/****************************************************************************** * * Copyright(c) 2009-2013 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include "../wifi.h" #include "../pci.h" #include "../ps.h" #include "reg.h" #include "def.h" #include "phy.h" #include "rf.h" #include "dm.h" #include "table.h" static void set_baseband_phy_config(struct ieee80211_hw *hw); static void set_baseband_agc_config(struct ieee80211_hw *hw); static void store_pwrindex_offset(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data); static bool check_cond(struct ieee80211_hw *hw, const u32 condition); static u32 rf_serial_read(struct ieee80211_hw *hw, enum radio_path rfpath, u32 offset) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *phreg = &rtlphy->phyreg_def[rfpath]; u32 newoffset; u32 tmplong, tmplong2; u8 rfpi_enable = 0; u32 ret; int jj = RF90_PATH_A; int kk = RF90_PATH_B; offset &= 0xff; newoffset = offset; if (RT_CANNOT_IO(hw)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "return all one\n"); return 0xFFFFFFFF; } tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD); if (rfpath == jj) tmplong2 = tmplong; else tmplong2 = rtl_get_bbreg(hw, phreg->rfhssi_para2, MASKDWORD); tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) | (newoffset << 23) | BLSSIREADEDGE; rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD, tmplong & (~BLSSIREADEDGE)); mdelay(1); rtl_set_bbreg(hw, phreg->rfhssi_para2, MASKDWORD, tmplong2); mdelay(2); if (rfpath == jj) rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8)); else if (rfpath == kk) rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1, BIT(8)); if (rfpi_enable) ret = rtl_get_bbreg(hw, phreg->rf_rbpi, BLSSIREADBACKDATA); else ret = rtl_get_bbreg(hw, phreg->rf_rb, BLSSIREADBACKDATA); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x]= 0x%x\n", rfpath, phreg->rf_rb, ret); return ret; } static void rf_serial_write(struct ieee80211_hw *hw, enum radio_path rfpath, u32 offset, u32 data) { u32 data_and_addr; u32 newoffset; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *phreg = &rtlphy->phyreg_def[rfpath]; if (RT_CANNOT_IO(hw)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "stop\n"); return; } offset &= 0xff; newoffset = offset; data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff; rtl_set_bbreg(hw, phreg->rf3wire_offset, MASKDWORD, data_and_addr); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]= 0x%x\n", rfpath, phreg->rf3wire_offset, data_and_addr); } static u32 cal_bit_shift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) { if (((bitmask >> i) & 0x1) == 1) break; } return i; } static bool config_bb_with_header(struct ieee80211_hw *hw, u8 configtype) { if (configtype == BASEBAND_CONFIG_PHY_REG) set_baseband_phy_config(hw); else if (configtype == BASEBAND_CONFIG_AGC_TAB) set_baseband_agc_config(hw); return true; } static bool config_bb_with_pgheader(struct ieee80211_hw *hw, u8 configtype) { struct rtl_priv *rtlpriv = rtl_priv(hw); int i; u32 *table_pg; u16 tbl_page_len; u32 v1 = 0, v2 = 0; tbl_page_len = RTL8188EEPHY_REG_ARRAY_PGLEN; table_pg = RTL8188EEPHY_REG_ARRAY_PG; if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < tbl_page_len; i = i + 3) { v1 = table_pg[i]; v2 = table_pg[i + 1]; if (v1 < 0xcdcdcdcd) { if (table_pg[i] == 0xfe) mdelay(50); else if (table_pg[i] == 0xfd) mdelay(5); else if (table_pg[i] == 0xfc) mdelay(1); else if (table_pg[i] == 0xfb) udelay(50); else if (table_pg[i] == 0xfa) udelay(5); else if (table_pg[i] == 0xf9) udelay(1); store_pwrindex_offset(hw, table_pg[i], table_pg[i + 1], table_pg[i + 2]); continue; } else { if (!check_cond(hw, table_pg[i])) { /*don't need the hw_body*/ i += 2; /* skip the pair of expression*/ v1 = table_pg[i]; v2 = table_pg[i + 1]; while (v2 != 0xDEAD) { i += 3; v1 = table_pg[i]; v2 = table_pg[i + 1]; } } } } } else { RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE, "configtype != BaseBand_Config_PHY_REG\n"); } return true; } static bool config_parafile(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw)); bool rtstatus; rtstatus = config_bb_with_header(hw, BASEBAND_CONFIG_PHY_REG); if (rtstatus != true) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!"); return false; } if (fuse->autoload_failflag == false) { rtlphy->pwrgroup_cnt = 0; rtstatus = config_bb_with_pgheader(hw, BASEBAND_CONFIG_PHY_REG); } if (rtstatus != true) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!"); return false; } rtstatus = config_bb_with_header(hw, BASEBAND_CONFIG_AGC_TAB); if (rtstatus != true) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n"); return false; } rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, 0x200)); return true; } static void rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); int jj = RF90_PATH_A; int kk = RF90_PATH_B; rtlphy->phyreg_def[jj].rfintfs = RFPGA0_XAB_RFINTERFACESW; rtlphy->phyreg_def[kk].rfintfs = RFPGA0_XAB_RFINTERFACESW; rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW; rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW; rtlphy->phyreg_def[jj].rfintfi = RFPGA0_XAB_RFINTERFACERB; rtlphy->phyreg_def[kk].rfintfi = RFPGA0_XAB_RFINTERFACERB; rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB; rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB; rtlphy->phyreg_def[jj].rfintfo = RFPGA0_XA_RFINTERFACEOE; rtlphy->phyreg_def[kk].rfintfo = RFPGA0_XB_RFINTERFACEOE; rtlphy->phyreg_def[jj].rfintfe = RFPGA0_XA_RFINTERFACEOE; rtlphy->phyreg_def[kk].rfintfe = RFPGA0_XB_RFINTERFACEOE; rtlphy->phyreg_def[jj].rf3wire_offset = RFPGA0_XA_LSSIPARAMETER; rtlphy->phyreg_def[kk].rf3wire_offset = RFPGA0_XB_LSSIPARAMETER; rtlphy->phyreg_def[jj].rflssi_select = rFPGA0_XAB_RFPARAMETER; rtlphy->phyreg_def[kk].rflssi_select = rFPGA0_XAB_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = rFPGA0_XCD_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = rFPGA0_XCD_RFPARAMETER; rtlphy->phyreg_def[jj].rftxgain_stage = RFPGA0_TXGAINSTAGE; rtlphy->phyreg_def[kk].rftxgain_stage = RFPGA0_TXGAINSTAGE; rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE; rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE; rtlphy->phyreg_def[jj].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1; rtlphy->phyreg_def[kk].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1; rtlphy->phyreg_def[jj].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2; rtlphy->phyreg_def[kk].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2; rtlphy->phyreg_def[jj].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL; rtlphy->phyreg_def[kk].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL; rtlphy->phyreg_def[jj].rfagc_control1 = ROFDM0_XAAGCCORE1; rtlphy->phyreg_def[kk].rfagc_control1 = ROFDM0_XBAGCCORE1; rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1; rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1; rtlphy->phyreg_def[jj].rfagc_control2 = ROFDM0_XAAGCCORE2; rtlphy->phyreg_def[kk].rfagc_control2 = ROFDM0_XBAGCCORE2; rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2; rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2; rtlphy->phyreg_def[jj].rfrxiq_imbal = ROFDM0_XARXIQIMBAL; rtlphy->phyreg_def[kk].rfrxiq_imbal = ROFDM0_XBRXIQIMBAL; rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBAL; rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBAL; rtlphy->phyreg_def[jj].rfrx_afe = ROFDM0_XARXAFE; rtlphy->phyreg_def[kk].rfrx_afe = ROFDM0_XBRXAFE; rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE; rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE; rtlphy->phyreg_def[jj].rftxiq_imbal = ROFDM0_XATXIQIMBAL; rtlphy->phyreg_def[kk].rftxiq_imbal = ROFDM0_XBTXIQIMBAL; rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTXIQIMBAL; rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTXIQIMBAL; rtlphy->phyreg_def[jj].rftx_afe = ROFDM0_XATXAFE; rtlphy->phyreg_def[kk].rftx_afe = ROFDM0_XBTXAFE; rtlphy->phyreg_def[jj].rf_rb = RFPGA0_XA_LSSIREADBACK; rtlphy->phyreg_def[kk].rf_rb = RFPGA0_XB_LSSIREADBACK; rtlphy->phyreg_def[jj].rf_rbpi = TRANSCEIVEA_HSPI_READBACK; rtlphy->phyreg_def[kk].rf_rbpi = TRANSCEIVEB_HSPI_READBACK; } static bool rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable, u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid, u32 para1, u32 para2, u32 msdelay) { struct swchnlcmd *pcmd; if (cmdtable == NULL) { RT_ASSERT(false, "cmdtable cannot be NULL.\n"); return false; } if (cmdtableidx >= cmdtablesz) return false; pcmd = cmdtable + cmdtableidx; pcmd->cmdid = cmdid; pcmd->para1 = para1; pcmd->para2 = para2; pcmd->msdelay = msdelay; return true; } static bool chnl_step_by_step(struct ieee80211_hw *hw, u8 channel, u8 *stage, u8 *step, u32 *delay) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct swchnlcmd precommoncmd[MAX_PRECMD_CNT]; u32 precommoncmdcnt; struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT]; u32 postcommoncmdcnt; struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT]; u32 rfdependcmdcnt; struct swchnlcmd *currentcmd = NULL; u8 rfpath; u8 num_total_rfpath = rtlphy->num_total_rfpath; precommoncmdcnt = 0; rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++, MAX_PRECMD_CNT, CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0); rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++, MAX_PRECMD_CNT, CMDID_END, 0, 0, 0); postcommoncmdcnt = 0; rtl88e_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++, MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0); rfdependcmdcnt = 0; RT_ASSERT((channel >= 1 && channel <= 14), "illegal channel for Zebra: %d\n", channel); rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++, MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG, RF_CHNLBW, channel, 10); rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++, MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0, 0); do { switch (*stage) { case 0: currentcmd = &precommoncmd[*step]; break; case 1: currentcmd = &rfdependcmd[*step]; break; case 2: currentcmd = &postcommoncmd[*step]; break; } if (currentcmd->cmdid == CMDID_END) { if ((*stage) == 2) { return true; } else { (*stage)++; (*step) = 0; continue; } } switch (currentcmd->cmdid) { case CMDID_SET_TXPOWEROWER_LEVEL: rtl88e_phy_set_txpower_level(hw, channel); break; case CMDID_WRITEPORT_ULONG: rtl_write_dword(rtlpriv, currentcmd->para1, currentcmd->para2); break; case CMDID_WRITEPORT_USHORT: rtl_write_word(rtlpriv, currentcmd->para1, (u16) currentcmd->para2); break; case CMDID_WRITEPORT_UCHAR: rtl_write_byte(rtlpriv, currentcmd->para1, (u8) currentcmd->para2); break; case CMDID_RF_WRITEREG: for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) { rtlphy->rfreg_chnlval[rfpath] = ((rtlphy->rfreg_chnlval[rfpath] & 0xfffffc00) | currentcmd->para2); rtl_set_rfreg(hw, (enum radio_path)rfpath, currentcmd->para1, RFREG_OFFSET_MASK, rtlphy->rfreg_chnlval[rfpath]); } break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } break; } while (true); (*delay) = currentcmd->msdelay; (*step)++; return false; } static long rtl88e_pwr_idx_dbm(struct ieee80211_hw *hw, enum wireless_mode wirelessmode, u8 txpwridx) { long offset; long pwrout_dbm; switch (wirelessmode) { case WIRELESS_MODE_B: offset = -7; break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: offset = -8; break; default: offset = -8; break; } pwrout_dbm = txpwridx / 2 + offset; return pwrout_dbm; } static void rtl88e_phy_set_io(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct dig_t *dm_digtable = &rtlpriv->dm_digtable; RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "--->Cmd(%#x), set_io_inprogress(%d)\n", rtlphy->current_io_type, rtlphy->set_io_inprogress); switch (rtlphy->current_io_type) { case IO_CMD_RESUME_DM_BY_SCAN: dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1; /*rtl92c_dm_write_dig(hw);*/ rtl88e_phy_set_txpower_level(hw, rtlphy->current_channel); rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83); break; case IO_CMD_PAUSE_DM_BY_SCAN: rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue; dm_digtable->cur_igvalue = 0x17; rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } rtlphy->set_io_inprogress = false; RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "(%#x)\n", rtlphy->current_io_type); } u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 returnvalue, originalvalue, bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask); originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = cal_bit_shift(bitmask); returnvalue = (originalvalue & bitmask) >> bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "BBR MASK = 0x%x Addr[0x%x]= 0x%x\n", bitmask, regaddr, originalvalue); return returnvalue; } void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 originalvalue, bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x),data(%#x)\n", regaddr, bitmask, data); if (bitmask != MASKDWORD) { originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = cal_bit_shift(bitmask); data = ((originalvalue & (~bitmask)) | (data << bitshift)); } rtl_write_dword(rtlpriv, regaddr, data); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x)\n", regaddr, bitmask, data); } u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 original_value, readback_value, bitshift; unsigned long flags; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", regaddr, rfpath, bitmask); spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags); original_value = rf_serial_read(hw, rfpath, regaddr); bitshift = cal_bit_shift(bitmask); readback_value = (original_value & bitmask) >> bitshift; spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", regaddr, rfpath, bitmask, original_value); return readback_value; } void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 original_value, bitshift; unsigned long flags; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags); if (bitmask != RFREG_OFFSET_MASK) { original_value = rf_serial_read(hw, rfpath, regaddr); bitshift = cal_bit_shift(bitmask); data = ((original_value & (~bitmask)) | (data << bitshift)); } rf_serial_write(hw, rfpath, regaddr, data); spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); } static bool config_mac_with_header(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; u32 arraylength; u32 *ptrarray; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl8188EMACPHY_Array\n"); arraylength = RTL8188EEMAC_1T_ARRAYLEN; ptrarray = RTL8188EEMAC_1T_ARRAY; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", arraylength); for (i = 0; i < arraylength; i = i + 2) rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]); return true; } bool rtl88e_phy_mac_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool rtstatus = config_mac_with_header(hw); rtl_write_byte(rtlpriv, 0x04CA, 0x0B); return rtstatus; } bool rtl88e_phy_bb_config(struct ieee80211_hw *hw) { bool rtstatus = true; struct rtl_priv *rtlpriv = rtl_priv(hw); u16 regval; u8 reg_hwparafile = 1; u32 tmp; rtl88e_phy_init_bb_rf_register_definition(hw); regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, regval | BIT(13) | BIT(0) | BIT(1)); rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE | FEN_BB_GLB_RSTN | FEN_BBRSTB); tmp = rtl_read_dword(rtlpriv, 0x4c); rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23)); if (reg_hwparafile == 1) rtstatus = config_parafile(hw); return rtstatus; } bool rtl88e_phy_rf_config(struct ieee80211_hw *hw) { return rtl88e_phy_rf6052_config(hw); } static bool check_cond(struct ieee80211_hw *hw, const u32 condition) { struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw)); u32 _board = fuse->board_type; /*need efuse define*/ u32 _interface = rtlhal->interface; u32 _platform = 0x08;/*SupportPlatform */ u32 cond = condition; if (condition == 0xCDCDCDCD) return true; cond = condition & 0xFF; if ((_board & cond) == 0 && cond != 0x1F) return false; cond = condition & 0xFF00; cond = cond >> 8; if ((_interface & cond) == 0 && cond != 0x07) return false; cond = condition & 0xFF0000; cond = cond >> 16; if ((_platform & cond) == 0 && cond != 0x0F) return false; return true; } static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw, u32 addr, u32 data, enum radio_path rfpath, u32 regaddr) { if (addr == 0xffe) { mdelay(50); } else if (addr == 0xfd) { mdelay(5); } else if (addr == 0xfc) { mdelay(1); } else if (addr == 0xfb) { udelay(50); } else if (addr == 0xfa) { udelay(5); } else if (addr == 0xf9) { udelay(1); } else { rtl_set_rfreg(hw, rfpath, regaddr, RFREG_OFFSET_MASK, data); udelay(1); } } static void rtl88_config_s(struct ieee80211_hw *hw, u32 addr, u32 data) { u32 content = 0x1000; /*RF Content: radio_a_txt*/ u32 maskforphyset = (u32)(content & 0xE000); _rtl8188e_config_rf_reg(hw, addr, data, RF90_PATH_A, addr | maskforphyset); } static void _rtl8188e_config_bb_reg(struct ieee80211_hw *hw, u32 addr, u32 data) { if (addr == 0xfe) { mdelay(50); } else if (addr == 0xfd) { mdelay(5); } else if (addr == 0xfc) { mdelay(1); } else if (addr == 0xfb) { udelay(50); } else if (addr == 0xfa) { udelay(5); } else if (addr == 0xf9) { udelay(1); } else { rtl_set_bbreg(hw, addr, MASKDWORD, data); udelay(1); } } #define NEXT_PAIR(v1, v2, i) \ do { \ i += 2; v1 = array_table[i]; \ v2 = array_table[i + 1]; \ } while (0) static void set_baseband_agc_config(struct ieee80211_hw *hw) { int i; u32 *array_table; u16 arraylen; struct rtl_priv *rtlpriv = rtl_priv(hw); u32 v1 = 0, v2 = 0; arraylen = RTL8188EEAGCTAB_1TARRAYLEN; array_table = RTL8188EEAGCTAB_1TARRAY; for (i = 0; i < arraylen; i += 2) { v1 = array_table[i]; v2 = array_table[i + 1]; if (v1 < 0xCDCDCDCD) { rtl_set_bbreg(hw, array_table[i], MASKDWORD, array_table[i + 1]); udelay(1); continue; } else {/*This line is the start line of branch.*/ if (!check_cond(hw, array_table[i])) { /*Discard the following (offset, data) pairs*/ NEXT_PAIR(v1, v2, i); while (v2 != 0xDEAD && v2 != 0xCDEF && v2 != 0xCDCD && i < arraylen - 2) { NEXT_PAIR(v1, v2, i); } i -= 2; /* compensate for loop's += 2*/ } else { /* Configure matched pairs and skip to end */ NEXT_PAIR(v1, v2, i); while (v2 != 0xDEAD && v2 != 0xCDEF && v2 != 0xCDCD && i < arraylen - 2) { rtl_set_bbreg(hw, array_table[i], MASKDWORD, array_table[i + 1]); udelay(1); NEXT_PAIR(v1, v2, i); } while (v2 != 0xDEAD && i < arraylen - 2) NEXT_PAIR(v1, v2, i); } } RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n", array_table[i], array_table[i + 1]); } } static void set_baseband_phy_config(struct ieee80211_hw *hw) { int i; u32 *array_table; u16 arraylen; u32 v1 = 0, v2 = 0; arraylen = RTL8188EEPHY_REG_1TARRAYLEN; array_table = RTL8188EEPHY_REG_1TARRAY; for (i = 0; i < arraylen; i += 2) { v1 = array_table[i]; v2 = array_table[i + 1]; if (v1 < 0xcdcdcdcd) { _rtl8188e_config_bb_reg(hw, v1, v2); } else {/*This line is the start line of branch.*/ if (!check_cond(hw, array_table[i])) { /*Discard the following (offset, data) pairs*/ NEXT_PAIR(v1, v2, i); while (v2 != 0xDEAD && v2 != 0xCDEF && v2 != 0xCDCD && i < arraylen - 2) NEXT_PAIR(v1, v2, i); i -= 2; /* prevent from for-loop += 2*/ } else { /* Configure matched pairs and skip to end */ NEXT_PAIR(v1, v2, i); while (v2 != 0xDEAD && v2 != 0xCDEF && v2 != 0xCDCD && i < arraylen - 2) { _rtl8188e_config_bb_reg(hw, v1, v2); NEXT_PAIR(v1, v2, i); } while (v2 != 0xDEAD && i < arraylen - 2) NEXT_PAIR(v1, v2, i); } } } } static void store_pwrindex_offset(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); if (regaddr == RTXAGC_A_RATE18_06) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][0] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][0]); } if (regaddr == RTXAGC_A_RATE54_24) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][1] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][1]); } if (regaddr == RTXAGC_A_CCK1_MCS32) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][6] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][6]); } if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][7] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][7]); } if (regaddr == RTXAGC_A_MCS03_MCS00) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][2] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][2]); } if (regaddr == RTXAGC_A_MCS07_MCS04) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][3] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][3]); } if (regaddr == RTXAGC_A_MCS11_MCS08) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][4] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][4]); } if (regaddr == RTXAGC_A_MCS15_MCS12) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][5] = data; if (get_rf_type(rtlphy) == RF_1T1R) rtlphy->pwrgroup_cnt++; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][5]); } if (regaddr == RTXAGC_B_RATE18_06) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][8] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][8]); } if (regaddr == RTXAGC_B_RATE54_24) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][9] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][9]); } if (regaddr == RTXAGC_B_CCK1_55_MCS32) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][14] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][14]); } if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][15] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][15]); } if (regaddr == RTXAGC_B_MCS03_MCS00) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][10] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][10]); } if (regaddr == RTXAGC_B_MCS07_MCS04) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][11] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][11]); } if (regaddr == RTXAGC_B_MCS11_MCS08) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][12] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][12]); } if (regaddr == RTXAGC_B_MCS15_MCS12) { rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][13] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n", rtlphy->pwrgroup_cnt, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][13]); if (get_rf_type(rtlphy) != RF_1T1R) rtlphy->pwrgroup_cnt++; } } #define READ_NEXT_RF_PAIR(v1, v2, i) \ do { \ i += 2; v1 = a_table[i]; \ v2 = a_table[i + 1]; \ } while (0) bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw, enum radio_path rfpath) { int i; u32 *a_table; u16 a_len; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 v1 = 0, v2 = 0; a_len = RTL8188EE_RADIOA_1TARRAYLEN; a_table = RTL8188EE_RADIOA_1TARRAY; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", a_len); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath); switch (rfpath) { case RF90_PATH_A: for (i = 0; i < a_len; i = i + 2) { v1 = a_table[i]; v2 = a_table[i + 1]; if (v1 < 0xcdcdcdcd) { rtl88_config_s(hw, v1, v2); } else {/*This line is the start line of branch.*/ if (!check_cond(hw, a_table[i])) { /* Discard the following (offset, data) * pairs */ READ_NEXT_RF_PAIR(v1, v2, i); while (v2 != 0xDEAD && v2 != 0xCDEF && v2 != 0xCDCD && i < a_len - 2) READ_NEXT_RF_PAIR(v1, v2, i); i -= 2; /* prevent from for-loop += 2*/ } else { /* Configure matched pairs and skip to * end of if-else. */ READ_NEXT_RF_PAIR(v1, v2, i); while (v2 != 0xDEAD && v2 != 0xCDEF && v2 != 0xCDCD && i < a_len - 2) { rtl88_config_s(hw, v1, v2); READ_NEXT_RF_PAIR(v1, v2, i); } while (v2 != 0xDEAD && i < a_len - 2) READ_NEXT_RF_PAIR(v1, v2, i); } } } if (rtlhal->oem_id == RT_CID_819X_HP) rtl88_config_s(hw, 0x52, 0x7E4BD); break; case RF90_PATH_B: case RF90_PATH_C: case RF90_PATH_D: default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } return true; } void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); rtlphy->default_initialgain[0] = rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[1] = rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[2] = rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[3] = rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Default initial gain (c50 = 0x%x, c58 = 0x%x, c60 = 0x%x, c68 = 0x%x\n", rtlphy->default_initialgain[0], rtlphy->default_initialgain[1], rtlphy->default_initialgain[2], rtlphy->default_initialgain[3]); rtlphy->framesync = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3, MASKBYTE0); rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2, MASKDWORD); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Default framesync (0x%x) = 0x%x\n", ROFDM0_RXDETECTOR3, rtlphy->framesync); } void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw, long *powerlevel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u8 level; long dbm; level = rtlphy->cur_cck_txpwridx; dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_B, level); level = rtlphy->cur_ofdm24g_txpwridx; if (rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_G, level) > dbm) dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_G, level); level = rtlphy->cur_ofdm24g_txpwridx; if (rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_N_24G, level) > dbm) dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_N_24G, level); *powerlevel = dbm; } static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw, u8 channel, u8 *cckpower, u8 *ofdm, u8 *bw20_pwr, u8 *bw40_pwr) { struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw)); u8 i = (channel - 1); u8 rf_path = 0; int jj = RF90_PATH_A; int kk = RF90_PATH_B; for (rf_path = 0; rf_path < 2; rf_path++) { if (rf_path == jj) { cckpower[jj] = fuse->txpwrlevel_cck[jj][i]; if (fuse->txpwr_ht20diff[jj][i] > 0x0f) /*-8~7 */ bw20_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i] - (~(fuse->txpwr_ht20diff[jj][i]) + 1); else bw20_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i] + fuse->txpwr_ht20diff[jj][i]; if (fuse->txpwr_legacyhtdiff[jj][i] > 0xf) ofdm[jj] = fuse->txpwrlevel_ht40_1s[jj][i] - (~(fuse->txpwr_legacyhtdiff[jj][i])+1); else ofdm[jj] = fuse->txpwrlevel_ht40_1s[jj][i] + fuse->txpwr_legacyhtdiff[jj][i]; bw40_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i]; } else if (rf_path == kk) { cckpower[kk] = fuse->txpwrlevel_cck[kk][i]; bw20_pwr[kk] = fuse->txpwrlevel_ht40_1s[kk][i] + fuse->txpwr_ht20diff[kk][i]; ofdm[kk] = fuse->txpwrlevel_ht40_1s[kk][i] + fuse->txpwr_legacyhtdiff[kk][i]; bw40_pwr[kk] = fuse->txpwrlevel_ht40_1s[kk][i]; } } } static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw, u8 channel, u8 *cckpower, u8 *ofdm, u8 *bw20_pwr, u8 *bw40_pwr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); rtlphy->cur_cck_txpwridx = cckpower[0]; rtlphy->cur_ofdm24g_txpwridx = ofdm[0]; rtlphy->cur_bw20_txpwridx = bw20_pwr[0]; rtlphy->cur_bw40_txpwridx = bw40_pwr[0]; } void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel) { struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw)); u8 cckpower[MAX_TX_COUNT] = {0}, ofdm[MAX_TX_COUNT] = {0}; u8 bw20_pwr[MAX_TX_COUNT] = {0}, bw40_pwr[MAX_TX_COUNT] = {0}; if (fuse->txpwr_fromeprom == false) return; _rtl88e_get_txpower_index(hw, channel, &cckpower[0], &ofdm[0], &bw20_pwr[0], &bw40_pwr[0]); _rtl88e_ccxpower_index_check(hw, channel, &cckpower[0], &ofdm[0], &bw20_pwr[0], &bw40_pwr[0]); rtl88e_phy_rf6052_set_cck_txpower(hw, &cckpower[0]); rtl88e_phy_rf6052_set_ofdm_txpower(hw, &ofdm[0], &bw20_pwr[0], &bw40_pwr[0], channel); } void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u8 reg_bw_opmode; u8 reg_prsr_rsc; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n", rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ? "20MHz" : "40MHz"); if (is_hal_stop(rtlhal)) { rtlphy->set_bwmode_inprogress = false; return; } reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE); reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2); switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: reg_bw_opmode |= BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); break; case HT_CHANNEL_WIDTH_20_40: reg_bw_opmode &= ~BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); reg_prsr_rsc = (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5); rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0); /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);*/ break; case HT_CHANNEL_WIDTH_20_40: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1); rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND, (mac->cur_40_prime_sc >> 1)); rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc); /*rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);*/ rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)), (mac->cur_40_prime_sc == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } rtl88e_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = false; RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "\n"); } void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw, enum nl80211_channel_type ch_type) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_bw = rtlphy->current_chan_bw; if (rtlphy->set_bwmode_inprogress) return; rtlphy->set_bwmode_inprogress = true; if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) { rtl88e_phy_set_bw_mode_callback(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "FALSE driver sleep or unload\n"); rtlphy->set_bwmode_inprogress = false; rtlphy->current_chan_bw = tmp_bw; } } void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 delay; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "switch to channel%d\n", rtlphy->current_channel); if (is_hal_stop(rtlhal)) return; do { if (!rtlphy->sw_chnl_inprogress) break; if (!chnl_step_by_step(hw, rtlphy->current_channel, &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) { if (delay > 0) mdelay(delay); else continue; } else { rtlphy->sw_chnl_inprogress = false; } break; } while (true); RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "\n"); } u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (rtlphy->sw_chnl_inprogress) return 0; if (rtlphy->set_bwmode_inprogress) return 0; RT_ASSERT((rtlphy->current_channel <= 14), "WIRELESS_MODE_G but channel>14"); rtlphy->sw_chnl_inprogress = true; rtlphy->sw_chnl_stage = 0; rtlphy->sw_chnl_step = 0; if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) { rtl88e_phy_sw_chnl_callback(hw); RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD, "sw_chnl_inprogress false schdule workitem current channel %d\n", rtlphy->current_channel); rtlphy->sw_chnl_inprogress = false; } else { RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD, "sw_chnl_inprogress false driver sleep or unload\n"); rtlphy->sw_chnl_inprogress = false; } return 1; } static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw, bool config_pathb) { u32 reg_eac, reg_e94, reg_e9c; u8 result = 0x00; rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1c); rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x30008c1c); rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x8214032a); rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160000); rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000); mdelay(IQK_DELAY_TIME); reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD); reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD); reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD); if (!(reg_eac & BIT(28)) && (((reg_e94 & 0x03FF0000) >> 16) != 0x142) && (((reg_e9c & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; return result; } static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw) { u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc; u8 result = 0x00; rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002); rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000); mdelay(IQK_DELAY_TIME); reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD); reg_eb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD); reg_ebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD); reg_ec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD); reg_ecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD); if (!(reg_eac & BIT(31)) && (((reg_eb4 & 0x03FF0000) >> 16) != 0x142) && (((reg_ebc & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; else return result; if (!(reg_eac & BIT(30)) && (((reg_ec4 & 0x03FF0000) >> 16) != 0x132) && (((reg_ecc & 0x03FF0000) >> 16) != 0x36)) result |= 0x02; return result; } static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw, bool config_pathb) { u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32temp; u8 result = 0x00; int jj = RF90_PATH_A; /*Get TXIMR Setting*/ /*Modify RX IQK mode table*/ rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000); rtl_set_rfreg(hw, jj, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0); rtl_set_rfreg(hw, jj, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000); rtl_set_rfreg(hw, jj, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f); rtl_set_rfreg(hw, jj, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf117b); rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000); /*IQK Setting*/ rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00); rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x81004800); /*path a IQK setting*/ rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x10008c1c); rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x30008c1c); rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160804); rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000); /*LO calibration Setting*/ rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911); /*one shot, path A LOK & iqk*/ rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000); rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000); mdelay(IQK_DELAY_TIME); reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD); reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD); reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD); if (!(reg_eac & BIT(28)) && (((reg_e94 & 0x03FF0000) >> 16) != 0x142) && (((reg_e9c & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; else return result; u32temp = 0x80007C00 | (reg_e94&0x3FF0000) | ((reg_e9c&0x3FF0000) >> 16); rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32temp); /*RX IQK*/ /*Modify RX IQK mode table*/ rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000); rtl_set_rfreg(hw, jj, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0); rtl_set_rfreg(hw, jj, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000); rtl_set_rfreg(hw, jj, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f); rtl_set_rfreg(hw, jj, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ffa); rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000); /*IQK Setting*/ rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800); /*path a IQK setting*/ rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x30008c1c); rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x10008c1c); rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160c05); rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160c05); /*LO calibration Setting*/ rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911); /*one shot, path A LOK & iqk*/ rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000); rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000); mdelay(IQK_DELAY_TIME); reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD); reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD); reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD); reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD); if (!(reg_eac & BIT(27)) && (((reg_ea4 & 0x03FF0000) >> 16) != 0x132) && (((reg_eac & 0x03FF0000) >> 16) != 0x36)) result |= 0x02; return result; } static void fill_iqk(struct ieee80211_hw *hw, bool iqk_ok, long result[][8], u8 final, bool btxonly) { u32 oldval_0, x, tx0_a, reg; long y, tx0_c; if (final == 0xFF) { return; } else if (iqk_ok) { oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATXIQIMBAL, MASKDWORD) >> 22) & 0x3FF; x = result[final][0]; if ((x & 0x00000200) != 0) x = x | 0xFFFFFC00; tx0_a = (x * oldval_0) >> 8; rtl_set_bbreg(hw, ROFDM0_XATXIQIMBAL, 0x3FF, tx0_a); rtl_set_bbreg(hw, ROFDM0_ECCATHRES, BIT(31), ((x * oldval_0 >> 7) & 0x1)); y = result[final][1]; if ((y & 0x00000200) != 0) y |= 0xFFFFFC00; tx0_c = (y * oldval_0) >> 8; rtl_set_bbreg(hw, ROFDM0_XCTXAFE, 0xF0000000, ((tx0_c & 0x3C0) >> 6)); rtl_set_bbreg(hw, ROFDM0_XATXIQIMBAL, 0x003F0000, (tx0_c & 0x3F)); rtl_set_bbreg(hw, ROFDM0_ECCATHRES, BIT(29), ((y * oldval_0 >> 7) & 0x1)); if (btxonly) return; reg = result[final][2]; rtl_set_bbreg(hw, ROFDM0_XARXIQIMBAL, 0x3FF, reg); reg = result[final][3] & 0x3F; rtl_set_bbreg(hw, ROFDM0_XARXIQIMBAL, 0xFC00, reg); reg = (result[final][3] >> 6) & 0xF; rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg); } } static void save_adda_reg(struct ieee80211_hw *hw, const u32 *addareg, u32 *backup, u32 registernum) { u32 i; for (i = 0; i < registernum; i++) backup[i] = rtl_get_bbreg(hw, addareg[i], MASKDWORD); } static void save_mac_reg(struct ieee80211_hw *hw, const u32 *macreg, u32 *macbackup) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]); macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]); } static void reload_adda(struct ieee80211_hw *hw, const u32 *addareg, u32 *backup, u32 reg_num) { u32 i; for (i = 0; i < reg_num; i++) rtl_set_bbreg(hw, addareg[i], MASKDWORD, backup[i]); } static void reload_mac(struct ieee80211_hw *hw, const u32 *macreg, u32 *macbackup) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]); rtl_write_dword(rtlpriv, macreg[i], macbackup[i]); } static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw, const u32 *addareg, bool is_patha_on, bool is2t) { u32 pathon; u32 i; pathon = is_patha_on ? 0x04db25a4 : 0x0b1b25a4; if (false == is2t) { pathon = 0x0bdb25a0; rtl_set_bbreg(hw, addareg[0], MASKDWORD, 0x0b1b25a0); } else { rtl_set_bbreg(hw, addareg[0], MASKDWORD, pathon); } for (i = 1; i < IQK_ADDA_REG_NUM; i++) rtl_set_bbreg(hw, addareg[i], MASKDWORD, pathon); } static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw, const u32 *macreg, u32 *macbackup) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i = 0; rtl_write_byte(rtlpriv, macreg[i], 0x3F); for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++) rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(3)))); rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5)))); } static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw) { rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0); rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000); } static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw, bool pi_mode) { u32 mode; mode = pi_mode ? 0x01000100 : 0x01000000; rtl_set_bbreg(hw, 0x820, MASKDWORD, mode); rtl_set_bbreg(hw, 0x828, MASKDWORD, mode); } static bool sim_comp(struct ieee80211_hw *hw, long result[][8], u8 c1, u8 c2) { u32 i, j, diff, bitmap, bound; struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 final[2] = {0xFF, 0xFF}; bool bresult = true, is2t = IS_92C_SERIAL(rtlhal->version); if (is2t) bound = 8; else bound = 4; bitmap = 0; for (i = 0; i < bound; i++) { diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] - result[c2][i]) : (result[c2][i] - result[c1][i]); if (diff > MAX_TOLERANCE) { if ((i == 2 || i == 6) && !bitmap) { if (result[c1][i] + result[c1][i + 1] == 0) final[(i / 4)] = c2; else if (result[c2][i] + result[c2][i + 1] == 0) final[(i / 4)] = c1; else bitmap = bitmap | (1 << i); } else { bitmap = bitmap | (1 << i); } } } if (bitmap == 0) { for (i = 0; i < (bound / 4); i++) { if (final[i] != 0xFF) { for (j = i * 4; j < (i + 1) * 4 - 2; j++) result[3][j] = result[final[i]][j]; bresult = false; } } return bresult; } else if (!(bitmap & 0x0F)) { for (i = 0; i < 4; i++) result[3][i] = result[c1][i]; return false; } else if (!(bitmap & 0xF0) && is2t) { for (i = 4; i < 8; i++) result[3][i] = result[c1][i]; return false; } else { return false; } } static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8], u8 t, bool is2t) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 i; u8 patha_ok, pathb_ok; const u32 adda_reg[IQK_ADDA_REG_NUM] = { 0x85c, 0xe6c, 0xe70, 0xe74, 0xe78, 0xe7c, 0xe80, 0xe84, 0xe88, 0xe8c, 0xed0, 0xed4, 0xed8, 0xedc, 0xee0, 0xeec }; const u32 iqk_mac_reg[IQK_MAC_REG_NUM] = { 0x522, 0x550, 0x551, 0x040 }; const u32 iqk_bb_reg[IQK_BB_REG_NUM] = { ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR, RFPGA0_XCD_RFINTERFACESW, 0xb68, 0xb6c, 0x870, 0x860, 0x864, 0x800 }; const u32 retrycount = 2; if (t == 0) { save_adda_reg(hw, adda_reg, rtlphy->adda_backup, 16); save_mac_reg(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); save_adda_reg(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM); } _rtl88e_phy_path_adda_on(hw, adda_reg, true, is2t); if (t == 0) { rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8)); } if (!rtlphy->rfpi_enable) _rtl88e_phy_pi_mode_switch(hw, true); /*BB Setting*/ rtl_set_bbreg(hw, 0x800, BIT(24), 0x00); rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600); rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4); rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000); rtl_set_bbreg(hw, 0x870, BIT(10), 0x01); rtl_set_bbreg(hw, 0x870, BIT(26), 0x01); rtl_set_bbreg(hw, 0x860, BIT(10), 0x00); rtl_set_bbreg(hw, 0x864, BIT(10), 0x00); if (is2t) { rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000); rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00010000); } _rtl88e_phy_mac_setting_calibration(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000); if (is2t) rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000); rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00); rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x81004800); for (i = 0; i < retrycount; i++) { patha_ok = _rtl88e_phy_path_a_iqk(hw, is2t); if (patha_ok == 0x01) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Path A Tx IQK Success!!\n"); result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) & 0x3FF0000) >> 16; result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) & 0x3FF0000) >> 16; break; } } for (i = 0; i < retrycount; i++) { patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, is2t); if (patha_ok == 0x03) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Path A Rx IQK Success!!\n"); result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) & 0x3FF0000) >> 16; result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) & 0x3FF0000) >> 16; break; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Path a RX iqk fail!!!\n"); } } if (0 == patha_ok) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Path A IQK Success!!\n"); } if (is2t) { _rtl88e_phy_path_a_standby(hw); _rtl88e_phy_path_adda_on(hw, adda_reg, false, is2t); for (i = 0; i < retrycount; i++) { pathb_ok = _rtl88e_phy_path_b_iqk(hw); if (pathb_ok == 0x03) { result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) & 0x3FF0000) >> 16; result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) & 0x3FF0000) >> 16; result[t][6] = (rtl_get_bbreg(hw, 0xec4, MASKDWORD) & 0x3FF0000) >> 16; result[t][7] = (rtl_get_bbreg(hw, 0xecc, MASKDWORD) & 0x3FF0000) >> 16; break; } else if (i == (retrycount - 1) && pathb_ok == 0x01) { result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) & 0x3FF0000) >> 16; } result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) & 0x3FF0000) >> 16; } } rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0); if (t != 0) { if (!rtlphy->rfpi_enable) _rtl88e_phy_pi_mode_switch(hw, false); reload_adda(hw, adda_reg, rtlphy->adda_backup, 16); reload_mac(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); reload_adda(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM); rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00032ed3); if (is2t) rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00032ed3); rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00); rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00); } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "88ee IQK Finish!!\n"); } static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t) { u8 tmpreg; u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal; struct rtl_priv *rtlpriv = rtl_priv(hw); int jj = RF90_PATH_A; int kk = RF90_PATH_B; tmpreg = rtl_read_byte(rtlpriv, 0xd03); if ((tmpreg & 0x70) != 0) rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F); else rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF); if ((tmpreg & 0x70) != 0) { rf_a_mode = rtl_get_rfreg(hw, jj, 0x00, MASK12BITS); if (is2t) rf_b_mode = rtl_get_rfreg(hw, kk, 0x00, MASK12BITS); rtl_set_rfreg(hw, jj, 0x00, MASK12BITS, (rf_a_mode & 0x8FFFF) | 0x10000); if (is2t) rtl_set_rfreg(hw, kk, 0x00, MASK12BITS, (rf_b_mode & 0x8FFFF) | 0x10000); } lc_cal = rtl_get_rfreg(hw, jj, 0x18, MASK12BITS); rtl_set_rfreg(hw, jj, 0x18, MASK12BITS, lc_cal | 0x08000); mdelay(100); if ((tmpreg & 0x70) != 0) { rtl_write_byte(rtlpriv, 0xd03, tmpreg); rtl_set_rfreg(hw, jj, 0x00, MASK12BITS, rf_a_mode); if (is2t) rtl_set_rfreg(hw, kk, 0x00, MASK12BITS, rf_b_mode); } else { rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00); } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n"); } static void rfpath_switch(struct ieee80211_hw *hw, bool bmain, bool is2t) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw)); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n"); if (is_hal_stop(rtlhal)) { u8 u1btmp; u1btmp = rtl_read_byte(rtlpriv, REG_LEDCFG0); rtl_write_byte(rtlpriv, REG_LEDCFG0, u1btmp | BIT(7)); rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01); } if (is2t) { if (bmain) rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) | BIT(6), 0x1); else rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) | BIT(6), 0x2); } else { rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(8) | BIT(9), 0); rtl_set_bbreg(hw, 0x914, MASKLWORD, 0x0201); /* We use the RF definition of MAIN and AUX, left antenna and * right antenna repectively. * Default output at AUX. */ if (bmain) { rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(14) | BIT(13) | BIT(12), 0); rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) | BIT(4) | BIT(3), 0); if (fuse->antenna_div_type == CGCS_RX_HW_ANTDIV) rtl_set_bbreg(hw, RCONFIG_RAM64X16, BIT(31), 0); } else { rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(14) | BIT(13) | BIT(12), 1); rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) | BIT(4) | BIT(3), 1); if (fuse->antenna_div_type == CGCS_RX_HW_ANTDIV) rtl_set_bbreg(hw, RCONFIG_RAM64X16, BIT(31), 1); } } } #undef IQK_ADDA_REG_NUM #undef IQK_DELAY_TIME void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, bool recovery) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); long result[4][8]; u8 i, final; bool patha_ok; long reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc, reg_tmp = 0; bool is12simular, is13simular, is23simular; u32 iqk_bb_reg[9] = { ROFDM0_XARXIQIMBAL, ROFDM0_XBRXIQIMBAL, ROFDM0_ECCATHRES, ROFDM0_AGCRSSITABLE, ROFDM0_XATXIQIMBAL, ROFDM0_XBTXIQIMBAL, ROFDM0_XCTXAFE, ROFDM0_XDTXAFE, ROFDM0_RXIQEXTANTA }; if (recovery) { reload_adda(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, 9); return; } memset(result, 0, 32 * sizeof(long)); final = 0xff; patha_ok = false; is12simular = false; is23simular = false; is13simular = false; for (i = 0; i < 3; i++) { if (get_rf_type(rtlphy) == RF_2T2R) _rtl88e_phy_iq_calibrate(hw, result, i, true); else _rtl88e_phy_iq_calibrate(hw, result, i, false); if (i == 1) { is12simular = sim_comp(hw, result, 0, 1); if (is12simular) { final = 0; break; } } if (i == 2) { is13simular = sim_comp(hw, result, 0, 2); if (is13simular) { final = 0; break; } is23simular = sim_comp(hw, result, 1, 2); if (is23simular) { final = 1; } else { for (i = 0; i < 8; i++) reg_tmp += result[3][i]; if (reg_tmp != 0) final = 3; else final = 0xFF; } } } for (i = 0; i < 4; i++) { reg_e94 = result[i][0]; reg_e9c = result[i][1]; reg_ea4 = result[i][2]; reg_eb4 = result[i][4]; reg_ebc = result[i][5]; } if (final != 0xff) { reg_e94 = result[final][0]; rtlphy->reg_e94 = reg_e94; reg_e9c = result[final][1]; rtlphy->reg_e9c = reg_e9c; reg_ea4 = result[final][2]; reg_eb4 = result[final][4]; rtlphy->reg_eb4 = reg_eb4; reg_ebc = result[final][5]; rtlphy->reg_ebc = reg_ebc; patha_ok = true; } else { rtlphy->reg_e94 = 0x100; rtlphy->reg_eb4 = 0x100; rtlphy->reg_ebc = 0x0; rtlphy->reg_e9c = 0x0; } if (reg_e94 != 0) /*&&(reg_ea4 != 0) */ fill_iqk(hw, patha_ok, result, final, (reg_ea4 == 0)); if (final != 0xFF) { for (i = 0; i < IQK_MATRIX_REG_NUM; i++) rtlphy->iqk_matrix[0].value[0][i] = result[final][i]; rtlphy->iqk_matrix[0].iqk_done = true; } save_adda_reg(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, 9); } void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); bool start_conttx = false, singletone = false; u32 timeout = 2000, timecount = 0; if (start_conttx || singletone) return; while (rtlpriv->mac80211.act_scanning && timecount < timeout) { udelay(50); timecount += 50; } rtlphy->lck_inprogress = true; RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Start!!! currentband %x delay %d ms\n", rtlhal->current_bandtype, timecount); _rtl88e_phy_lc_calibrate(hw, false); rtlphy->lck_inprogress = false; } void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain) { rfpath_switch(hw, bmain, false); } bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); bool postprocessing = false; RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "-->IO Cmd(%#x), set_io_inprogress(%d)\n", iotype, rtlphy->set_io_inprogress); do { switch (iotype) { case IO_CMD_RESUME_DM_BY_SCAN: RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "[IO CMD] Resume DM after scan.\n"); postprocessing = true; break; case IO_CMD_PAUSE_DM_BY_SCAN: RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "[IO CMD] Pause DM before scan.\n"); postprocessing = true; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } } while (false); if (postprocessing && !rtlphy->set_io_inprogress) { rtlphy->set_io_inprogress = true; rtlphy->current_io_type = iotype; } else { return false; } rtl88e_phy_set_io(hw); RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype); return true; } static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); /*rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);*/ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00); } static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); int jj = RF90_PATH_A; rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF); rtl_set_rfreg(hw, jj, 0x00, RFREG_OFFSET_MASK, 0x00); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22); } static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw, enum rf_pwrstate rfpwr_state) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl8192_tx_ring *ring = NULL; bool bresult = true; u8 i, queue_id; switch (rfpwr_state) { case ERFON:{ if ((ppsc->rfpwr_state == ERFOFF) && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { bool rtstatus; u32 init = 0; do { init++; RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic enable\n"); rtstatus = rtl_ps_enable_nic(hw); } while ((rtstatus != true) && (init < 10)); RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "Set ERFON sleeped:%d ms\n", jiffies_to_msecs(jiffies - ppsc-> last_sleep_jiffies)); ppsc->last_awake_jiffies = jiffies; rtl88ee_phy_set_rf_on(hw); } if (mac->link_state == MAC80211_LINKED) rtlpriv->cfg->ops->led_control(hw, LED_CTL_LINK); else rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); break; } case ERFOFF:{ for (queue_id = 0, i = 0; queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) { ring = &pcipriv->dev.tx_ring[queue_id]; if (skb_queue_len(&ring->queue) == 0) { queue_id++; continue; } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", (i + 1), queue_id, skb_queue_len(&ring->queue)); udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n", MAX_DOZE_WAITING_TIMES_9x, queue_id, skb_queue_len(&ring->queue)); break; } } if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic disable\n"); rtl_ps_disable_nic(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); } else { rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); } } break; } case ERFSLEEP:{ if (ppsc->rfpwr_state == ERFOFF) break; for (queue_id = 0, i = 0; queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) { ring = &pcipriv->dev.tx_ring[queue_id]; if (skb_queue_len(&ring->queue) == 0) { queue_id++; continue; } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", (i + 1), queue_id, skb_queue_len(&ring->queue)); udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n", MAX_DOZE_WAITING_TIMES_9x, queue_id, skb_queue_len(&ring->queue)); break; } } RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "Set ERFSLEEP awaked:%d ms\n", jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies)); ppsc->last_sleep_jiffies = jiffies; _rtl88ee_phy_set_rf_sleep(hw); break; } default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); bresult = false; break; } if (bresult) ppsc->rfpwr_state = rfpwr_state; return bresult; } bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw, enum rf_pwrstate rfpwr_state) { struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); bool bresult; if (rfpwr_state == ppsc->rfpwr_state) return false; bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state); return bresult; }