) { new_num = old_num; break; } } while (--i >= new_num) { struct netdev_queue *queue = net->_tx + i; #ifdef CONFIG_BQL sysfs_remove_group(&queue->kobj, &dql_group); #endif kobject_put(&queue->kobj); } return error; #else return 0; #endif /* CONFIG_SYSFS */ } static int register_queue_kobjects(struct net_device *net) { int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; #ifdef CONFIG_SYSFS net->queues_kset = kset_create_and_add("queues", NULL, &net->dev.kobj); if (!net->queues_kset) return -ENOMEM; #endif #ifdef CONFIG_RPS real_rx = net->real_num_rx_queues; #endif real_tx = net->real_num_tx_queues; error = net_rx_queue_update_kobjects(net, 0, real_rx); if (error) goto error; rxq = real_rx; error = netdev_queue_update_kobjects(net, 0, real_tx); if (error) goto error; txq = real_tx; return 0; error: netdev_queue_update_kobjects(net, txq, 0); net_rx_queue_update_kobjects(net, rxq, 0); return error; } static void remove_queue_kobjects(struct net_device *net) { int real_rx = 0, real_tx = 0; #ifdef CONFIG_RPS real_rx = net->real_num_rx_queues; #endif real_tx = net->real_num_tx_queues; net_rx_queue_update_kobjects(net, real_rx, 0); netdev_queue_update_kobjects(net, real_tx, 0); #ifdef CONFIG_SYSFS kset_unregister(net->queues_kset); #endif } static void *net_grab_current_ns(void) { struct net *ns = current->nsproxy->net_ns; #ifdef CONFIG_NET_NS if (ns) atomic_inc(&ns->passive); #endif return ns; } static const void *net_initial_ns(void) { return &init_net; } static const void *net_netlink_ns(struct sock *sk) { return sock_net(sk); } struct kobj_ns_type_operations net_ns_type_operations = { .type = KOBJ_NS_TYPE_NET, .grab_current_ns = net_grab_current_ns, .netlink_ns = net_netlink_ns, .initial_ns = net_initial_ns, .drop_ns = net_drop_ns, }; EXPORT_SYMBOL_GPL(net_ns_type_operations); #ifdef CONFIG_HOTPLUG static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) { struct net_device *dev = to_net_dev(d); int retval; /* pass interface to uevent. */ retval = add_uevent_var(env, "INTERFACE=%s", dev->name); if (retval) goto exit; /* pass ifindex to uevent. * ifindex is useful as it won't change (interface name may change) * and is what RtNetlink uses natively. */ retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); exit: return retval; } #endif /* * netdev_release -- destroy and free a dead device. * Called when last reference to device kobject is gone. */ static void netdev_release(struct device *d) { struct net_device *dev = to_net_dev(d); BUG_ON(dev->reg_state != NETREG_RELEASED); kfree(dev->ifalias); kfree((char *)dev - dev->padded); } static const void *net_namespace(struct device *d) { struct net_device *dev; dev = container_of(d, struct net_device, dev); return dev_net(dev); } static struct class net_class = { .name = "net", .dev_release = netdev_release, #ifdef CONFIG_SYSFS .dev_attrs = net_class_attributes, #endif /* CONFIG_SYSFS */ #ifdef CONFIG_HOTPLUG .dev_uevent = netdev_uevent, #endif .ns_type = &net_ns_type_operations, .namespace = net_namespace, }; /* Delete sysfs entries but hold kobject reference until after all * netdev references are gone. */ void netdev_unregister_kobject(struct net_device * net) { struct device *dev = &(net->dev); kobject_get(&dev->kobj); remove_queue_kobjects(net); device_del(dev); } /* Create sysfs entries for network device. */ int netdev_register_kobject(struct net_device *net) { struct device *dev = &(net->dev); const struct attribute_group **groups = net->sysfs_groups; int error = 0; device_initialize(dev); dev->class = &net_class; dev->platform_data = net; dev->groups = groups; dev_set_name(dev, "%s", net->name); #ifdef CONFIG_SYSFS /* Allow for a device specific group */ if (*groups) groups++; *groups++ = &netstat_group; #endif /* CONFIG_SYSFS */ error = device_add(dev); if (error) return error; error = register_queue_kobjects(net); if (error) { device_del(dev); return error; } return error; } int netdev_class_create_file(struct class_attribute *class_attr) { return class_create_file(&net_class, class_attr); } EXPORT_SYMBOL(netdev_class_create_file); void netdev_class_remove_file(struct class_attribute *class_attr) { class_remove_file(&net_class, class_attr); } EXPORT_SYMBOL(netdev_class_remove_file); int netdev_kobject_init(void) { kobj_ns_type_register(&net_ns_type_operations); return class_register(&net_class); }