/* * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, * using the CPU's debug registers. Derived from * "arch/x86/kernel/hw_breakpoint.c" * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright 2010 IBM Corporation * Author: K.Prasad * */ #include #include #include #include #include #include #include #include #include #include #include #include /* * Stores the breakpoints currently in use on each breakpoint address * register for every cpu */ static DEFINE_PER_CPU(struct perf_event *, bp_per_reg); /* * Returns total number of data or instruction breakpoints available. */ int hw_breakpoint_slots(int type) { if (type == TYPE_DATA) return HBP_NUM; return 0; /* no instruction breakpoints available */ } /* * Install a perf counter breakpoint. * * We seek a free debug address register and use it for this * breakpoint. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ int arch_install_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); struct perf_event **slot = &__get_cpu_var(bp_per_reg); *slot = bp; /* * Do not install DABR values if the instruction must be single-stepped. * If so, DABR will be populated in single_step_dabr_instruction(). */ if (current->thread.last_hit_ubp != bp) set_dabr(info->address | info->type | DABR_TRANSLATION, DABRX_ALL); return 0; } /* * Uninstall the breakpoint contained in the given counter. * * First we search the debug address register it uses and then we disable * it. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ void arch_uninstall_hw_breakpoint(struct perf_event *bp) { struct perf_event **slot = &__get_cpu_var(bp_per_reg); if (*slot != bp) { WARN_ONCE(1, "Can't find the breakpoint"); return; } *slot = NULL; set_dabr(0, 0); } /* * Perform cleanup of arch-specific counters during unregistration * of the perf-event */ void arch_unregister_hw_breakpoint(struct perf_event *bp) { /* * If the breakpoint is unregistered between a hw_breakpoint_handler() * and the single_step_dabr_instruction(), then cleanup the breakpoint * restoration variables to prevent dangling pointers. */ if (bp->ctx && bp->ctx->task) bp->ctx->task->thread.last_hit_ubp = NULL; } /* * Check for virtual address in kernel space. */ int arch_check_bp_in_kernelspace(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); return is_kernel_addr(info->address); } int arch_bp_generic_fields(int type, int *gen_bp_type) { switch (type) { case DABR_DATA_READ: *gen_bp_type = HW_BREAKPOINT_R; break; case DABR_DATA_WRITE: *gen_bp_type = HW_BREAKPOINT_W; break; case (DABR_DATA_WRITE | DABR_DATA_READ): *gen_bp_type = (HW_BREAKPOINT_W | HW_BREAKPOINT_R); break; default: return -EINVAL; } return 0; } /* * Validate the arch-specific HW Breakpoint register settings */ int arch_validate_hwbkpt_settings(struct perf_event *bp) { int ret = -EINVAL; struct arch_hw_breakpoint *info = counter_arch_bp(bp); if (!bp) return ret; switch (bp->attr.bp_type) { case HW_BREAKPOINT_R: info->type = DABR_DATA_READ; break; case HW_BREAKPOINT_W: info->type = DABR_DATA_WRITE; break; case HW_BREAKPOINT_R | HW_BREAKPOINT_W: info->type = (DABR_DATA_READ | DABR_DATA_WRITE); break; default: return ret; } info->address = bp->attr.bp_addr; info->len = bp->attr.bp_len; /* * Since breakpoint length can be a maximum of HW_BREAKPOINT_LEN(8) * and breakpoint addresses are aligned to nearest double-word * HW_BREAKPOINT_ALIGN by rounding off to the lower address, the * 'symbolsize' should satisfy the check below. */ if (info->len > (HW_BREAKPOINT_LEN - (info->address & HW_BREAKPOINT_ALIGN))) return -EINVAL; return 0; } /* * Restores the breakpoint on the debug registers. * Invoke this function if it is known that the execution context is * about to change to cause loss of MSR_SE settings. */ void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs) { struct arch_hw_breakpoint *info; if (likely(!tsk->thread.last_hit_ubp)) return; info = counter_arch_bp(tsk->thread.last_hit_ubp); regs->msr &= ~MSR_SE; set_dabr(info->address | info->type | DABR_TRANSLATION, DABRX_ALL); tsk->thread.last_hit_ubp = NULL; } /* * Handle debug exception notifications. */ int __kprobes hw_breakpoint_handler(struct die_args *args) { int rc = NOTIFY_STOP; struct perf_event *bp; struct pt_regs *regs = args->regs; int stepped = 1; struct arch_hw_breakpoint *info; unsigned int instr; unsigned long dar = regs->dar; /* Disable breakpoints during exception handling */ set_dabr(0, 0); /* * The counter may be concurrently released but that can only * occur from a call_rcu() path. We can then safely fetch * the breakpoint, use its callback, touch its counter * while we are in an rcu_read_lock() path. */ rcu_read_lock(); bp = __get_cpu_var(bp_per_reg); if (!bp) goto out; info = counter_arch_bp(bp); /* * Return early after invoking user-callback function without restoring * DABR if the breakpoint is from ptrace which always operates in * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal * generated in do_dabr(). */ if (bp->overflow_handler == ptrace_triggered) { perf_bp_event(bp, regs); rc = NOTIFY_DONE; goto out; } /* * Verify if dar lies within the address range occupied by the symbol * being watched to filter extraneous exceptions. If it doesn't, * we still need to single-step the instruction, but we don't * generate an event. */ info->extraneous_interrupt = !((bp->attr.bp_addr <= dar) && (dar - bp->attr.bp_addr < bp->attr.bp_len)); /* Do not emulate user-space instructions, instead single-step them */ if (user_mode(regs)) { current->thread.last_hit_ubp = bp; regs->msr |= MSR_SE; goto out; } stepped = 0; instr = 0; if (!__get_user_inatomic(instr, (unsigned int *) regs->nip)) stepped = emulate_step(regs, instr); /* * emulate_step() could not execute it. We've failed in reliably * handling the hw-breakpoint. Unregister it and throw a warning * message to let the user know about it. */ if (!stepped) { WARN(1, "Unable to handle hardware breakpoint. Breakpoint at " "0x%lx will be disabled.", info->address); perf_event_disable(bp); goto out; } /* * As a policy, the callback is invoked in a 'trigger-after-execute' * fashion */ if (!info->extraneous_interrupt) perf_bp_event(bp, regs); set_dabr(info->address | info->type | DABR_TRANSLATION, DABRX_ALL); out: rcu_read_unlock(); return rc; } /* * Handle single-step exceptions following a DABR hit. */ int __kprobes single_step_dabr_instruction(struct die_args *args) { struct pt_regs *regs = args->regs; struct perf_event *bp = NULL; struct arch_hw_breakpoint *info; bp = current->thread.last_hit_ubp; /* * Check if we are single-stepping as a result of a * previous HW Breakpoint exception */ if (!bp) return NOTIFY_DONE; info = counter_arch_bp(bp); /* * We shall invoke the user-defined callback function in the single * stepping handler to confirm to 'trigger-after-execute' semantics */ if (!info->extraneous_interrupt) perf_bp_event(bp, regs); set_dabr(info->address | info->type | DABR_TRANSLATION, DABRX_ALL); current->thread.last_hit_ubp = NULL; /* * If the process was being single-stepped by ptrace, let the * other single-step actions occur (e.g. generate SIGTRAP). */ if (test_thread_flag(TIF_SINGLESTEP)) return NOTIFY_DONE; return NOTIFY_STOP; } /* * Handle debug exception notifications. */ int __kprobes hw_breakpoint_exceptions_notify( struct notifier_block *unused, unsigned long val, void *data) { int ret = NOTIFY_DONE; switch (val) { case DIE_DABR_MATCH: ret = hw_breakpoint_handler(data); break; case DIE_SSTEP: ret = single_step_dabr_instruction(data); break; } return ret; } /* * Release the user breakpoints used by ptrace */ void flush_ptrace_hw_breakpoint(struct task_struct *tsk) { struct thread_struct *t = &tsk->thread; unregister_hw_breakpoint(t->ptrace_bps[0]); t->ptrace_bps[0] = NULL; } void hw_breakpoint_pmu_read(struct perf_event *bp) { /* TODO */ }